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Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes
in the physical and chemical environment of the oceans via warming, deoxygenation, and
acidification. These changes may threaten the persistence of species and populations
across a range of latitudes and depths, including species that support diverse biological
communities that in turn provide ecological stability and support commercial interests.
Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa
forms expansive reefs that support biological communities whose diversity rivals that of
tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll
region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers,
and exposed to a series of treatments testing survivorship responses to acidification,
warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested,
between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However,
net calcification generally declined with respect to pH, though a disparate response
was evident where select individuals net calcified and others exhibited net dissolution
near a saturation state of 1. Warming and deoxygenation both had negative effects
on survivorship, with up to 100% mortality observed at temperatures above 14◦C and
oxygen concentrations of approximately 1.5 ml·l−1. These results suggest that, over the
short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico,
though the potential for acclimation and the effects of genetic background should be
considered in future research.
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INTRODUCTION
Human activities are driving noticeable alterations to the Earth’s
oceans, primarily via warming, deoxygenation, and acidification
(Hoegh-Guldberg and Bruno, 2010). As a result of the oceans’
uptake of anthropogenic CO2, drastic changes are expected to
occur to the marine environment throughout the current cen-
tury and beyond (Solomon et al., 2009). Sea surface temperatures
increased on average by 0.6◦C over the past 100 years, and ongo-
ing warming may result in future increases of as much as 4◦C
(Solomon et al., 2007; IPCC, 2013). Through processes such as
meridional transport and downwelling (Bryan, 1982; Hall and
Bryden, 1982), heat and oxygen from photosynthesis are trans-
ported to the deep ocean (Barnett et al., 2001, 2005; Levitus,
2005). However, deep-water ventilation may be reduced as ocean
temperatures increase, resulting in an expansion of oxygen min-
imum zones in the deep sea (Keeling et al., 2010; Stramma
et al., 2010). Furthermore, absorption of anthropogenic CO2 by
the oceans alters the equilibrium of dissolved inorganic carbon
thereby decreasing pH and calcium carbonate saturation. At the
current rate of CO2 emissions, surface seawater pH is projected

to decrease by 0.4 units by the year 2100 (Caldeira and Wickett,
2003). In addition to decreasing surface seawater pH, anthro-
pogenic CO2 is transported to deeper waters by the same pro-
cesses listed above, driving the shoaling, or upward movement,
of the aragonite saturation horizon (Orr et al., 2005; Guinotte
et al., 2006) with potentially negative effects on organisms across
a range of depths and latitudes.

The emerging consequences of global climate change (GCC)
described above are manifest across the spectrum of biological
organization, with a variety of responses observed at the indi-
vidual, population, community, and ecosystem levels (Walther
et al., 2002; Peck, 2011). This may result in a drastic reduction in
global biodiversity with deleterious impacts to environmental sta-
bility, ecosystem function, and society (Cooley and Doney, 2009;
Turley et al., 2010). Despite these changes, many extant species
possess physiological and behavioral mechanisms to either cope
with or escape from the effects of GCC, including acclimatiza-
tion, adaptation, and range or habitat shifts through migration.
Since these mechanisms operate principally at the individual and
population levels, it is prudent to investigate the impacts of GCC
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at these scales. Furthermore, the role of individual plasticity in
acclimatization is important to consider while predicting species
and population persistence on a rapidly changing planet.

One of the most abundant and widely distributed deep-sea
corals is the scleractinian Lophelia pertusa (Linnaeus, 1758), a
reef-forming species that occurs on hard substrata at depths from
40 to 3300 m (Strømgren, 1971; Zibrowius, 1980) across the globe
(Roberts et al., 2009). The distribution of L. pertusa is largely
controlled by environmental factors such as temperature, oxygen
saturation, food supply, and carbonate chemistry (Roberts et al.,
2009; Georgian et al., 2014). L. pertusa is typically found in areas
with hard substrata where temperatures range from 4 to 12◦C,
dissolved oxygen ranges from 3 to 5 ml·l−1, and the aragonite sat-
uration state is greater than 1 (Freiwald et al., 2004; Guinotte
et al., 2006). However, the specific environmental conditions
experienced by individual colonies of L. pertusa are dependent on
both bathymetric and geographic location. The best documented
occurrences of L. pertusa are in the Northeast Atlantic Ocean sur-
rounding Norway, the United Kingdom, and Ireland at depths
primarily from 200 to 1000 m where temperatures range from 6
to 8◦C (Zibrowius, 1980; Frederiksen et al., 1992; Freiwald et al.,
2004) and dissolved oxygen ranges from 3 to 6 ml·l−1 (Freiwald,
2002; Wisshak et al., 2005). Outside of this area, L. pertusa occurs
in the Mediterranean Sea at depths below 200 m and is associated
with higher temperatures from 12.5 to 14◦C (Tursi et al., 2004;
Freiwald et al., 2009). Populations of L. pertusa also occur along
the Atlantic coast of the United States and in the Gulf of Mexico.
In the Gulf of Mexico, L. pertusa reefs are typically found at depths
from 300 to 600 m at intermediate temperatures of 8–12◦C and
relatively low aragonite saturation states of 1.2–1.5 (Cordes et al.,
2008; Mienis et al., 2012; Lunden et al., 2013). The range in pH
experienced by L. pertusa is described only in a few studies, and
reports range from 7.94 to 8.08 in the North Atlantic (Form and
Riebesell, 2012; Brooke and Ross, 2014) and from 7.85 to 8.03 in
the Gulf of Mexico (Lunden et al., 2013). Dissolved oxygen val-
ues at L. pertusa habitats in the Gulf of Mexico are typically in
the 2.7–2.8 ml l−1 range (Davies et al., 2010; Schroeder, 2002),
although values as low as 1.5 ml·l−1 have been observed near
L. pertusa colonies (Georgian et al., 2014). However, these values
are likely to be episodic and long-term (i.e., monthly to annual)
data are currently lacking.

Previous studies of global change impacts on L. pertusa have
predominately been performed on individuals from the Northeast
Atlantic and Mediterranean populations. Dodds et al. (2007)
found that metabolic rate in L. pertusa from the Mingulay Reef
Complex was sensitive to ocean deoxygenation despite surviv-
ing short periods of anoxia. Naumann et al. (2014) obtained
evidence of thermal acclimation to decreased temperature in
L. pertusa from the Mediterranean, but it is not presently known
if this capacity exists for ocean warming. The effects of ocean
acidification on L. pertusa metabolism were recently investigated
by Maier et al. (2013a), and the authors observed no signifi-
cant decreases in respiration rate in response to elevated pCO2.
Studies on calcification in L. pertusa from the Northeast Atlantic
and the Mediterranean have mixed results, with observations of
short-term decreases in net calcification followed by acclima-
tion to increased pCO2 in the Northeast Atlantic (Form and

Riebesell, 2012) and conflicting observations of no change in
calcification rate due to increased pCO2 over several months
from the Mediterranean (Maier et al., 2013b). The only published
laboratory experiment on L. pertusa from the Gulf of Mexico
identified an upper thermal limit of 15◦C after 7 days (Brooke
et al., 2013).

This study investigated the effects of ocean warming, deoxy-
genation, and acidification on survivorship and calcification in
L. pertusa from the Gulf of Mexico. Due to anthropogenic changes
to the physical and chemical properties of seawater, L. pertusa is
likely to experience increased energetic demands associated with
homeostasis and calcification, and therefore its persistence may
be compromised in a changing ocean. Here, in a series of short-
term experiments in the laboratory, we measured survivorship
of L. pertusa colonies exposed to varying regimes of tempera-
ture, pH, and dissolved oxygen; furthermore, we measured net
calcification of L. pertusa as a function of pH. The purpose of
these experiments was to obtain physiological response data on
L. pertusa from the Gulf of Mexico.

MATERIALS AND METHODS
COLLECTION SITE DESCRIPTION
The principal collection sites for this study are located in the
Viosca Knoll leasing area designated by the U.S. Bureau of Ocean
Energy Management (BOEM). Two expansive Lophelia reefs
occur within two lease blocks of the VK area, VK906 (385–400 m
depth, 29.07◦N 88.38◦W) and VK826 (390–550 m depth, 29.15◦N
88.01◦W). The physical environment of the two sites is similar:
temperatures at VK906 range from 8 to 12.5◦C and from 6.5 to
11.6◦C at VK826, while salinity at both sites ranges from 34.9
to 35.4 (Mienis et al., 2012; Georgian et al., 2014; Lunden et al.,
2014). Observations of dissolved oxygen concentrations from the
two sites range from 1.5 to 3.4 ml·l−1, with mean dissolved oxy-
gen near 3 ml·l−1 (Davies et al., 2010; Georgian et al., 2014). The
carbonate chemistry parameters at the two sites are also similar,
with pH ranging from 7.85 to 8.03 and aragonite saturation state
(�arag) ranging from 1.3 to 1.6 (Lunden et al., 2013). Gene flow
between the two sites is likely high given that L. pertusa popula-
tions in this area of the Gulf are considered panmictic (Morrison
et al., 2011).

CORAL COLLECTION, PREPARATION, AND MAINTENANCE
Forty-one nubbins of L. pertusa used in the experiments were col-
lected in November 2010 on the NOAA Ship Ronald H. Brown
with ROV Jason II as part of the “Lophelia II” project jointly spon-
sored by the Bureau of Ocean Energy Management and the NOAA
Office of Ocean Exploration and Research in the Gulf of Mexico
(GoM). Permits for the collection of corals were obtained from
the U.S. Department of the Interior prior to any collection activi-
ties. Spatially discrete coral branches were collected with the ROV
and placed in temperature-insulated bioboxes (volume = ∼20 l)
at depth. Upon return to the surface, corals were kept alive in 20 l
aquaria in the ship’s constant-temperature room. Partial water
changes were made regularly while at sea. Upon return to port,
corals were immediately transported overnight to the laboratory
on wet ice.

Frontiers in Marine Science | Global Change and the Future Ocean December 2014 | Volume 1 | Article 78 | 2

http://www.frontiersin.org/Global_Change_and_the_Future_Ocean
http://www.frontiersin.org/Global_Change_and_the_Future_Ocean
http://www.frontiersin.org/Global_Change_and_the_Future_Ocean/archive


Lunden et al. Deep-sea corals and ocean change

In the laboratory, corals were maintained in one of two 570
liter recirculating aquaria systems at temperature 8◦C and salin-
ity 35 ppt (Lunden et al., 2014). Regular partial water changes
(15–20%) were performed with seawater made using Instant
Ocean® sea salt. Submersible power heads were placed in each
holding tank to ensure water movement and turbulence suffi-
cient to cause swaying of coral polyps. Corals were fed three times
weekly using a combination of MarineSnow® Plankton Diet (Two
Little Fishies, Miami Gardens, FL) and freshly hatched Artemia
nauplii.

Prior to experimental manipulations, coral nubbins were
fixed to 1” PVC male adapters using HoldFast epoxy forming
coral “nubbins” to minimize handling effects. Monofilament line
(diameter = 0.30 mm) was looped through the base of each PVC
adapter to allow for buoyant weighing of the coral branch. All
coral nubbins weighed less than 60 g in seawater. Weights were
corrected for the buoyant weight of the base to which they were
attached.

For population genetic analyses, small fragments of 240 L. per-
tusa colonies from nine localities in the GoM (Garden Banks,
Green Canyon, Mississippi Canyon 751, Gulf Oil and Gulf Penn
shipwrecks, VK906, VK862, VK826, West Florida Slope) were
collected during four GoM cruises between August 2009 and
November 2010. Sampling occurred during August-September
of 2009 and October-November 2010, aboard the R/V Ronald
H. Brown (NOAA) using the remotely operated vehicle (ROV)
Jason II (Woods Hole Oceanographic Institute); aboard the R/V
Seward Johnson using the Johnson-Sea-Link II (Harbor Branch
Oceanographic Institute) submersible in September 2009, as
well as aboard the R/V Cape Hatteras using the Kraken II
ROV (University of Connecticut) in September-October 2010.
Additionally, 16 samples from the eastern Atlantic Ocean (Sula
Ridge and Nordleska Reef) were collected aboard the R/V
Poseidon in September 2011. Once onboard the vessel, small tis-
sue samples were preserved in 95% ETOH and FTA® Technology
Classic card (Whatman®).

CORAL GENOTYPING
All nubbins were swabbed for genotyping prior to experi-
mental assignment and no mortality resulted from swabbing.
Genotyping was conducted to ensure that multiple genotypes of
corals were present in the experimental cohorts, i.e., that one
set of experiments did not include an entire set of clones and
that each treatment contained a mixture of genotypes. Coral
nubbins were haphazardly assigned to each series of experi-
ments prior to genotyping results. Total DNA was extracted
from swabs taken from experimental L. pertusa nubbins and FTA
cards using the PureGene DNA extraction kit (Gentra Systems
Inc., Minneapolis, Minnesota). Six L. pertusa microsatellite loci
(LpeA5, LpeC44, LpeC151, LpeC142, LpeD3, Morrison et al.,
2008; Lpeg62, Molecular Ecology Resources database entry 51059)
were amplified from 41 swab extracts in 20 µL PCR reactions fol-
lowing the conditions in Morrison et al. (2008). Additionally, 240
L. pertusa samples from 9 localities in the GoM and 16 samples
from the eastern Atlantic Ocean (Sula Ridge and Nordleska Reef)
were genotyped at 8 microsatellite loci (LpeA5, LpeC44, LpeC52,
LpeC61, LpeC142, LpeC151, LpeD3, and LpeD5, Morrison et al.,

2008). Fluorescent DNA fragments were electrophoresed on an
ABI 3130xl Genetic Analyzer with GeneScan-500 ROX size stan-
dard. Alleles were scored using GeneMapper v. 4.1 fragment
analysis software (Applied Biosystems). Individuals with identical
multilocus genotypes (MLGs) were identified and the proba-
bility of identity (PI; i.e., the probability of two individuals
sharing the same MLG) was calculated using GenAlEx 6.501 soft-
ware (Peakall and Smouse, 2006, 2012). To assess inter-regional
patterns of connectivity, MLG data from 195 L. pertusa indi-
viduals collected at seven localities in the northwestern Atlantic
Ocean, off the southeastern U.S. (SEUS), two New England
Seamounts (Manning and Rehoboth), and five eastern North
Atlantic populations (Rockall Bank, Mingulay Reef, Sula Ridge,
Trondheimfjord and Nordleska), plus an additional 108 L. per-
tusa samples from 4 localities in the GoM, were included in
several analyses (see Table S1 and Morrison et al., 2011 for
details).

The probability of identity (PI, the probability of two unre-
lated individuals sharing the same genotype) was calculated for
increasing locus combinations using GenAlEx. A Bayesian model-
based clustering approach (Pritchard et al., 2000) implemented in
STRUCTURE v. 2.3.2 (Hubisz et al., 2009) was used to describe
genetic relationships among individuals. This method infers the
number of genetic clusters (K) from MLG data by minimizing
Hardy-Weinberg and linkage disequilibrium among loci within
groups, assigning individuals (probabilistically) to each cluster.
Because models utilizing collection location information as priors
are useful for small data sets and weak structuring (Hubisz et al.,
2009), locality designations were included as priors. Settings for
all runs also included an admixture model (i.e., individuals may
have mixed ancestry), correlated allele frequencies (Falush et al.,
2003), and 20,000 Markov Chain Monte Carlo (MCMC) itera-
tions after a burn-in of 10,000 iterations. Twenty independent
chains were run to test each value of K from K = 1–23. The opti-
mum number of clusters was determined by evaluating the values
of K as the highest mean likelihood of the probability of the num-
ber of clusters given the data observed (LnP(D), Pritchard et al.,
2000), and comparing that with �K (Evanno et al., 2005) as com-
piled and graphed using STRUCTURE Harvester v.0.56.1 (Earl,
2009). Each cluster identified in the initial STRUCTURE run was
analyzed separately using the same settings to identify potential
within-cluster structure since detection of fine-scale structuring
can be limited with large data sets (see Jakobsson et al., 2008).
The software CLUMPP v.1.2 (Jakobsson and Rosenberg, 2007)
was used to merge the results of the 20 runs per K. DISTRUCT
v.1.1 (Rosenberg, 2004) were used to visualize merged run
results.

EXPERIMENTAL DESIGN AND GENERAL SETUP
Three single-factor experiments were conducted in this study: pH
(“acidification”), temperature (“warming”), and dissolved oxy-
gen (“deoxygenation”). Each experiment consisted of 3–5 treat-
ments (Table 1). All experiments were conducted in a constant-
temperature room in the laboratory (see Lunden et al., 2014,
for complete description of experimental aquaria). Three 75-l
aquaria (“tall” type: 61 × 33 × 43 cm) with individual Hagen®
AquaClear® 30 filtration units (Drs. Foster & Smith, Rhinelander,
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Table 1 | Tank conditions for the different experiments.

Experiment Temperature (◦C) pHT TA (µmol·kg−1) �arag DO (ml·l−1)

ACIDIFICATION

Ambient 1 8.6 ± 0.5 7.90 ± 0.06 2320 ± 85 1.47 ± 0.17 ∼6

Low 1 7.8 ± 0.4 7.80 ± 0.07 2352 ± 32 1.18 ± 0.18 ∼6

Very Low 1 8.4 ± 0.5 7.67 ± 0.16 2371 ± 9 0.97 ± 0.40 ∼6

Ambient 2 8.6 ± 0.5 7.90 ± 0.08 2316 ± 23 1.47 ± 0.23 ∼6

Low 2 7.7 ± 0.5 7.78 ± 0.04 2340 ± 66 1.11 ± 0.1 ∼6

Very Low 2 8.8 ± 0.2 7.67 ± 0.1 2309 ± 24 0.92 ± 0.23 ∼6

WARMING

8◦C 8.4 ± 0.2 7.92 ± 0.04 2343 ± 11 1.53 ± 0.14 ∼6

10◦C 9.9 ± 0.5 7.92 ± 0.04 2241 ± 13 1.54 ± 0.12 ∼6

12◦C 11.9 ± 0.3 7.89 ± 0.07 2389 ± 18 1.68 ± 0.22 ∼6

14◦C 14.0 ± 0.3 7.93 ± 0.03 2370 ± 38 1.92 ± 0.14 ∼6

16◦C 16.0 ± 0.5 7.95 ± 0.04 2283 ± 18 2.08 ± 0.18 ∼6

DEOXYGENATION

High 8.61 ± 0.49 8.11 ± 0.08 3535 ± 81 3.43 ± 0.51 5.32 ± 0.28

Ambient 8.79 ± 0.33 8.07 ± 0.06 3553 ± 18 3.23 ± 0.38 2.92 ± 0.21

Low 8.5 ± 0.48 8.28 ± 0.12 3570 ± 45 4.88 ± 1.12 1.57 ± 0.28

All data are mean values ± SD over the 7-day experiments. TA, total alkalinity; �arag , the aragonite saturation state; and DO, dissolved oxygen.

WI) and Pinpoint® pH controllers (American Marine Inc.,
Ridgefield, CT) were used for each treatment (3 to 5 depending
on experiment) within each experiment. Each treatment lasted
for a total of 15 days, with an initial 8-day conditioning period
to allow the corals to acclimate to the experimental tank condi-
tions. Treatments were separated by 3-week “recovery” periods in
all experimental series.

The acidification experiment consisted of three separate treat-
ments and was conducted in sequence at ambient pH (7.90), low
pH (7.75), and very low pH (7.60) from April 2011 to January
2012. Experimental incubations were maintained at tempera-
ture 8◦C and salinity 35 ppt. pH was controlled by injection of
CO2 using a Pinpoint® pH controller (American Marine Inc.,
Ridgefield, CT). pH electrodes were calibrated weekly using Tris-
HCl and AMP-HCl buffers (Nemzer and Dickson, 2005; Dickson
et al., 2007). All of the corals used in the acidification experiment
were collected from VK906. Two trials were performed for the
acidification experiment with two separate groups of corals (see
Results).

The warming experiment consisted of five separate treatments
and was conducted in sequence at 8, 10, 12, 14, and 16◦C from
February to July 2012. Experimental incubations were maintained
at pH 7.90 and salinity 35 ppt. To reach the desired temperature
for each treatment, the thermostat of the constant-temperature
room was adjusted at a rate of 2◦C per day. This rate of change
is well within the range experienced by L. pertusa in its natural
environment, where temperature can change as rapidly as 2.3◦C
per hour (Brooke et al., 2013). Temperature in each aquarium
was recorded daily with a digital thermometer. All of the corals
used in the warming experiment were collected from VK906.
During the recovery period between the 14 and 16◦C treatments,
all corals experienced 100% mortality. Because of this, a new set
of experimental corals (also from VK826) had to be used for
the 16◦C experiment. Survivorship was recorded as cumulative

survivorship, or the proportion of the original nine coral nubbins
surviving.

The deoxygenation experiment consisted of three separate
treatments and was conducted in sequence under high DO
(5 ml·l−1), ambient DO (3 ml·l−1), and low DO (1ml·l−1) from
July to October 2012. Experimental incubations were maintained
at temperature 8◦C and salinity 35 ppt. In order to manipulate
dissolved oxygen concentrations, oxygen-free nitrogen (OFN)
gas was bubbled into each tank through an Aqua Medic 1000
CO2 reactor (Drs. Foster & Smith, Rhinelander, WI). Flow of
nitrogen was controlled with CGA 580 regulators (Airgas, Inc.,
Berwyn, PA). Dissolved oxygen concentration in each aquarium
was recorded daily with an Orion 5 Star DO/pH meter that was
calibrated each day. All of the corals used in the deoxygenation
experiment were collected from VK826.

SEAWATER PREPARATION AND ANALYSES
Experimental seawater was prepared using Instant Ocean® sea
salt at a salinity of 35 ppt. For the acidification and tempera-
ture experiments, further modifications were necessary in order
to manipulate pH. Since Instant Ocean® produces seawater with
a total alkalinity of approximately 3600 µmol·kg−1 (1.5X that
of natural oceanic values), 12.1 N HCl was added to reduce
the total alkalinity to 2300 µmol·kg−1 (mean total alkalinity at
GoM L. pertusa reefs, Lunden et al., 2013). The seawater was
then bubbled with oxygen for ∼24 h to drive off excess CO2

and to restore pH to the ambient value of 7.90 and then fur-
ther manipulated for the other treatments (fully described in
Lunden et al., 2014). This reduction in total alkalinity of the
Instant Ocean seawater® was not performed in the deoxygena-
tion experiments. Because the addition of nitrogen gas removed
both O2 and CO2 from the experimental aquaria, dissolved CO2

was reduced in the aquaria and therefore an elevation in pH
occurred. Since pH could not be controlled under this scenario,
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total alkalinity was not manipulated in the deoxygenation
experiments.

Total alkalinity was measured twice weekly in each aquar-
ium by potentiometric open-cell titration using a Mettler-Toledo
DL15 automatic titrator (Fisher Scientific, Waltham, MA) accord-
ing to SOP3b (Dickson et al., 2007) with certified reference mate-
rials courtesy of A. Dickson (Scripps Institute of Oceanography,
La Jolla, CA). pH (total hydrogen scale) was recorded daily using
the Pinpoint® pH controller (American Marine Inc., Ridgefield,
CT) calibrated against Tris/HCl and AMP/HCl buffers (Nemzer
and Dickson, 2005). The aragonite saturation state was calculated
using CO2SYS (Pierrot et al., 2006) with total alkalinity, pH, tem-
perature, and salinity as input variables. Nutrient concentrations
(ammonia [NH3], nitrate [NO−

3 ], and nitrite [NO−
2 ]) were mea-

sured weekly using API® aquarium test kits (Drs. Foster & Smith,
Rhinelander, WI).

SURVIVORSHIP MEASUREMENTS
Survivorship was assessed by daily observations of polyp tissue
presence and behavior. Final survivorship counts were taken 3 to
4 days following the end of each treatment after transfer to the
maintenance tank. Survivorship is reported as percent cumulative
mortality.

CALCIFICATION MEASUREMENTS
Net calcification was measured using the buoyant weight tech-
nique (Davies, 1989). Coral nubbins were buoyantly weighed at
the start and end of each experimental period (days eight and fif-
teen) using a Denver Instruments SI-64 analytical balance (d =
0.1 mg, Fisher Scientific, Waltham, MA). A weighing chamber
was constructed using ½” plexiglass to prevent disturbances from
air movement during weighing. Each coral nubbin was trans-
ported individually from its respective aquarium to the weighing
chamber in a four-liter Pyrex® beaker and suspended from the
balance. The buoyant weight was recorded after the coral nubbin
stabilized, typically 2 min. Each coral nubbin was weighed three
times to determine measurement precision (∼2–3 mg). Seawater
density was determined in each aquarium by buoyantly weighing
a 2.5 cm2 aluminum block with known density (2.7 g·cm−3).

Coral weight in air (i.e., dry weight) was calculated by the
following equation:

Wa = Ww

1 − Dw
SD

Where
Wa = coral weight in air (dry weight)
Ww = coral weight in water (buoyant weight)
Dw = density of seawater
SD = coral skeletal density (= 2.82 g·cm−3, Lunden et al.,

2013).
Coral growth rate is reported as percent growth per day

(%·d−1), which was calculated by the equation:

Gt = 100 × Mt2 − Mt1

Mt1(T2 − T1)

Where

Gt= growth rate as %·d−1

Mt2= mass (mg, dry weight) at time 2 (end of experimental
period, day 15)

Mt1= mass (mg, dry weight) at time 1 (start of experimental
period, day 8)

T2 = time 2 (end of experimental period, day 15)
T1= time 1 (start of experimental period, day 8).

STATISTICAL ANALYSES AND TANK EFFECTS
All statistical analyses were performed using JMP10® sta-
tistical software. In this study, both parametric and non-
parametric statistics were employed. Non-parametric statistics
were employed where assumptions of normality were not met,
despite endeavors to transform the data (log, square-root).
Normality was tested using the Shapiro–Wilk W Test. A coral
“individual” is defined as a coral nubbin weighing less than 60 g
irrespective of genotype. We elect this definition due to lack of
genotypic replication in our original experimental design.

The effect of individual experimental tanks (n = 3) on coral
growth was tested by one-way Kruskal–Wallis test of growth rate
against tank for each treatment. All but one treatment in this
study yielded p > 0.5 for tank effects. The only treatment to fail
this threshold was the very low pH treatment for the group 1
corals, where p > 0.05. We note that “accepted practices” typi-
cally set p > 0.25 for tank effects, but that exceptions to this rule
exist (e.g., Dufault et al., 2012). Therefore, in our subsequent
analyses, we ignored the effect of experimental tanks and treated
all coral nubbins within the 3 tanks as individual replicates.

RESULTS
CORAL GENOTYPING AND POPULATION GENETICS
For the 41 experimental L. pertusa samples genotyped, the num-
ber of alleles per locus ranged from 3 (Lpeg62) to 11 (LpeC142),
with a mean of 7.8. The PI for the six microsatellite loci was
0.000269, or in other words, this combination of microsatellite
loci provides adequate power to distinguish among close rela-
tives and clones. There were 30 unique MLGs and 17 samples
had identical MLGs (four MLGs represented twice, and two MLGs
represented 4–5 times), suggesting that these samples were clones.

In total, 36 of the 41 genotyped coral nubbins were hap-
hazardly assigned to groups and treatments in the laboratory
experiments (Table S2). The 36 coral nubbins represented 27 of
the 30 unique MLGs, or “genets” identified in the microsatellite
analysis. Each of the three experimental series included multiple
genetically distinct individuals. For the acidification experiment,
two separate groups of 9 coral nubbins were used. The first group
of nubbins (“group 1”) consisted of 5 genets and 4 clones, and the
second group of nubbins (“group 2”) consisted of 9 genets and no
clones. For the warming experiment, one group of 7 genets and 2
clones was used for the 8, 10, 12, and 14◦C treatments. A separate
group of 9 genets and no clones was used for the 16◦C treat-
ment. For the deoxygenation experiment, one group was used and
consisted of 9 genets and no clones.

Our regional population genetic analysis of L. pertusa included
601 unique MLGs from 23 localities in the Gulf of Mexico and
North Atlantic Ocean (Table S1). These 8 microsatellite loci were
highly polymorphic, with a mean of 12.87 alleles per locus across
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sampling localities (Table S1). Observed heterozygosities were
high in the majority of localities (mean 0.654, Table S1, HO),
however, heterozygote deficits were detected in most localities
(positive FIS, Table S1).

Population structuring was evident at several hierarchical lev-
els based upon successive STRUCTURE analyses (Figure 1). Two
population clusters corresponding to the Gulf of Mexico and
the North Atlantic Ocean were detected in the full data set
(Figure 1A, First round). Additional STRUCTURE runs per-
formed on each initial cluster detected sub-structuring only in
the North Atlantic between the Western Atlantic populations off
the southeastern U.S. coast and the New England Seamounts
plus the Eastern Atlantic (Figure 1B, Second round), but not
within the Gulf of Mexico populations examined. Additional sub-
structuring was detected within the North Atlantic cluster among
the seamounts, the eastern Atlantic, and Sula Ridge populations
(Figure 1C, Third round).

ACIDIFICATION EXPERIMENTS
The experimental values for pH and additional carbonate chem-
istry parameters are reported in Table 1. Mean pH varied sig-
nificantly across all three treatments for both group 1 corals
(Kruskal–Wallis test, H = 19.7, p < 0.001) and group 2 corals
(Kruskal–Wallis test, H = 30.1, p < 0.001). Temperature was sig-
nificantly different in both the group 1 experiment (Kruskal–
Wallis test, H = 32.03, p < 0.0001) and in the group 2 experi-
ment (Kruskal–Wallis test, H = 17.9, p < 0.0001), and was lower
by roughly 0.8–0.9◦C from the control experiments. Survivorship
was 100% for all treatments and no mortality was observed
during the 3-week recovery phases between the acidification
treatments.

In the acidification experiments, calcification rate data were
collected from eight coral nubbins from each group, for a total
of 16 coral nubbins for the entire experiment. One coral nubbin
from each group became detached from its PVC fitting during

the experiment and was excluded from the analysis. There were
no significant differences between group 1 and group 2 corals
in number of live polyps (Kruskal–Wallis test, H = −0.464,
p = 0.643) or mass (Kruskal–Wallis test, H = −0.893,
p = 0.372).

In the ambient pH treatment, all corals exhibited positive net
calcification over the experimental period. Net calcification rates
among all corals in the ambient pH treatment ranged from 0.002
to 0.091% day−1, with a mean rate of 0.025 ± 0.006% day−1

(n = 16). Group 1 corals exhibited a mean net calcification rate
of 0.011 ± 0.004% day−1 (n = 8), and group 2 corals exhibited
a mean net calcification rate of 0.039 ± 0.01% day−1 (n = 8).

Calcification rate was highly variable among all coral nub-
bins in the low pH treatment; eight coral nubbins exhibited
net dissolution, and eight coral nubbins exhibited positive net
calcification. Calcification rate in the low pH treatment for
all coral nubbins ranged from −0.04 to 0.02% day−1, with a
mean of −0.003 ± 0.003% day−1 (n = 16). Despite the slightly
decreased temperature in the low pH treatments, this did not have
a significant effect on the net calcification of the individuals tested
(Two-Way ANOVA, t = 1.61, p = 0.158). There was no signifi-
cant interaction between pH and temperature (p = 0.055). The
two coral groups responded differently in the low pH treatment.
Group 1 corals calcified at a rate of 0.01 ± 0.003% day−1 (n = 8).
However, group 2 corals exhibited net dissolution in the low pH
treatment at a rate of −0.01 ± 0.004% day−1 (n = 8).

In the very low pH treatment, 15 of 16 coral nubbins exhib-
ited net dissolution. Calcification rate for all coral nubbins in the
very low pH treatment ranged from −0.024 to 0.012% day−1,
with a mean rate of −0.007 ± 0.002% day−1 (n = 16). Group
1 corals dissolved at a rate of −0.008 ± 0.003% day−1 (n = 8)
and group 2 corals dissolved at a rate of −0.005 ± 0.003% day−1

(n = 8).
The relationship between net calcification and pH was assessed

with both a local regression (LOESS, Figure 2) and linear

FIGURE 1 | Bar plot showing proportional membership of L. pertusa

individuals in K clusters using sequential analyses in the program

STRUCTURE. Collection localities, indicated above and below plots, are

sorted West to East (A). The North Atlantic cluster contained two additional
levels of structuring detected in subsequent STRUCTURE analyses (B,C).
Site abbreviations and additional information are provided in Table S1.
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FIGURE 2 | L. pertusa calcification responses to acidification treatments. Each color represents a unique genotype. Dashed black line represents a linear
local regression (LOESS) of calcification data against measured pH.

regression. The local regression (R2 = 0.3349) shows two appar-
ent responses to changes in pH, a sharp decline in calcification
from the ambient pH treatment to the low pH treatment, and
a slight decline in calcification from the low pH treatment to
the very low pH treatment. Results from the linear regression
(R2 = 0.238, data not shown) suggest an average threshold pH
of 7.73 ± 0.06 and aragonite saturation state of 1.05 ± 0.2 for net
calcification to occur in the individuals examined.

WARMING EXPERIMENTS
In the warming experiments, temperature was significantly dif-
ferent across all treatments (Kruskal–Wallis test, H = 92.1, p <

0.001). Mean pH across all temperature treatments was 7.92 ±
0.05. In the 16◦C experiment, pH was significantly higher than
all other temperature treatments (mean of 7.95 compared to
means of 7.89–7.93 for other treatments, Kruskal–Wallis test,
H = 10.7, p = 0.0303). There was no significant interaction
between pH and temperature in this set of experiments (Two-Way
ANOVA, t = −0.30, p = 0.817). �arag varied significantly among
treatments (Kruskal–Wallis test, H = 63.5, p < 0.001) and was

not statistically different between the 8 and 10◦C experiments
(Mann–Whitney test, U = 0.028, p = 0.978). Mean temperatures
and other relevant variables for each treatment are reported in
Table 1.

Cumulative survivorship of L. pertusa differed signifi-
cantly among temperature regimes after 7 days at each treat-
ment (Figure 3A,B, Kruskal–Wallis test, H = 33.97, p < 0.001).
Survivorship was 100% in the control treatment (8◦C) and
decreased in each successive treatment. At 10◦C, survivorship
was 86.7 ± 6.2% (mean ± SE, n = 9). At 12◦C, survivorship
was 69.9 ± 6.1% (mean ± SE, n = 9). At 14◦C, survivorship was
53.6 ± 8.5% (mean ± SE, n = 9), though all individuals suffered
100% mortality during the recovery phase following this treat-
ment (within 3 weeks of the conclusion of the 14◦C treatment).
Survivorship of the second set of nine experimental corals was 0%
in the 16◦C treatment.

For this set of experiments, several corals were used from
the acidification experiments described above (Table S2). To test
for carry-over effects on individuals used from the acidification
experiments, a “previous treatment” factor was included in the
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FIGURE 3 | L. pertusa survivorship responses. (A) Mean ± SE (n = 9)
cumulative survivorship of L. pertusa from temperature treatments in the
warming experiment; (B) Cumulative survivorship∗ of individual L. pertusa
genets in the warming experiment where each color indicates a unique
genotype; (C) Mean ± SE (n = 9) cumulative survivorship of L. pertusa
from dissolved oxygen treatments in the deoxygenation experiment. *Note
that in the 14◦C experiment, all corals died during the recovery phase in the
maintenance aquaria. It is unclear if this was due to a delayed onset of
stress from the 14◦C treatment or by accumulated stress from the prior
temperature experiments (8, 10, and 12◦C).

analysis and there was a significant effect on coral survivorship
(Two-Way ANOVA, t = 3.49, p = 0.002). Even though they were
not used in any previous experiments, all of the corals exposed to
16◦C suffered complete mortality.

DEOXYGENATION EXPERIMENTS
In the deoxygenation experiments, DO was significantly different
across all treatments (Kruskal–Wallis test, H = 474.7, p < 0.001)
and all treatment values are reported in Table 1. Temperature was
not significantly different across treatments in this experiment
(Kruskal–Wallis test, H = 2.41, p = 0.3). Survivorship of L. per-
tusa was 100% at both the high and ambient dissolved oxygen
treatments. However, survivorship decreased to 0% in the low
treatment (DO = 1.57 ± 0.28 ml·l−1, Figure 3C). No mortality

was observed during the recovery phases between the deoxygena-
tion treatments. The pH in the low deoxygenation treatment
was significantly higher than the high and ambient treatments
(Kruskal–Wallis test, H = 22.96, p < 0.001). This is likely due to
the addition of nitrogen gas, which removed dissolved CO2 (and
O2) and consequently elevated pH.

DISCUSSION
In the present study, the survivorship responses of the deep-sea
coral L. pertusa were tested against experimental perturbations
simulating those projected to occur in the near future from
ongoing GCC and ocean acidification in the Gulf of Mexico.
Survivorship and calcification responses of individual L. pertusa
colonies to ocean acidification were tested and the corals exhib-
ited a variable response at pH ∼7.75 whereby some individuals
net calcified at rates similar to the controls and others exhibited
net dissolution. However, all but one of the individuals exhib-
ited net dissolution at the lowest pH tested (pH 7.60). Exposure
to temperatures above 14◦C for 7 days led to eventual mortal-
ity, while exposure to oxygen concentrations of 1.5 ml·l−1 proved
fatal to the corals after 7 days. It is important to note that while
these results agree well with prior studies on L. pertusa that were
conducted in a similar manner (e.g., Dodds et al., 2007; Brooke
et al., 2013), we cannot rule out the effects of cumulative expo-
sures on mortality in these experiments (as described above in the
Methods). As the impacts of GCC and ocean acidification con-
tinue to proliferate, it will be necessary to investigate potential
mechanisms that species possess in order to cope with or escape
from the associated stresses of GCC.

The present study is among the first to explore the impacts
of global ocean change on a species of deep-sea coral from the
Gulf of Mexico. While deep-sea corals are widely distributed
throughout the deep Gulf of Mexico (e.g., Cordes et al., 2008;
Quattrini et al., 2014), little is known about their responses to
projected future ocean changes. Related studies have investigated
the impacts of changes in temperature, oxygen, and pH on L. per-
tusa, but these have been entirely restricted to areas within the
Northeast Atlantic Ocean (Dodds et al., 2007; Maier et al., 2009;
Form and Riebesell, 2012) and the Mediterranean Sea (Maier
et al., 2012, 2013a,b). Existing studies and the population genetics
work presented here support the existence of regional populations
of L. pertusa across the North Atlantic Ocean with restricted gene
flow (Morrison et al., 2011). Genetic diversity and connectivity
among coral populations is dependent on several factors, includ-
ing life history, geographic location, and physical environment
(Huston, 1985; Hughes, 1989; Selkoe et al., 2010; Maina et al.,
2011). High genetic diversity may be found in populations that
experience frequent or intense disturbances while more clonal
populations are generally found in relatively stable environ-
ments due to the success of locally adapted genotypes and lack
of space for subsequent recruitment (Hunter, 1993); however,
this relationship may vary with respect to species (Coffroth and
Lasker, 1998). Long-term monitoring of L. pertusa habitats in the
Northeast Atlantic reveals relatively stable environmental condi-
tions, with recorded temperature variations typically near 1◦C,
but episodic variations near 3◦C (Mienis et al., 2007). A similar
dataset from the Gulf of Mexico shows a wider temperature range
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of up to 5◦C (Mienis et al., 2012). As would be predicted, the
structure of the Northeast Atlantic L. pertusa population appears
to be highly clonal (Waller and Tyler, 2005) and genetically iso-
lated from the Gulf of Mexico population (Morrison et al., 2011).
Therefore, the results presented here offer new insight into the
responses of L. pertusa from a region that is genetically discrete
and yet to be rigorously studied in the context of global ocean
change.

Results from the acidification experiment show considerable
variation in calcification rate among individuals. The most pro-
nounced variability was observed in the ambient pH treatment
(Figure 2), where calcification rates spanned a range of ∼0.08%
day−1. In general, growth rates of L. pertusa are highly variable
(reviewed in Roberts et al., 2009), and are typically much slower
than zooxanthellate corals due to the lack of photosynthetic input
to calcification (Al-Horani et al., 2003, but see Orejas et al.,
2011) and temperature differences of their natural environments.
Several studies of L. pertusa growth rate show allometric patterns,
the differential growth of select parts of a colony relative to the
whole (e.g., Mortensen, 2001; Gass and Roberts, 2006; Brooke and
Young, 2009), with younger polyps growing significantly faster
than older polyps (Maier et al., 2009). Furthermore, periods of
active and arrested growth within individual colonies have also
been reported (Mortensen, 2001), suggesting episodic growth.
While sampling, we exerted great effort to obtain terminal ends of
L. pertusa branches, and used entirely live colonies in the exper-
iments. However, the combination of allometric and episodic
growth patterns in L. pertusa may still explain some of the highly
variable growth rates obtained at ambient pH in the present study,
and our results agree well with previous studies under similar car-
bonate chemistry conditions (Form and Riebesell, 2012; Maier
et al., 2012, 2013b). While a linear response to acidification may
be more intuitive (but also see Ries et al., 2010), the high vari-
ability in net calcification rates at ambient conditions is better
captured by the LOESS curve (Figure 2). Furthermore, the LOESS
curve suggests varied responses to changes in pH, where calcifica-
tion initially declines sharply below ambient conditions, and then
exhibits a slow decline from the low pH treatment to the very low
treatment. This response may indicate a biological “tipping point”
for acidification that has been observed in other calcification-
dependent invertebrates (Dorey et al., 2013). At this point in time,
there are no high-resolution temporal pH data for L. pertusa habi-
tats, so it is unknown how much variability in pH this species
experiences naturally. If L. pertusa does not naturally experience
wide variability in pH in the Gulf of Mexico, it may explain the
sharp decline in calcification below ambient conditions observed
here.

Previous studies of L. pertusa’s sensitivity to ocean acidifica-
tion have revealed a variety of responses. Using specimens from
the North Atlantic in a long-term experiment, Form and Riebesell
(2012) exposed L. pertusa to varying levels of pCO2 ranging from
600 to 980 µatm, corresponding to a pH range of 7.94 to 7.76.
They observed a short-term shock response manifest as a reduc-
tion in L. pertusa calcification rate over the short-term (8 days),
but found that after 6 months L. pertusa accreted new skeletal
material in the high CO2 treatment at comparable rates to the
control, implying acclimation to high CO2. In similar studies,

L. pertusa from the Mediterranean Sea was used in experiments
with pCO2 treatments ranging from 380 to 930 µatm, spanning
a pH range of 8.14 to 7.73, and found no differences in respira-
tion rate (Maier et al., 2013a) or calcification rate (Maier et al.,
2013b).

The findings of the present study may reconcile these disparate
results regarding calcification rates. Neither Form and Riebesell
(2012) nor Maier et al. (2013b) performed genotypic analyses
on their L. pertusa samples, meaning clones may have been used
in the experiments, particularly if samples were collected from
a limited number of locations. Prior work on L. pertusa in the
Northeast Atlantic supports the existence of a highly clonal pop-
ulation within this area (LeGoff-Vitry et al., 2004; Waller and
Tyler, 2005). Furthermore, if the genetic variability within a
single panmictic population is sufficient to generate a variable
response to OA, as may be occurring in the Gulf of Mexico, then
one would expect to observe more significant differences among
genetically isolated populations such as the North Atlantic and
Mediterranean (Figure 1). The existence of “OA-hardy” geno-
types has been observed in other taxonomic groups (Iglesias-
Rodriguez et al., 2008; Langer et al., 2009; Pistevos et al., 2011;
Parker et al., 2012), and such genotypes may also occur within
the Gulf of Mexico population of L. pertusa (Figure 2), though
further studies are required. Calcification responses of corals and
other taxa to ocean acidification are generally complex (Langdon
and Atkinson, 2005; Ries et al., 2009), and some of this com-
plexity may be attributed to the inherent genetic diversity within
experimental populations.

Temperature is one of the most important abiotic controllers
of species’ distributions including cold-water corals (Roberts
et al., 2009; Davies and Guinotte, 2011). Individual sensitivity to
thermal stress is tightly linked to ephemeral physiological mecha-
nisms such as the heat shock response, which permits tolerance to
short-term heat (and other) stress through the actions of molec-
ular chaperones (Feder and Hofmann, 1999). The limit for onset
of the heat shock response is coupled to an individual’s thermal
history (O’Donnell et al., 2009). Although it inhabits relatively
stable thermal regimes compared to tropical coral species, L. per-
tusa experiences episodic short-term temperature excursions of 2
to 5◦C in the Gulf of Mexico (Mienis et al., 2007, 2012; Davies
et al., 2010). Previous studies of individuals from the Gulf of
Mexico population suggest that L. pertusa is able to tolerate short-
term (24 h) temperature stress at 15◦C without any noticeable
effects on survivorship, but prolonged exposure (7 days) at 15◦C
induces significant mortality (Brooke et al., 2013). The present
study agrees to an extent with these results, but the data here
indicate that some of the individuals of L. pertusa examined are
sensitive to prolonged (7 days) exposure to temperatures sus-
tained at 10◦C and greater. The presence of a significant effect
of previous treatment in the temperature experiment suggests
that carry-over effects from the acidification experiments may be
influencing the corals’ responses to temperature stress. A poten-
tial driver of this significant effect of previous treatment may be
that all corals used in the 16◦C treatment suffered complete mor-
tality. However, all of the corals used in the 16◦C treatment had
not been used previously, suggesting that the significant effect
of previous treatment was biased. In order to further resolve
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this, future experiments on L. pertusa could avoid using corals
in multiple experiments. However, from a logistical perspective,
this may be challenging, as deep-sea corals require considerable
effort and resources to collect and maintain. Our data also sug-
gest that some individuals have wider tolerances to temperature
(Figure 3B), which may be linked to differential expression of
the heat shock response pathways. Future research should also
explore the molecular basis of this tolerance and its role in ocean
warming, and if this tolerance is linked to specific genotypes of
L. pertusa.

Like temperature, dissolved oxygen concentration also plays
a significant role in controlling L. pertusa distribution (Dodds
et al., 2007; Georgian et al., 2014). Previous work has explored
the metabolic tolerance of L. pertusa to various oxygen con-
centrations, and found that L. pertusa is unable to maintain
aerobic respiration at oxygen concentrations less than 3.26 ml·l−1

at 9◦C (Dodds et al., 2007). However, this work was performed
on samples from the Northeast Atlantic, where the mean local
oxygen concentration was 6.10 ml·l−1. Oxygen concentrations
ranging from 1.5 to 3.2 ml·l−1 have been reported from the Gulf
of Mexico surrounding L. pertusa mounds (Schroeder, 2002;
Davies et al., 2010; Georgian et al., 2014), which suggests that
L. pertusa from the Gulf of Mexico may possess a lower oxy-
gen threshold for aerobic respiration compared to North Atlantic
individuals. The experimental results presented here show that
long-term exposure (7 days) at sustained hypoxic conditions
near 1.57 ml·l−1 results in complete mortality. This is despite
the unavoidable concomitant increase in pH, which would make
it energetically favorable for skeletal precipitation. Although in
their environment, these exposures to low O2 may not last
long enough to inflict significant mortality. At the present time,
the L. pertusa populations of the Gulf of Mexico are surviv-
ing on the edge of their dissolved oxygen niche. The frequency
and duration of hypoxic conditions may increase in the future
due to warming and also expansion of the seasonally oxygen-
depleted surface layers of the Gulf of Mexico (Rabalais et al.,
2002).

Our work here contributes to the growing body of experimen-
tal evidence of deep-sea species sensitivity to ocean acidification,
warming, and deoxygenation. The observed responses to climate
change-related stressors in L. pertusa from the Gulf of Mexico
raise new questions related to its persistence in the Anthropocene.
Future work should explore variation in response at the individ-
ual level, and if certain genotypes possess innate resilience to these
stressors. Furthermore, the potential variability of environmen-
tal conditions within deep-sea coral habitats should be explored,
as this could facilitate the potential for physiological plasticity in
species’ responses to warming, deoxygenation, and acidification.
Such work will enable better management of these habitats as the
impacts of global change continue to manifest across the ocean
environment.
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