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The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5)

states that climate change and ocean acidification are altering the oceans at a rate

that is unprecedented compared with the recent past, leading to multifaceted impacts

on marine ecosystems, associated goods and services, and human societies. AR5

underlined key uncertainties that remain regarding how synergistic changes in the ocean

are likely to affect human systems, and how humans are likely to respond to these events.

As climate change research has accelerated rapidly following AR5, an updated synthesis

of available knowledge is necessary to identify emerging evidence, and to thereby better

inform policy discussions. This paper reviews the literature to capture corroborating,

conflicting, and novel findings published following the cut-off date for contribution to AR5.

Specifically, we highlight key scientific developments on the impacts of climate-induced

changes in the ocean on key socioeconomic sectors, including fisheries, aquaculture,

and tourism. New evidence continues to support a climate-induced redistribution of

benefits and losses at multiple scales and across coastal and marine socio-ecological

systems, partly resulting from species and ecosystem range shifts and changes in

primary productivity. New efforts have been made to characterize and value ecosystem

services in the context of climate change, with specific relevance to ecosystem-based

adaptation. Recent studies have also explored synergistic interactions between climatic

drivers, and have found strong variability between impacts on species at different life

stages. Although climate change may improve conditions for some types of freshwater

aquaculture, potentially providing alternative opportunities to adapt to impacts on wild

capture fisheries, ocean acidification poses a risk to shellfish fisheries and aquaculture.

The risk of increased prevalence of disease under warmer temperatures is uncertain,

and may detrimentally affect human health. Climate change may also induce changes

in tourism flows, leading to substantial geospatial shifts in economic costs and benefits

associated with tourism revenue and coastal infrastructure protection and repairs. While

promising, ecosystem-based coastal adaptation approaches are still emerging, and
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require an improved understanding of key ecosystem services, and values for coastal

communities in order to assess risk, aid coastal development planning, and build decision

support systems.

Keywords: climate change impacts, fisheries, aquaculture, coastal tourism, human health, food security,

ecosystem-based adaptation, ocean impacts

INTRODUCTION

The Intergovernmental Panel on Climate Change (IPCC) Fifth
Assessment Report (AR5) states that climate change and
ocean acidification are altering the global ocean at a rate
that is unprecedented compared with the recent past, leading
to multifaceted impacts on marine and coastal ecosystems,
associated goods and services, and human societies (Church et al.,
2013; Pörtner H. O. et al., 2014; Howes et al., 2015). Specifically,
Working Group II (WGII) of the IPCC synthesized research
regarding the observed and projected impacts of climate change
on human and ecological systems. AR5 represents the first IPCC
report to allocate two separate chapters to the oceanwithinWGII,
thereby demonstrating the important contributions of themarine
environment to discussions regarding climate change impacts
and adaptation options.

As research regarding climate change, ocean acidification,
and the ocean has accelerated rapidly, it is important to update
the synthesis of available knowledge on these topics regularly
to inform policy discussions. As a result of the need to ensure
timely publication and peer review, the IPCC could only consider
literature that had been published prior to August 2013 and
now more than 2 years since WGII’s deadline for inclusion of
published literature have passed. Research findings published
within this subsequent period may strengthen or alter the
assessments and conclusions drawn in AR5.

To summarize progress toward addressing the uncertainties
identified in AR5, this paper highlights key developments
with respect to scientific understanding of the impacts of
climate-induced changes in marine and coastal environments on
socioeconomic sectors and human health, with a brief discussion
on recent research regarding adaptation strategies that build from
the AR5. Specifically, this review focuses on topics related to
fisheries, aquaculture, and coastal tourism, as well as human
health and food security, with the aim to capture corroborating,
conflicting, and novel findings from literature published after the
literature “cut-off date” of the IPCC report. To achieve this, the
authors identified key findings fromWGII of the IPCC’s AR5 on
CO2-related impacts on living marine resources of importance to
key marine and coastal sectors. Then, we undertook a systematic
review of literature on these topics. Finally, we concluded by
identifying areas of agreement and points of departure from the
IPCC’s AR5.

KEY FINDINGS IN IPCC AR5

Key findings from AR5 focused primarily on the ecological
implications of climate change (Pörtner H. O. et al., 2014;
Howes et al., 2015). In particular, global redistribution of marine
species was highlighted, with observations and projections

supporting further poleward range shifts under increased ocean
temperatures (Poloczanska et al., 2014; Pörtner H. O. et al., 2014).
Community size structures were projected to decrease under
climate change, with reductions inmaximum body sizes expected
to occur in response to increased temperatures and reduced
oxygen supply (Cheung et al., 2013b). Studies have indicated that
impacts of acidification are likely to be both positive and negative,
with severe impacts on calcifying organisms such as reef-
building corals and bivalves, but with potential benefits for some
vegetative habitats, such as seagrasses (Gattuso et al., 2014a).
Net primary productivity (NPP) was projected to decrease
moderately in the open ocean by 2100 under both low- and high-
emission scenarios, comprising a mean increase in NPP at high
latitudes and a decrease in the tropics (Boyd et al., 2014).

AR5 also highlighted socioeconomic impacts of climate
change on coastal communities. Projections indicated that
species’ poleward range shifts would likely negatively impact
tropical and subtropical communities that depend on these
species for food and economic security (Pörtner H. O. et al.,
2014). Adaptation options included maintaining important
ecosystems, ensuring occupational flexibility, and developing
early warning systems for extreme events (Portner J. R. et al.,
2014). Other coastal impacts discussed included the prominent
threat of sea level rise (SLR), the vulnerability of low-lying coastal
areas, islands, and polar regions (Larsen et al., 2014; Nurse
et al., 2014) and, to a lesser extent, impacts on coastal tourism
through poleward redistribution of tourism flows associated
with increased temperatures, loss of beaches through coastal
erosion and SLR, and a reduction in water supplies (Wong
et al., 2014). At the time, global estimates of observed or
projected economic costs associated with ocean acidification
were limited (Gattuso et al., 2014a), while evidence of impacts
on human health focused primarily on increased frequency of
disease transmission and range expansion, deaths associated with
storm surges and flooding, increased prevalence of harmful algal
blooms (HABs), and reduced food and water security (Nurse
et al., 2014; Pörtner H. O. et al., 2014; Wong et al., 2014). The
report called for additional research exploring climate-related
impacts on other coastal sectors, such as tourism (Wong et al.,
2014) and aquaculture (Portner J. R. et al., 2014).

AR5 underlined key uncertainties regarding how synergistic
climate-induced changes in ecological systems are likely to
affect human systems (Larsen et al., 2014; Pörtner H. O. et al.,
2014), and how humans are likely to respond to climate-
driven events (Portner J. R. et al., 2014). For instance, the
capacity for different taxa to track or acclimate to (i.e., alter
functional or morphological traits in response to) changes
in climate and multiple stressors remained uncertain, with
few studies addressing adaptation to multiple stressors
over longer time series (Poloczanska et al., 2014; Pörtner
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H. O. et al., 2014). Limited evidence existed regarding the
directionality and magnitude of changes in NPP across
different regions and ecosystems (Boyd et al., 2014) and, while
acknowledged as a critical process influencing ecosystem
productivity, the likelihood of climate-induced changes to
major upwelling systems through increased or decreased
upwelling remained uncertain (Lluch-Cota et al., 2014).
Similarly, while the processes behind ocean acidification were
well-understood, few comprehensive studies of biological,
ecological, and biogeochemical impacts were available (Gattuso
et al., 2014a). While climate change was projected to alter
the yield, distribution, quality, and composition of fisheries’
landings globally, details regarding these projected changes,
such as quantification of risk and uncertainties, were still limited
(Cheung et al., 2013c). Although socioeconomic vulnerability
was projected to be highest in tropical countries (Pörtner H. O.
et al., 2014), examples of successful adaptation for small island
nations—beyond relocation—were limited and assessments
of the social and economic costs of adaptation options were
seldom available (Nurse et al., 2014), with relative costs of
adaptation varying strongly between and within regions (Wong
et al., 2014). Ecosystem-based adaptation also featured strongly
in the report as a potential option for responding to climate
change, yet examples were too few and too recent to facilitate
a comprehensive assessment of benefits and risks (Shaw et al.,
2014). Critically, authors of AR5 noted that the practice of
adaptation often exceeds the rate at which peer-reviewed
research describing and examining these practices can be
produced and disseminated (Noble et al., 2014). Thus our
knowledge of the effectiveness of these adaptation practices often
lags behind their implementation.

SYSTEMATIC REVIEW OF LITERATURE

A search of the peer-reviewed literature was conducted
to identify recent scientific developments globally with

respect to our understanding of the impacts of greenhouse
gas emissions on marine and coastal ecosystems and the
sectors and communities that depend on them. Relevant
studies, including regional examples where available, were
obtained by browsing issues published in peer-reviewed
journals between 1 January, 2013 and 31 October, 2014. The
literature review was guided by the questions outlined in
Table 1.

While the study does not intend to provide a comprehensive
overview of climate-induced impacts on marine systems (see
Howes et al., 2015), an understanding of the effects of ocean
warming and acidification on living marine resources was
required to examine corresponding impacts on coastal sectors
and communities. Thus, the study examines relationships
between ecological and socioeconomic impacts arising from
climate change, focusing on impacts likely to occur within the
twenty-first century.

Fisheries and Auxiliary Sectors
Healthymarine systems play a critical role in supporting fisheries,
which contribute significantly to jobs, food security, and the
wealth of nations. Recent studies have sought to characterize
how climate-related drivers alter species’ distributions and
community size structures, with increased attention allocated
toward synergistic effects (Hollowed et al., 2013; Brown and
Thatje, 2014), early developmental stages and community size
structures (Suikkanen et al., 2013; Woodworth-Jefcoats et al.,
2013; Baudron et al., 2014; Calbet et al., 2014; Lefort et al., 2014),
and genetic and phenotypic adaptation (Munday et al., 2013;
Merilä and Hendry, 2014; Sunday et al., 2014). Each of these
aspects is likely to affect the availability and abundance of fish
stocks globally (Sumaila et al., 2011), with regional variation
accompanying climatic trends. From an operational perspective,
studies have also noted that changes in the frequency of extreme
weather events may cause disruptions to fishing activities and
land-based fisheries-related infrastructure (Noone et al., 2013).

TABLE 1 | Questions used to guide the literature review.

Topic Question

Fisheries How are climate change drivers expected to impact fish stocks (distribution, composition, quantity of individuals, etc.) that are currently

exploited?

How are these changes expected to vary by ecosystem and geographical region?

How are these impacts expected to affect fisheries’ catch potential?

What economic impacts are expected for fishing and auxiliary industries?

How are these impacts expected to alter food security?

What ramifications may arise with respect to multilateral business agreements and international agreements? What geopolitical impacts are likely

to occur?

What new evidence supports the theory of an emerging “winners and losers” gap?

Aquaculture How is climate change expected to impact future shellfish and fish aquaculture?

What are the projected consequences of changes in aquaculture production on global food and economic security?

Coastal tourism What are the consequences of ocean warming and acidification impacts on tourism flows?

What are the consequences of ocean warming and acidification impacts on tourism operators’ strategies?

What are the economic consequences to be expected from ocean warming and acidification?

Human health What are the possible impacts of climate-related drivers (e.g., diminished food and water security; extreme weather events; increased prevalence

and transmission of disease) on human health?

Coastal adaptation What evidence exists of the capacity for coastal communities and sectors to mitigate and adapt to climate change?
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Projected Impacts on the Distribution of Fisheries

Stocks
Empirical and theoretical evidence of range shifts in response
to temperature gradients has continued to emerge for various
taxa acrossmany geographical locations (Poloczanska et al., 2013;
Bates et al., 2014), with observations supporting the hypothesis
that range shifts correspond with the rate and directionality of
climate shifts—or “climate velocity”—across landscapes (Pinsky
et al., 2013). In fact, variation in climate velocity was discovered
to be a stronger predictor of the directionality and magnitude of
taxon shifts than variations in life histories (Pinsky et al., 2013).

Studies have increasingly evaluated the degree to which taxa
can track these climate velocities, with an aim to understand the
factors that constrain range extension or contraction processes
(Burrows et al., 2014). Supporting previous findings, Arctic
and tropical fishes have been found occupying new habitats as
temperatures change, further demonstrating the likelihood of
continued poleward range shifts under ocean warming (Wenger
et al., 2013). For instance, tropical fish species with larger body
sizes, greater swimming capacities, larger sizes at settlement, and
pelagic spawning behavior have exhibited greater success when
colonizing temperate habitats, while habitat and food limitation
during juvenile stages were likely to constrain movement (Feary
et al., 2013). Latitudinal trends also suggest that fisheries
stock sizes can increase polewards through higher growth rates
accompanying increased temperatures, with a corresponding
redistribution of fishing effort polewards (Hamon et al., 2013).
However, recruitment is expected to exhibit an eventual decline
under climate change, and thereby partially or fully counteract
projected benefits (Hamon et al., 2013). Observed range shifts
associated with ocean warming may also result in hybridization
between native and invasive species through overlapping ranges,
leading to reduced fitness and thus potentially increasing the risks
of genetic extinction and reducing adaptability to environmental
changes (Muhlfeld et al., 2014).

New examples have emerged regarding barriers to migration,
with studies demonstrating that some taxa may be incapable of
keeping pace with climate velocities, as observed with benthic
invertebrates in the North Sea (Hiddink et al., 2014), and that
there may be geographical barriers to migration associated with
“climate sinks,” where local climatic conditions differ from the
temperature gradients tracked by migrating species (Burrows
et al., 2014). Moreover, genetic bottlenecks can emerge where
species exhibit limited dispersal capacity because of a lack of
suitable habitat, thereby preventing population connectivity (e.g.,
lack of gene flow between populations of corkwing wrasse,
Symphodus melops, in the North Sea and Portugal) (Knutsen
et al., 2013). Significant correlation has been found between
hypoxia thresholds and hyperbaric thresholds of taxonomic
groups, suggesting that the synergistic effects of temperature,
pressure, and oxygen concentration may constrain the capacity
of marine invertebrates and fishes to respond to changes in
environmental conditions through range shifts (Brown and
Thatje, 2014). These results corroborate previous projections that
polar species—and thus the fisheries that target them—are likely
to be more vulnerable to climate change due to constrained
ecological niches (e.g., Cheung et al., 2009), and further suggest

that tropical and temperate fauna may experience substantial
range expansion under the combined influence of ocean warming
and deoxygenation (Brown and Thatje, 2014). Indeed, in some
locations, it is thought that hypoxia may function as a greater
driver of poleward shifts than warming (e.g., poleward shifts of
southern groundfish communities in the Pacific Northwest basin
Okey et al., 2014).

Climate-induced local (i.e., landward) and global (i.e.,
poleward) range shifts are also likely to occur for shallow
tropical water systems and coastal mangroves, which support
fisheries by providing nursery grounds and sheltered habitats that
are critical for many species. Mangrove habitats are expected
to respond to higher temperatures and CO2 concentrations
through poleward range shifts and faster growth rates, with
species richness increasing at higher latitudes (Ross and Adam,
2013). Southern and eastern range expansions have already
been reported in Australia (Ross and Adam, 2013). While
research suggests that mangroves may be able to migrate
landwards in response to low scenarios of SLR (e.g., Gazi Bay
in Mombasa, Africa), adaptation probabilities have been shown
to decrease under higher rates of SLR due to saline intrusion
(Di Nitto et al., 2014), accompanied by decreased growth rates
(Mitra, 2013). Species-specific adaptation is also influenced by
interspecific competition and recruitment strength, which may
alter community composition within mangrove forests (Di Nitto
et al., 2014). Thus, evidence of the capacity of coastal habitats
such as saltmarshes and mangroves to spatially respond to SLR
is still considered inconclusive and site-specific (Spalding et al.,
2014).

Strengthening AR5’s findings, additional empirical evidence
has been published demonstrating the effects of species’ range
shifts and habitat phase shifts—or the transformation of a
habitat into an alternative state as a result of environmental
pressures—on the structure, functionality, and health of marine
ecosystems and the socioeconomic sectors that depend on them.
For instance, the tropicalization of temperate marine ecosystems
through poleward range shifts of tropical fish grazers has been
shown to increase the grazing rate on temperate macroalgae, such
as those in Japan and the Mediterranean, with similar trophic
impacts expected to affect ecosystem structure in temperate reefs
(Vergés et al., 2014a). Similarly, a heat wave event in western
Australia altered biodiversity patterns of temperate seaweeds
(90% dieback), invertebrates, and demersal fish, leading to a
tropicalization of community structure (Thomson et al., 2014).
The sensitivity of species’ responses to ocean warming through
range shifts can be affected by ecosystem status: for example,
increased reef community resilience to tropicalization has been
observed through protection from fishing (Bates et al., 2013).
Thus, not only do phase shifts alter the availability of targeted
species to fisheries, but fisheries can also play a synergistic role
in reducing the resilience of ecosystems to climate change. As
projected byWong et al. (2014), temperature-mediated herbivory
has since been shown to prevent kelp ecosystems from recovering
from climatic drivers (e.g., effect of overgrazing of kelp beds
in southern Japan (Vergés et al., 2014a); tropical herbivores
preventing re-growth of kelp inWestern Australia (Bennett et al.,
2015); herbivorous tropical rabbitfish converting macroalgal
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forests into barrens in the Mediterranean (Vergés et al., 2014b).
Phase shifts have also been documented in polar regions: for
example, macroalgal colonization of newly ice-free regions has
recently occurred in Antarctica (Quartino et al., 2013), and
bluefin tuna have been found in the waters east of Greenland,
having shifted northwards in response to warmer temperatures
and to follow the northward shift of important prey species
(MacKenzie et al., 2014).

Projected Impacts on Fisheries’ Yield, Catch Quality,

and Composition
New evidence suggests that range shifts can significantly alter
the availability and composition of commercial fisheries catches,
thereby having socioeconomic implications for fisheries, markets,
and consumers. In Mexico, 10 of the top 12 highest fished
species—including the South American pilchard (Sardinops
sagax) and Penaeus shrimp—were projected to decline in catch
by 2050 under the severe climate change scenario (Sumaila
et al., 2014). The observed subtropicalization of European
pelagic fish communities in the North and Baltic Seas has
altered the availability of economically-important species, with
a shift from Atlantic herring and European sprat (1960s to
1980s) to Atlantic mackerel, Atlantic horse mackerel, European
pilchard, and European anchovy (1990s onwards) in response
to warming (Montero-Serra et al., 2014). In tropical regions,
evidence of community phase shifts from coral-to algal- or
sponge-dominated reefs has been linked to reductions in
reef functionality and fisheries yield (Bell J. J. et al., 2013).
Altered interspecific interactions between sympatric coastal
fishes have also been observed in the Mediterranean under
warmer conditions, with a cooler-water fish (e.g., rainbowwrasse,
Coris julis) being displaced by a more dominant warmer-water
fish (e.g., ornate wrasse, Thalassoma pavo) (Milazzo et al.,
2012). These examples support the theory that there will be
“winners” and “losers” under climate change, with warm-adapted
species outcompeting cold-adapted species in temperate marine
ecosystems, accompanied by changes in the composition of
fisheries’ landings. However, increased temperature has also been
shown to affect the physiology and interspecific competition
exhibited by Arctic fish fauna, such as the Arctic staghorn sculpin,
Gymnocanthus tricuspis (Seth et al., 2013), thereby potentially
altering the quality, availability, and composition of traditional
foods of polar communities.

Recent research continues to improve our understanding
of potential future changes in primary productivity and
zooplankton composition, which are important causal links to
projecting future fisheries production. Models indicate an overall
reduction in global primary production of 2–13% (Bopp et al.,
2013), but a lack of understanding of the drivers of interannual
and multidecadal climate variation and the influence of species-
specific responses to climate change effects increases uncertainty
regarding future primary production trends (Chavez et al., 2011).
Development of high-resolution, shelf-seas, lower-trophic-level
ecosystem models has improved projections of NPP in areas that
are most important to fisheries (Barange et al., 2014). Moreover,
an increasing number of Earth System Models with ocean
biogeochemical components explicitly include zooplankton in

their model structures, thereby providing projections of future
changes in zooplankton production (e.g., Stock et al., 2014),
which influences fisheries yield. Importantly synergistic effects
have been found to alter projected outcomes: for example,
despite individual stressors leading to declines in production,
a combination of increased temperature and nutrient loads
was shown to increase zooplankton production and food web
efficiency in a microcosm experiment conducted in Baltic Sea
conditions (Lefébure et al., 2013). However, despite these recent
developments, the projected outcomes of synergistic effects on
productivity are still supported by experimental evidence.

Studies continue to advance our understanding of how species’
body sizes are likely to change under climate change, as supported
by simulations of phase shifts between ecosystems (Ainsworth
and Mumby, 2014) and by projections of climate-related impacts
on ecophysiology through reduced oxygen availability (Cheung
et al., 2013b). In a global model of pelagic communities,
maximum body size and biomass were found to increase at
high latitudes and to strongly decrease at low- to mid-latitudes
in response to changes in the availability of food necessary
to support metabolic requirements (Lefort et al., 2014), which
agrees with previous projections. Such changes are likely to affect
commercial fisheries through a reduction in the mean size of
landed fish. For instance, empirical evidence of reductions in
body sizes has been found for six of eight commercial fish species
over a 40-year period in the North Sea, which coincided with
a 1–2◦C increase in water temperature and resulted in a 23%
reduction of the mean yield-per-recruit (Baudron et al., 2014). A
reduced supply of nutrients resulting from greater stratification
may also yield a reduction in the average size of phytoplankton
and increase the number of trophic links within food webs, which
in turn would reduce energy transfer efficiency (Bell J. D. et al.,
2013).

Recent studies have strengthened evidence that ocean
acidification has a significant negative effect on the survival,
calcification, growth, development and abundance of marine taxa
(Kroeker et al., 2013), and interacts synergistically with increased
temperatures to reduce species tolerance (Wittmann and Pörtner,
2013). However, recent research has shown that species’ resilience
to ocean acidification varies considerably across species (Range
et al., 2013) and functional groups (Branch et al., 2013), with
variable responses to synergistic factors. For instance, resilience
to the synergistic impacts of ocean warming and acidification has
been observed among juvenile sea urchins, yet conditions leading
to shorter and weaker spines suggest increased vulnerability to
predation (Wolfe et al., 2013). Research on species targeted by
commercial fisheries—specifically, spider crabs (Hyas araneus),
northern shrimp (Pandalus borealis), Antarctic krill (Euphausia
superba), and European lobsters (Homarus gammarus)—suggests
that crustaceans may be less severely impacted than molluscs
by exposure to higher concentrations of CO2 (Branch et al.,
2013). Complex relationships arising from modeled food web
responses to ocean acidification suggest that trophic cascades and
contradictory effects are likely to arise from changes in predator-
prey dynamics: for example, projected declines in copepod
abundance in Puget Sound yield increases in microzooplankton
(prey) and decreases in herring (predator) abundance, yet
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reducedmacrozooplankton and euphausiid biomass release some
pressure on copepods and, in turn, benefit herring (Busch
et al., 2013). Acidification-induced changes in the flow of energy
through, and dynamics of, food webs thereby illustrate the
importance of key groups (e.g., copepods) to ecosystem structure
and function (Busch et al., 2013), and to ensuring the availability
of key commercial fisheries stocks (e.g., herring).

New studies continue to indicate that oxygen-depleted
hypoxic conditions are a major global environmental issue
influenced by anthropogenic and climatic drivers, with particular
relevance to tropical and temperate coastal ecosystems and
sectors (Bauer et al., 2013). Time-series observations in the
Atlantic, Pacific, and Indian Oceans have shown declining
oxygen levels since the 1950s (Keeling et al., 2010; Gilly et al.,
2013). Studies indicate that the expansion of extreme oxygen
minimum zones (eOMZs) in some regions may lead to habitat
compression and reduced abundance of species of pelagic and
mesopelagic fish and zooplankton with low hypoxic tolerances.
Recent research has diverged from existing projections of
expanding OMZs, arguing that a weakening of equatorial Pacific
winds may lead to a contraction of anoxic conditions in the
North Pacific despite the potential for a global, stratification-
driven decline in O2 supply (Deutsch et al., 2014). This global
reduction in oxygen supply is expected to exacerbate reductions
in the mean body sizes of fishes under warmer temperatures
(Cheung et al., 2013a), thereby detrimentally affecting the quality
andmean biomass of fisheries’ yield. However, new opportunities
for fisheries may arise from an increased abundance of hypoxia-
tolerant organisms, which have also been shown to alter predator-
prey dynamics and provide food for commercially-important
species (e.g., Salvanes et al., 2015).

As reported in AR5, future changes in upwelling systems and
the ramifications for fisheries’ yields remain uncertain (Pörtner
H. O. et al., 2014), but studies have contributed increasingly
to strengthening our understanding of regional differences (de
Lavergne et al., 2014; Sydeman et al., 2014). Stratification
is projected to increase across most of the tropical Pacific,
with synergistic interactions between temperature and salinity
reinforcing stratification in the areas around the Pacific Warm
Pool, South Pacific Convergence Zone (SPCZ), and intertropical
converge zone (ITCZ) (Ganachaud et al., 2012). Ensemble
projections obtained from 36 of the models from the fifth
Coupled Model Intercomparison Project (CMIP5) support these
projections, suggesting a weakening of deep Southern Ocean
convection associated with surface freshening and stratification
under climate change, which in turn may reduce the production
rate of Antarctic BottomWaters and alter ocean heat and carbon
storage processes (de Lavergne et al., 2014). In contrast, a recent
meta-analysis of 22 studies of eastern-boundary regions shows
that upwelling-favorable winds have intensified in the California,
Benguela, and Humboldt systems but weakened in the Iberian
system in the past decades (up to 60 years), with the intensity of
change consistent with warming pattern (Sydeman et al., 2014).
This provides evidence to support the hypothesis of upwelling
intensification in eastern boundary upwelling systems under
climate change, which could lead to an enhanced nutrient supply
in subtropical euphotic zones and a potential increase in fisheries

production or, alternatively, to an increase in acidic and hypoxic
conditions in shelf habitats (Sydeman et al., 2014), which could
detrimentally impact species sensitive to these parameters.

In addition to changes in yield, the quality of fish stocks
may be detrimentally affected by increased occurrence of disease
transfer and cumulative mortality under warmer temperatures.
For instance, diseases such as ichthyophous (ichthyophoniasis)
reduce the market value of finfishes, thereby having wide-ranging
and significant economic and ecological impacts (Burge et al.,
2014). Likewise, the loss of keystone predators through disease,
such as the dramatic die-off of sea stars along the Pacific coast
of North America from a newly-identified densovirus (Hewson
et al., 2014), can dramatically change ecosystems (Feehan and
Scheibling, 2014) and, in turn, the composition and quantity of
fisheries yield.

Regional Impacts on Fisheries
Studies continue to emphasize the vulnerability of tropical
(Barange et al., 2014) and polar marine ecosystems (Clark
et al., 2013) to climate change, with projected risks borne
by the developing nations and communities that depend
upon marine and coastal resources for food and economic
security (Barange et al., 2014). Recent projections suggest that
ecosystems at higher latitudes will generally experience increases
in primary production, while those at lower latitudes are likely
to experience decreases (Barange et al., 2014). However, evidence
of community phase shifts arising from climate-related drivers
has been found for most regions, including tropical (Inoue
et al., 2013; Ainsworth andMumby, 2014), temperate ecosystems
(Wernberg et al., 2012; Thomson et al., 2014; Vergés et al., 2014a),
and polar ecosystems (Quartino et al., 2013).

Tropical fisheries
The biophysical impacts of climate change and ocean
acidification on tropical marine ecosystems, with particular
attention to coral reefs, were addressed with great detail in
AR5 (Gattuso et al., 2014b). In particular, AR5 expressed
high confidence that warming and acidification would lead to
coral bleaching, mortality and decreased constructional ability,
indicating that coral reefs were therefore the most vulnerable
ecosystem to ocean warming and acidification, with little scope
for adaptation (Wong et al., 2014). Having reached general
consensus regarding the impacts of individual climate-related
drivers on coral reefs (Chan and Connolly, 2012; Ateweberhan
et al., 2013), studies have since sought to understand the
synergistic effects of multiple stressors on coral reef resilience
(Mumby et al., 2013; Ban et al., 2014; McClanahan et al., 2014)
and the processes that influence reef adaptation and recovery
(Dixson et al., 2014; Palumbi et al., 2014; Roff et al., 2014).

Studies have now discovered that some species of coral have
the capacity to acquire heat resistance through acclimatization
(Palumbi et al., 2014) and to recover from bleaching events (Roff
et al., 2014). For example, changes in symbiotic communities
from stress-sensitive to stress-tolerant symbionts following
bleaching events can lead to increased thermo-tolerance among
corals (Silverstein et al., 2014). This has been supported
by modeling studies that have indicated that some adaptive
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responses have already resulted in higher thermal tolerances
in some corals (Logan et al., 2013). Recent studies have
also suggested that biogeochemical responses of coral reef
communities to ocean acidification could partially offset changes
in seawater pH (12–24%) and the aragonite saturation state
(15–31%) (Andersson et al., 2013). In other cases, biofilm-
induced larval settlement for coral reef sponges was found to
exhibit higher settlement success among biofilm communities
developed at higher seawater temperatures (e.g., Rhopaloeides
odorabile in the Great Barrier Reef), suggesting groups that may
be more resilient to increased temperatures under climate change
(Whalan and Webster, 2014).

However, the capacity for recovery or adaptation has
been shown to be less certain if multiple anthropogenic and
environmental stressors act in concert (Palumbi et al., 2014),
with taxon-specific responses (Whalan and Webster, 2014). For
instance, changes in water quality through nutrient loading and
sedimentation can increase the severity of coral disease and
bleaching (Vega Thurber et al., 2013), while improved water
quality management can aid reef resilience and recovery (Gurney
et al., 2013). Ocean acidification can also decrease calcification
and increase reef erosion, making reefs increasingly susceptible
to storm damage and SLR (Silbiger et al., 2014). Scientists
have noted that observed changes in net ecosystem calcification
could, in fact, be primarily due to increased dissolution of
CaCO3 rather than decreased calcification (Eyre et al., 2014).
Other documented responses have noted that cumulative impacts
of repeated bleaching events could lead corals with little or
no phenotypic plasticity to become increasingly sensitive to
bleaching, with responses to singular bleaching events being
insufficient to gauge subsequent resilience (Grottoli et al., 2014).
The inclusion of such adaptive responses (e.g., directional
genetic selection, symbiont shuffling) andmanagement strategies
in models is important for accurately predicting how ocean
warming and acidification may affect coral reefs, with one such
example reducing the frequency of mass bleaching events by 20–
80% (scenario-dependent) by 2100, compared with “no adaptive
response” projections (Logan et al., 2013).

The accompanying impacts on tropical coastal communities
and fisheries have increasingly been explored, with evidence
supporting AR5’s hypothesis that there will be “winners” and
“losers” under climate change. AR5 estimated that a reduction
in coral cover and associated fisheries production would likely
lead to net revenue losses as early as 2015 in the Caribbean
(Wong et al., 2014), and projections have since suggested that
greater instances of declines in fisheries catch potential are likely
to occur in tropical regions (Barange et al., 2014). Modeled
estimates suggest that the diversity of exploited species is likely
to decrease under both RCP 8.5 and 2.6 due to a decrease in
habitat suitability, with the magnitude of the decline positively
correlating with the level of emissions (Jones and Cheung,
2015). There are likely to be variable impacts within tropical
regions: for example, eastward range shifts in response to climate-
related drivers are expected for skipjack tuna by 2050, leading
to increased catches for Pacific Island countries to the east of
170◦E and decreased catches for those to the west (Bell J. D. et al.,
2013). Fewer catches in the western EEZs of Papua New Guinea

(−11%) and the Solomon Islands (−5%) are expected to translate
to a 0.1 to 0.4% decline in GDP because of the large size of their
economies (Bell J. et al., 2013). In Bangladesh, prawn postlarvae
fishers have been impacted indirectly by increased intrusion of
saline water into agricultural land, which has increased fishing
pressure from displaced farmers, while climate-related drivers
have and are expected to lead to a net loss in revenue, food
security, and livelihood sustainability (Ahmed et al., 2013).

Marine taxa in tropical regions are also likely to lose critical
habitats such as coral reefs, mangroves, and seagrasses through
phase shifts toward other habitats (e.g., macroalgae; Kroeker
et al., 2012; Ainsworth and Mumby, 2014), with corresponding
declines in fisheries productivity (Bell J. D. et al., 2013). While
phase shifts could lead to new or increased fishing opportunities,
such as increased shrimp biomass and landings through a
reduction in carnivorous macrobenthos, it is likely that local
communities will need to abandon traditional harvests in lieu of
less valuable but more abundant species (Ainsworth andMumby,
2014). Reduced fitness of commercially important species, such
as coral trout (Plectropomus leopardus; Johansen et al., 2013),
could also have implications for the sustainability of coral reef
fisheries.

The interdependence between different tropical marine
habitats has been highlighted recently, suggesting cascading
effects across ecosystems through habitat loss (Saunders et al.,
2014). Coastal vegetative habitats such as seagrasses function
as nurseries for the early life-stages of reef fishes and are, in
turn, sheltered from incoming waves by coral reefs (Saunders
et al., 2014). This suggests that a climate- and CO2- driven
loss of coral reefs or other critical habitats may therefore
have large-scale implications across ecosystems (Saunders et al.,
2014) and the sectors that depend on them. The importance
of coastal lagoon ecosystems to fishing, aquaculture, tourism,
and industrial sectors, particularly within the Mediterranean Sea,
demonstrates how biophysical changes could yield detrimental
socioeconomic impacts across sectors, thereby reducing local
food and economic security (Marques et al., 2014).

Temperate and subtropical fisheries
Overfishing has been shown to be the major driver of catch
declines in heavily exploited ecosystems globally (Pauly and
Zeller, 2016), although warming-driven changes in species
composition are also affecting fisheries (Pinsky and Fogarty,
2012; Cheung et al., 2013b). For instance, total catch decline in
the Mediterranean has been primarily linked to overexploitation
(Vasilakopoulos et al., 2014; Tsikliras et al., 2015), with fewer
instances of changes in the abundance of individual species
having been linked primarily to changes in climate (Milazzo et al.,
2012; Teixeira et al., 2014; Gamito et al., 2015).

Moving forward, anthropogenic pressures such as these are
likely to be exacerbated under climate change, with climate-
induced declines in catch projected for fisheries in the Northeast
Pacific (Ainsworth et al., 2011; Barange et al., 2014), Northwest
Atlantic (20–22% declines; (Guenette et al., 2014), and Northeast
Atlantic (8.3% decrease in maximum catch potential; (Jones
et al., 2014). An ecosystem-based assessment of synergistic
climate change effects on the Nova Scotian shelf of eastern
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Canada projected a 19% (optimistic scenario) to 29% (pessimistic
scenario) reduction in biomass with accompanying declines in
fisheries catch potential (–20 to 22%, respectively; Guenette et al.,
2014). Likewise, declines in seafloor biomass have been projected
for more than 80% of deep-sea biodiversity hotspots around the
world by the end of the century (2091–2100), with up to a 38%
decrease in benthic biomass in parts of the Northeast Atlantic
(Jones et al., 2013).

Over the last few years, studies have demonstrated the link
between sea surface temperatures (SST) and fisheries landings in
temperate and subtropical regions (Tzanatos et al., 2013; Teixeira
et al., 2014; Gamito et al., 2015). Portuguese fisheries have
experienced declines in landings of temperate fish and increased
landings of subtropical and tropical species between 1970 and
2011, which have been statistically linked to changes in SST; since
the latter species are often of greater commercial importance,
increased SST under climate change may offer opportunities for
fishers in the Mediterranean (Teixeira et al., 2014). Conversely,
culturally-important sponge fisheries in the Mediterranean Sea
have been threatened by climatic and anthropogenic stressors
such as ocean warming, overfishing, and species invasions (Pérez
and Vacelet, 2014), all of which are likely to continue under
climate change. Likewise, the loss of economically valuable and
endangered corals as a result of ocean acidification could lead to
considerable losses in revenue, with values of 230–300 US$ kg−1

for thin juvenile branches of red coral (Corallium rubrum) and
up to 50,000 US$ kg−1 for Pacific Corallium sp. colonies with a
diameter greater than 4 cm (Bramanti et al., 2013).

A recent study projected that climate-induced changes in
relative environmental suitability and fisheries catch potential
would translate to a 10% loss in net present value within the
UK’s exclusive economic zone by 2050, without accounting
for the additional fuel and gear costs that might be incurred
(Jones et al., 2014). Economic impacts are also likely to
extend to seaports where fisheries’ landings are taken through
increased maintenance costs associated with corrosion from
ocean acidification, disruption of transport, and damage to
infrastructure through storm surges, SLR, and flooding (Becker
et al., 2013; Nursey-Bray et al., 2013).

Polar Fisheries
Discernible impacts attributed to climate change have been
recorded in polar marine ecosystems, but studies evaluating
these impacts remain scarce and primarily focus on species
of economic importance, such as cod and shrimp, or on
marine mammals (Wassmann et al., 2011; McBride et al., 2014).
Recently, polar ecosystems and corresponding fisheries have
experienced a marine “Klondike,” or the expansion of industrial
exploration polewards in response to a reduction in the spatial
extent of sea ice, with industrial fisheries and aquaculture
alike increasingly finding new commercial opportunities at
higher latitudes (Christiansen et al., 2013). Moving forward,
declines in the temporal and spatial extent of sea ice cover are
likely to provide finfish fisheries with greater access to stocks,
thereby offering new opportunities (Constable et al., 2014).
In particular, the Antarctic krill fishery has been suggested as
a significant opportunity for expansion under climate change

through changes in sea-ice extent, but the opportunities and
losses with respect to this fishery remain ambiguous (Constable
et al., 2014). For instance, projections have suggested that climate
change could have a negative effect on Antarctic krill growth
habitat (Hill et al., 2013), with krill embryos and larvae exhibiting
enhanced energetic requirements and delayed development in
response to elevated CO2 levels (Kawaguchi et al., 2013).
Likewise, while recent observations suggest that invertebrate
species may be invading deep-sea and benthic habitats in the
Southern Ocean, the potential for highly productive pelagic
finfish to invade this region appears low due tominimal projected
changes in the thermal gradient (McBride et al., 2014). However,
the opening of trans-Arctic trade routes through reduced sea ice
cover has been discussed as a potential driver of species invasions
through ship-mediated transport and natural dispersal, which
will likely alter the dynamics and structure of Arctic ecosystems
(Ware et al., 2013; Miller and Ruiz, 2014). To date, there is
accumulating evidence of species that have shifted into polar
regions in response to warmer temperatures (Astthorsson et al.,
2012; MacKenzie et al., 2014),

Recent studies project that a loss of critical habitat, including
sea ice, is likely to lead to an increase in genetic connectivity
and disease transfer between previously isolated populations
of marine fauna (Post et al., 2013; Wisz et al., 2015), while
a longer open-water season through decreased sea-ice cover
could increase coastal erosion and storm impacts (Barnhart
et al., 2014). A recent study projected an Atlantic-Pacific fish
interchange, with up to 41 species entering the Pacific and
44 species entering the Atlantic by 2100 via the Northwest
and Northeast Passages (Wisz et al., 2015). This interchange
would alter the composition and predator-prey dynamics of
ecosystems, with corresponding changes to existing fisheries
yields and potential new opportunities within the Northwest
Passage (Wisz et al., 2015). Recent research has also provided new
insight regarding the susceptibility of polar marine ecosystems
to light-driven tipping points emerging from changes in ice loss
and solar irradiance. Areas without ice and snow following the
summer solstice are particularly vulnerable to abrupt changes
resulting from increased solar exposure through earlier ice loss;
for this reason, future ice loss could lead to autotroph-dominated
polar ecosystems with higher productivity, but lower regional
biodiversity (Clark et al., 2013).

The geopolitical consequences associated with an increasingly
ice-free Arctic are of critical concern not only with respect
to maintaining the ecological structure and function of polar
ecosystems, but also to the local communities that depend on
marine resources for a range of ecosystem services (Christiansen
et al., 2013). Increased marine access through sea-ice loss is likely
to lead to increased industrial development, resource extraction,
and shipping opportunities (Miller and Ruiz, 2014), with the
accessibility of near-coastal and remote marine zones of all eight
Arctic nations anticipated to increase by up to 28% by 2050 (Post
et al., 2013).

Small-scale fishing communities in polar regions are likely
to be detrimentally affected by temperature- and pH-induced
changes in fisheries due to a large dependence on local harvests
for food and economic security (AMAP, 2013). However,
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community-based assessments of socioeconomic impacts on
rural and Indigenous coastal populations risk undervaluing
the importance of marine harvests to Arctic cultures given
their role in forming cultural identity and providing essential
nutritional requirements (AMAP, 2013). Thus, while the broad
range of species harvested by indigenous communities offers
opportunities for adaptation through alternative harvests, they
may be accompanied by seasonal or cultural losses (AMAP,
2013). Moreover, despite the projected increases in the relative
abundance of fish stocks, increased competition over new
resources and reduced availability of traditionally harvested
species may severely inhibit fishing opportunities, while limited
management offers few precautionary controls to ensure
sustainable fisheries management under climate change (AMAP,
2013; Lam et al., 2014). Moreover, the growing presence of
industrial fisheries under climate change may lead to intensified
bottom trawling and unprecedented bycatch, affecting ecosystem
function and structure and the availability of indigenous peoples’
traditional foods (Christiansen et al., 2013).

A recent estimate projected that total fisheries revenue in the
Arctic region may increase by 39% (14–59%) by 2050 relative
to 2000 under the Special Reports on Emission Scenario (SRES)
A2, while ocean acidification is expected to reduce the potential
increases in fisheries catch and revenues (Lam et al., 2014). On
the other hand, while increased anthropogenic activity in the
Arctic has been linked to economic opportunities and ecological
concerns (Larsen et al., 2014), Whiteman et al. (2013) argue
that the global economic implications associated with climatic
change in the Arctic have been ignored. For instance, the release
of methane from thawing permafrost off northern Russia alone
has been valued at $60 trillion in the absence of mitigation
(Whiteman et al., 2013). After accounting for global changes in
sea level, economic and non-economic sectors, and the melting
of ice sheets, the mean projected cost of climate-related impacts
fell between $82 trillion (“low-emissions” scenario) and $400
trillion (“business-as-usual” scenario), of which the majority of
the projected cost (80%) is expected to be borne by developing
nations in Africa, Asia and South America (Whiteman et al.,
2013).

Aquaculture
Projected Impacts on Future Shellfish and Fish

Aquaculture Production
Aquaculture production formed 90.4 million tonnes, (live weight
equivalent) as of 2012, contributing approximately US$144.4
billion to the global economy in food products and an
additional US$222.4 million in non-food products, such as pearls
and seashells (FAO, 2014). While few studies have provided
quantitative estimates of economic impacts associated with
climate-induced changes in aquaculture production, studies have
offered assessments of the likelihood of regional losses or gains.

Climate- and acidification-related impacts on aquaculture are
expected to vary by location, species, and method of aquaculture.
Latitudinal and taxon-specific trends have been identified, with
the farming of higher trophic level species (e.g., trout farming
in northern Mediterranean countries) expected to exhibit higher
mortality rates and lower productivity under warming (Rosa

et al., 2014). Conversely, inland production in southern countries
tends to be based on more resilient species (e.g., carp and
tilapia farming in Egypt), andmay therefore experience increased
metabolic rates, growth rates, and overall production (Rosa et al.,
2014). The projected resilience of freshwater species is attributed
to faster growth rates associated with warming and an increase
in the availability of freshwater through increased precipitation
(Bell J. D. et al., 2013).

Despite the capacity to control for conditions, recent studies
suggest that aquaculture is likely to be both negatively and
positively affected by changes in precipitation, temperature,
drought, storms, and floods, all of which would have
socioeconomic implications (Bell J. D. et al., 2013; FAO,
2014; Li et al., 2014). For instance, aquaculture facilities in the
Caribbean and Latin American regions are likely to be vulnerable
to ocean acidification and extreme weather events, with the
potential for flooding in the Caribbean to affect local facilities
(FAO, 2014). Similarly, the economically valuable black pearl
industry in Polynesia is expected to be vulnerable to increased
SST and ocean acidification, which—given its role in employing
thousands of people on remote atolls—is expected to lead to a
loss in local revenue and employment (Bell J. D. et al., 2013).

SLR is further expected to impact aquaculture production
through increased intrusion of saline water into deltas and
estuaries, where aquaculture commonly occurs (e.g., Mekong
and Red River deltas in Viet Nam and the Ganges-Brahamputra
Delta in Bangladesh) (De Silva, 2012). In Bangladesh, where
fish cultivation and agriculture are the main occupations
in coastal regions, fish cultivators have already reported
production problems associated with increased salinity and
disease prevalence (Garai, 2014). As the greatest producers of
aquaculture, small-scale Asian practices in coastal bays are at
high risk from storms, wave surges, and high winds, with the
potential for significant losses for local livelihoods (De Silva,
2012). Li et al. (2014) estimated both positive and negative
economic impacts for Chinese aquaculture, with lower latitudes
likely to experience predominantly negative impacts as a result of
increased water temperatures and reduced primary production,
leading to significant impacts on food security and employment.
In particular, increased precipitation yielded significant benefits
to profit, while increased weather variability was associated
with lower profit, highlighting the sensitivity of aquaculture
production to sudden, extreme weather events (Li et al., 2014).
However, these impacts may be reduced by selecting more saline-
tolerant and brackish-water species for aquaculture operations
(Rosa et al., 2014).

The increased threat of infectious disease to aquaculture
under climate change has been explored more recently, with
shellfish larval dispersal having been implicated in the transport
of disease (Rowley et al., 2014). The susceptibility of molluscs
and crabs to diseases such as vibriosis has been linked to SST,
and temperature-driven poleward range shifts are expected from
an influx of new pathogens in temperate regions (Rowley et al.,
2014). These may pose an increased threat to human health
through the consumption of contaminated seafood and water-
borne pathogens (Rosa et al., 2014). The toxicity of common
pollutants to fish can increase with higher temperatures, while
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a decrease in salinity has been shown to increase toxicity for
some species by altering the chemical speciation of metals (Fabbri
and Dinelli, 2014). As reported in AR5, studies have continued
to warn that increased ocean temperatures and eutrophication
under climate change may lead to a greater occurrence of toxic
tides, such as more frequent HABs in the Mediterranean Sea,
and thereby detrimentally affect aquaculture production and
human health (Himes-Cornell et al., 2013; Rosa et al., 2014).
From a global perspective, cumulative mortality from disease
was found to be relatively higher in tropical aquaculture than
in temperate aquaculture (88 vs. 34%, respectively), with juvenile
invertebrates exhibiting greater vulnerability in comparison with
adult finfish (Leung and Bates, 2013). This evidence highlights a
management concern for developing nations at subtropical and
tropical latitudes that would otherwise benefit from increased
food security through aquaculture.

Overall, with decreased dependence on wild-caught stocks
for fishmeal and farming combined with technological
developments, recent research suggests that aquaculture
could significantly contribute to global food security under
climate change (Barange et al., 2014), but highlights the trade-
offs between coastal sectors that are likely to occur (Ruckelshaus
et al., 2013). Longer growing seasons, faster growth rates, and
lower winter mortality arising from increased temperatures could
yield positive effects at mid- to high-latitudes (e.g., extended
breeding periods for Indian carps in fish farm hatcheries in
West Bengal; De Silva, 2012; Li et al., 2014). However, trade-offs
are expected to occur as aquaculture industries compete with
other sectors (e.g., wild-caught fisheries, coastal tourism) for
different ecosystem services derived from coastal and wetland
habitats that are sensitive to climate change (Ruckelshaus et al.,
2013), and tropical and subtropical aquaculture may encounter
challenges associated with SLR and an increased risk of disease
susceptibility.

Coastal Tourism and Local Economies
Tourism is one of the largest sectors in the global economy, with
coastal tourism comprising a significant part of global revenue
derived from the tourism sector. Climate-induced impacts on
tourism have considerable ramifications for local, national,
and regional economies, including the transportation, fishing,
and agricultural sectors. Drivers such as ocean warming and
acidification are likely to lead to changes in SST, the composition
and abundance of marine biodiversity, and sea levels (Pörtner
H. O. et al., 2014; Howes et al., 2015). In addition, extreme
and abrupt climatic events such as storms and cyclones will
impact coastal environments and communities. Collectively,
these drivers will lead to changes in the basic conditions for
coastal tourism, including climatic parameters (air temperature,
precipitations, wind speed, etc.), underwater parameters (SST,
invasive species such as jellyfishes, etc.), and coastal hazards
(erosion, marine flooding, etc.). Such changes will affect the
main components of the tourism industry—such as tourists’
preferences, tourism operators’ strategies, and the transportation
market—and thus the tourism supply and demand balance at the
global scale.

Ocean Warming and Acidification Impacts on

Tourism Flows
As documented in AR5, changes in the quality and abundance
of coral reef cover are expected to cause socio-economic and
environmental concerns for small island developing states (SIDS)
and developing countries, with particular relevance to the tropics
(Wong et al., 2014). Coral reefs draw significant tourism each
year, supporting recreational activities, such as diving and
snorkeling, and supporting coastal communities and auxiliary
sectors.

Tropical coastal areas are unlikely to be the only areas affected.
In Europe, Spain’s coastal tourism is expected to face water
shortages, reduced opportunities for different tourismmodalities,
and, in turn, fewer job opportunities in the tourism industry
(Saurí et al., 2013). In particular, new findings suggest that
there may be “winners” and “losers” in coastal tourism as a
result of higher temperatures that discourage southward tourism
flows in Europe while reinforcing northwards flows (DiSegni and
Shechter, 2014).

Recent studies provide additional evidence that species range
shifts are likely to alter tourism flows. For instance, poleward
range shifts in the United States could yield new opportunities
for recreational fishing in temperate regions, while warmer
conditions could benefit some species purposively introduced for
recreational fishing (Nelson et al., 2013). Conversely, increases
in the prevalence of tropical box jellyfish through climate-
induced poleward range shifts could detrimentally affect coastal
tourism and water-related activities in subtropical and temperate
regions. In particular, a recent study found that irukandjii
jellyfish (Alatina nr mordens) polyps were resilient to the
combined effects of ocean acidification and warming, suggesting
that these polyps would be able to colonize new areas under
climate change and thereby increase socioeconomic losses and
hospitalization events (Klein et al., 2013). Increased prevalence
and transmission of diseases are also likely to occur under
warmer ocean temperatures, with empirical evidence of poleward
shifts in disease outbreaks under warmer conditions (Burge
et al., 2014). Importantly, adverse publicity accompanying an
increased risk of disease transmission in tropical and subtropical
regions could further have deleterious impacts on coastal tourism
(DiSegni and Shechter, 2014).

Impact of Ocean Warming and Acidification on

Tourism Operators’ Infrastructure, Strategies, and

Revenue
Key impacts arising from warming and SLR are likely to include
degradation of coastal infrastructure through coastal erosion,
marine flooding, high winds, and/or inundation of rivers, as well
as changes in the attractiveness of destinations due to changes in
air and sea temperatures, landscapes, and swimming conditions.
Coastal flooding is increasingly a concern both for developed and
developing cities, with coastal populations expected to grow by
25% by 2050 (Aerts et al., 2014).

Ocean warming and acidification is therefore expected to
not only affect tourism in SIDS and developing countries, but
also in developed areas such as Europe and the United States.
Consequently, the economic implications of coastal tourism are
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expected to be significant for most of the destinations around the
world, and especially at the local scale. In the United States, 7.52
million jobs and $1.11 trillion in sales are supported by tourism,
with the majority of tourism occurring in coastal regions that
are expected to experience changes in weather conditions and
extreme events, such as typhoons and hurricanes (Himes-Cornell
et al., 2013). Beach recreation values are also expected to decline
in response to narrower beaches resulting from SLR and erosion,
with considerable losses for local economies (e.g., $1 billion loss
between 2006 and 2080 in North Carolina Whitehead et al.,
2009; Nelson et al., 2013). As principal assets of coastal tourism,
the loss of beaches could significantly impact local economies
in subtropical and topical regions, and could incur additional
costs associated with coastal protection and infrastructure repairs
(DiSegni and Shechter, 2014).

Human Health and Food Security
Knowledge regarding the impacts of climate change on human
health in coastal regions has departed little from that outlined
in AR5 (Pörtner H. O. et al., 2014; Wong et al., 2014). While
the future consequences of ocean warming and acidification on
food security derived from aquaculture and capture fisheries
are difficult to estimate (Portner J. R. et al., 2014), regional
trends illustrate the particular vulnerability of developing nations
and the rural and indigenous communities that depend on
tropical and polar marine ecosystems for food security (Larsen
et al., 2014; Portner J. R. et al., 2014; Pörtner H. O. et al.,
2014).

Declines in fisheries catch potential are expected to
detrimentally impact food security in tropical nations—
predominantly those in South and Southeast Asia and
SIDS—through reduced access to nutrition (Barange et al., 2014),
while recent studies suggest that competition over resources and
ocean acidification may offset some of the gains in fisheries catch
potential projected for polar regions (Lam et al., 2014; Larsen
et al., 2014; Miller and Ruiz, 2014). For instance, a 20% reduction
in coral reef fish production by 2050 is expected to detrimentally
affect food security for Pacific Islanders, with even well-managed
fisheries failing to meet nutritional requirements of a growing
population (Bell J. D. et al., 2013). Recent shifts in anchovy and
sardine regimes in the Pacific Ocean also demonstrate altered
patterns of food availability (Wheeler and von Braun, 2013).
However, while acidification and warming-related declines in
fisheries productivity in South and Southeast Asia are expected to
reduce food security, opportunities have been identified through
the regions’ growing aquaculture production (Barange et al.,
2014). Although range shifts have been projected to increase the
availability of fish stocks in polar regions, these projections are
uncertain (AMAP, 2013; Larsen et al., 2014), and studies have
suggested that ocean acidification and increased competition
arising from increased accessibility through reduced ice cover
(Lam et al., 2014; Miller and Ruiz, 2014). Likewise, SLR is
expected to increase the risk of loss of agricultural land in coastal
regions through flooding, with further detriment to food security
(Wheeler and von Braun, 2013).

Recent research has demonstrated that Indigenous fishing
communities that depend on traditional marine resources for

food and economic security are particularly vulnerable to climate
change through a reduced capacity to conduct traditional
harvests because of limited access to, or availability of, resources
(Larsen et al., 2014; Weatherdon et al., 2016). For instance,
shellfish and traditional clam beds—which form an integral
part of the culture, economy and diet of many Indigenous
communities situated along the Pacific Coast of North America—
may be affected detrimentally by increased SST, SLR, and
changes in ocean chemistry and circulation patterns (Lynn et al.,
2013). This has critical implications for the food and economic
security of coastal Indigenous communities, the preservation and
transfer of their traditional knowledge, and the legal upholding
of their rights to access traditional resources (Lynn et al.,
2013).

Hosts and parasites are likely to accompany species poleward
range shifts under climate change, with disease outbreaks
having been witnessed under warmer conditions (e.g., faster
replication of disease among corals in the Caribbean) (Altizer
et al., 2013). Such diseases can lead to community shifts and
trophic cascades through the loss of habitat or keystone species
(Altizer et al., 2013). For instance, Arctic warming has been
projected to facilitate disease transmission between eastern and
western Arctic species (Post et al., 2013). While these impacts
predominantly focus on ecological systems, such changes are
likely to affect human health through declines in food security
(e.g., disease propagation in crops or traditional foods) and
increased opportunities for pathogen transfer between hosts
(Altizer et al., 2013).

Supporting AR5’s findings, research continues to suggest that
human exposure to diseases is likely to increase under climate
change through storm surges and SLR, each leading to an
expansion of the geographical and seasonal ranges of bacteria
(Burge et al., 2014). For instance, a poleward range shift of
outbreaks of Vibrio has been witnessed as far north as the
Baltic Sea and Alaska (Burge et al., 2014). Sub-Saharan Africa
is projected to experience a southern climate-induced shift in
malaria incidences, while additional health concerns include
food insecurity, hunger and malnutrition, natural disasters,
air pollution, communicable, and non-communicable diseases,
high-injury burden, mental health, and occupational health (e.g.,
heat stress) (Ziervogel et al., 2014). Similarly, SIDS have been
framed as “canaries in the coal mine” with respect to climate
change and health given their dependence on marine resources
for nutrition and the prevalence of infectious diseases, each
of which are expected to be affected detrimentally by climate
change (Hanna and McIver, 2014). Despite these concerns,
data supporting causal pathways between climatic variables and
human health outcomes through marine ecosystems are still
limited (Ziervogel et al., 2014).

Finally, HABs and toxins associated with climate change have
continued to be identified as priority areas for research (Fleming
L. E. et al., 2014). HABs are expected to increase in frequency
through higher coastal eutrophication, and are likely to have
detrimental effects on coastal productivity, nursery grounds,
biodiversity, and human health through the consumption of
contaminated seafood (Himes-Cornell et al., 2013; Marques et al.,
2014).
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Brief Insights on Coastal Adaptation
Across Sectors
Adaptation in Fisheries, Aquaculture, and Auxiliary

Sectors
The capacity for fisheries to mitigate and adapt to climate change
has been increasingly studied in different regional contexts. Some
examples of adaptation strategies to climate change effects on
fisheries include changing targeted species (e.g., Cheung et al.,
2013a) and establishing multi-lateral fisheries agreements (e.g.,
Miller et al., 2013). In one context, three-fleet dynamic models
were used to investigate the effects of climate change on the
ecological, economic, and social viability of the Tasmanian rock
lobster fishery in southern Australia, highlighting the importance
of dynamic adaptation in response to environmental conditions
and stock abundance (Hamon et al., 2013). While it remains
uncertain whether small-scale fisheries will have the mobility to
follow target species, those with access to multiple gears may
be able to adapt more easily to climate-related changes in stock
composition (Gamito et al., 2013, 2015; Teixeira et al., 2014).

Livelihood diversification continues to be supported within
the literature as a viable adaptation strategy in response to
reduced production in some fisheries and aquaculture operations
(Bell J. D. et al., 2013; Ruckelshaus et al., 2013). For example,
poleward range shifts may provide opportunities for fisheries to
redirect fishing effort toward emerging fisheries; however, the
capacity for fisheries to capitalize on these shifts would depend on
the adaptive capacity of local economic, cultural, and regulatory
institutions (Nelson et al., 2013; Ruckelshaus et al., 2013).

Adaptation options for aquaculture production have also
been suggested. Livelihoods based on pearl production may be
supported through deeper-water cultivation, selective breeding,
and selection of suitable sites for production (Bell J. D. et al.,
2013). Richards et al. (2015) concluded that aquaculture is likely
to be more viable in the future than wild fisheries because of the
capacity to monitor and modify conditions to avoid excessive
stressors arising from ocean acidification and other climate-
related drivers. After accounting for different life stages, they
further gauged that prawns would likely be more resilient to
ocean acidification than scallops in Queensland, Australia, due
to a greater diversity of species across a larger geographical
distribution (Richards et al., 2015). The capacity for aquaculture
stocks to be more resilient to climate change than wild stocks
is further supported through selective breeding and vaccination,
which provide means of increasing stock resilience and reducing
the frequency of disease transmission (Himes-Cornell et al.,
2013). Intertidal oyster reefs have also demonstrated resilience
by exhibiting the capacity to outpace SLR, and can function
as buffers to help preserve vegetated estuarine ecosystems and
coastal structures from erosion (Rodriguez et al., 2014).

Recent studies exploring climate-related impacts on seafood
supply chains have found that there is a limited understanding
of how these impacts will affect other parts of the supply chain,
despite a comprehensive understanding of impacts at the harvest
stage (Fleming A. et al., 2014). Increased stakeholder awareness
in the Australian seafood industry regarding potential impacts of
climate change on supply chains has led participants to highlight
adaptation options within their respective sectors, including

improved fuel efficiency, breeding programs, altered industry
structure, simplified regulations, and improved public awareness
(Fleming A. et al., 2014).

Adaptation in the Tourism Sector
The tourism sector is sensitive to both gradual changes in climatic
and oceanic conditions, and to extreme and abrupt weather
events. Historically, the tourism industry has exhibited high
adaptive capacity in response to shocks (e.g., financial crises,
natural disasters, and disease), strongly suggesting the capacity to
respond to future climate-induced variability through dynamic
adaptation (Scott, 2014). For instance, recreational fishers in the
Arctic appear to be willing to target alternative species, suggesting
a future change in the relative composition of recreational catches
under climate change (AMAP, 2013).

The capacity for stakeholders to respond to long-term
changes, such as increased mean seasonal temperatures and
beach erosion, is less understood. Destinations may benefit
from or lose opportunities as a result of changes in observed
or perceived attractiveness (Ciscar et al., 2011; Magnan et al.,
2012; Arent et al., 2014). This indicates that various strategies
must be evaluated when considering the diversity of tourist
operators’ responses, which are influenced by their level of
dependence on local environmental conditions. Schematically,
while it may be feasible for international companies to relocate
their investments, small business owners may face limitations
when endeavoring to protect local resort infrastructure. With
respect to location attractiveness, a study evaluating perceptions
of climate-related impacts along the Balearic coasts of Spain
noted that a lack of concern indicated by citizens could lead
to a higher degree of vulnerability since adaptive measures
could be seen as unnecessary, and therefore not implemented
(March et al., 2013). This could, in turn, affect the feasibility of
coastal tourismmarkets given increased vulnerability of local real
estate. Forecasting stakeholders’ responses to ocean warming and
acidification is challenging as stakeholders are not equal in terms
of their risk perception, interests, and adaptive capacities, and
thus they will adopt different strategies. Here again, there will
inevitably be winners and losers (Arent et al., 2014), both among
international tourism companies and small enterprises.

While it is very complex to forecast changes in tourists’
preferences, companies’ adaptation strategies, and transportation
companies’ responses to changes in a destination’s attractiveness,
models have begun to emerge in the past decade and, although
encountering limitations (Arent et al., 2014), have started
identifying key questions related to tourism flows, tourism
operators’ adaptation strategies, and economic impacts at the
local scale.

Ecosystem-Based Adaptation for Coastal

Communities
Adaptation strategies suggested in AR5 included the restoration
or ecosystem engineering of marine vegetative habitats to assist
with buffering climate-related impacts and to provide shelter
for fish nurseries and important coastal habitats (Wong et al.,
2014). Studies have continued to suggest the capacity for coastal
ecosystems, including intertidal wetlands and reefs, to protect
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coastlines by reducing wave energy, minimizing impacts from
storm surges, increasing sedimentation, and/or reducing erosion
(Spalding et al., 2014).

While promising, ecosystem-based coastal adaptation
approaches are still emerging, and require an improved
understanding of key ecosystem services and values for coastal
communities in order to assess risk, aid coastal development
planning, and build decision support systems (e.g., Spalding
et al., 2014). Managing realignment of coastal ecosystems as they
migrate landwards or polewards can aid in proactively planning
for future conditions, while hybrid engineering structures
can provide an integrated way of conserving ecosystems and
ecosystem services (e.g., carbon storage and sequestration;
regulating nutrient fluxes; maintaining species biodiversity).
This could in turn increase coastal protection (Duarte et al.,
2013; Spalding et al., 2014). Proposed mechanisms for protecting
these ecosystems include strategic zoning that anticipates habitat
migration and minimizes climate-related impacts (e.g., Wetland
Buffer Guidelines implemented by the Queensland government)
and the use of predictive models to situate reserves (e.g.,
landscape and SLR models) (Shoo et al., 2014). Evidence that the
preservation of coastal vegetative habitats and wetlands can yield
a net uptake of atmospheric CO2 has continued to emerge, with
examples found for boreal, temperate, and subtropical seagrasses
(Tokoro et al., 2014), and agreement that coastal wetlands aid in
regulating GHG emissions continues to accumulate (Ross and
Adam, 2013). Importantly, recent research has suggested that the
magnitude of carbon storage can vary greatly by location (i.e.,
depth or latitude) and species (e.g., temperate and subtropical
seagrasses in coastal Australia) (Lavery et al., 2013). Given this
potential to mitigate anthropogenic emissions, some authors
argue that the expansion of the current REDD+ (Reducing
Emissions from Deforestation and Forest Degradation)
scheme to include vegetative coastal ecosystems could provide
opportunities for SIDS and other developing states to mitigate
climate change, while promoting restoration of coastal habitats
that have been degraded or removed for development (Duarte
et al., 2013).

Recent studies have also highlighted the economic feasibility
of restoring and maintaining coastal habitats, which offer a cost-
effective measure of increasing coastal protection and ecosystem
services when compared with “hard” engineering solutions, such
as seawalls (Nelson et al., 2013). Coastal habitats can also yield
profit for commercial and recreational activities occurring on
the coast, with the potential for the benefit-to-cost ratio of such
eco-engineering solutions to exceed that of “hard” solutions
(Nelson et al., 2013). From another perspective, the loss of
ecosystem services accompanying SLR-induced coastal erosion in
Europe is estimated at e2.9 billion per year by 2050, resulting
in an almost 15% decrease in coastal ecosystem service values
compared to 1975 (Roebeling et al., 2013). In South America,
the coastal lagoon ecosystems in Uruguay provide a range of
ecosystem services, including food, fuel and fiber, flood and storm
protection, erosion control, and carbon sequestration (Fanning,
2014). In particular, climate-induced impacts on ecosystem
service values in a coastal lagoon, Laguna de Rocha, were
calculated for carbon sequestration services (annual revenue of

e178,487 to e290,540 between 2008 and 2011 in the Laguna
de Rocha) and habitat maintenance and cultural values (damage
costs avoided method yielded an inferred value of US $300,000
between 1986 and 2012) (Fanning, 2014). Thus, maintenance of
coastal habitats functions both as a cost-effective measure for
protecting coastal infrastructure and as a method of preserving
economically important ecosystem services.

While examples of coastal habitat recovery exist (e.g.,
recovery of cordgrass in New England following die-off), the
capacity for habitats to fully recover to their previous state
is less certain and subsequent trophic cascades can further
reduce habitat resilience (e.g., loss of ribbed mussel beds
in New England without cordgrass habitats, which in turn
limits cordgrass production) (Brisson et al., 2014). In the
context of coral reefs, Rogers et al. (2014) used a scenario-
based approach to evaluate the sensitivity of 14 ecosystem
services to different climate-related drivers and management
strategies. While their research suggests that reserves will
remain effective for reefs with high structural complexity,
maximizing ecosystem services in degraded reefs would require
a portfolio of management strategies (e.g., provision of artificial
complexity, coral restoration, fish aggregation devices, herbivore
management) (Rogers et al., 2014). Yet, it may be possible for
full ecosystem services to be restored without fully recovering the
original ecosystem structure (Brisson et al., 2014).

AGREEMENT AND POINTS OF
DEPARTURE FROM AR5

In agreement with the findings of AR5, strong evidence continues
to indicate that climate change will lead to a redistribution of
benefits and losses at multiple scales, and across human and
ecological systems (Barange et al., 2014). For instance, tourism
flows, diseases, and species are projected to shift polewards
under warmer temperatures (Magnan et al., 2012; Cheung et al.,
2013a; Burge et al., 2014; DiSegni and Shechter, 2014). Latitudinal
trends suggest benefits accruing in polar regions for commercial
sectors (e.g., new fishing and extraction opportunities, increased
shipping access) (Post et al., 2013; Miller and Ruiz, 2014),
while losses are projected for tropical and subtropical regions
through reductions in fisheries catch potential and reduced
food and economic security (Barange et al., 2014). Ecologically,
“winners” and “losers” are also expected to arise from community
phase shifts and trophic cascades (Bell J. et al., 2013; Inoue
et al., 2013; Ainsworth and Mumby, 2014), with some species
outcompeting others undermultiple stressors (Brown and Thatje,
2014) (Figure 1; Table 2).

Empirical and theoretical evidence continues to support
the occurrence of climate-induced range shifts of species and
coastal marine ecosystems, which were reported with very high
confidence in AR5 (Pörtner H. O. et al., 2014). Shallow tropical
water systems and coastal mangroves are expected to shift
polewards, with species richness increasing at higher latitudes
(Ross and Adam, 2013). While projections suggest the capacity
for some coastal vegetative ecosystems to shift landward in
response to sea level rise, adaptive capacity and growth rates may
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FIGURE 1 | Geography of modeled and observed impacts of climate change on marine and coastal ecosystems, sectors, and human health. This figure,

inspired by Figure 3 from Gattuso et al. (2015), shows examples of modeled and observed impacts of climate change, and is not meant to be exhaustive.

be reduced under higher levels of salinity (Mitra, 2013; Di Nitto
et al., 2014). Furthermore, the capacity for coastal habitats to
shift landwards may be inhibited by the construction of storm-
resilient infrastructure or coastal development (Lynn et al., 2013).
Ecosystem phase shifts and trophic cascades have been observed
and projected across multiple ecosystems and latitudes, including
tropical coral reefs (Bell J. J. et al., 2013; Inoue et al., 2013;
Ainsworth and Mumby, 2014), tidal marshes (Langley et al.,
2013), subtropical ecosystems (Milazzo et al., 2012), temperate
ecosystems (Wernberg et al., 2012; Thomson et al., 2014; Vergés
et al., 2014a), and polar ecosystems (Quartino et al., 2013). These
indicate a corresponding poleward shift in the distribution of

ecosystem services derived from these species and ecosystems,
with diverse outcomes for all coastal sectors and communities.

Noted as an uncertainty in AR5, new research suggests that
a species’ capacity to track climate velocity may be hindered
geographically by “climate sinks,” where local climatic conditions
differ from the temperature gradients tracked by migrating
species (Burrows et al., 2014), and that some species may be
unable to keep pace with climate velocity (Hiddink et al., 2014).
Other recent issues that have been highlighted include the
physiological plasticity to adapt to climate change (Seebacher
et al., 2015), potential for genetic bottlenecks to arise in
situations where dispersal is constrained (Knutsen et al., 2013),
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and species’ thresholds to hypoxia, temperature and pressure,
which may constrain their capacity to migrate in response to
climate change (Brown and Thatje, 2014). These findings inform
our understanding of how regional compositions of fisheries’
landings are likely to change as climate change progresses, and
of how these changes are likely to affect local economies and food
security.

While recent studies continue to emphasize the vulnerability
of tropical communities to climate change, new research suggests
the capacity and conditions of the coral reef ecosystems upon
which they depend to acquire tolerance to warmer temperatures
(Logan et al., 2013; Palumbi et al., 2014) and to recover from
bleaching events (Roff et al., 2014). However, this capacity
is less certain under cumulative pressures, with taxon-specific
responses (Vega Thurber et al., 2013; Palumbi et al., 2014; Silbiger
et al., 2014; Whalan and Webster, 2014).

New research on observed and projected climate-induced
impacts suggest that sustainable freshwater aquaculture may be
more viable than wild-caught fisheries under climate change
(Bell J. D. et al., 2013; Rosa et al., 2014; Richards et al.,
2015), thereby contributing to global food security (Barange
et al., 2014). Increased temperatures are expected to lead
to higher growth rates among some cultivated species (e.g.,
tilapia, carp), while the capacity to control for environmental
variables and the likelihood of increased rainfall may yield
greater resilience and opportunities for tropical and subtropical
aquaculture production (Rosa et al., 2014; Richards et al., 2015).
However, changes in the efficiency of aquaculture production
associated with an increased prevalence of disease under warmer
temperatures are uncertain, and may detrimentally affect human
health (Himes-Cornell et al., 2013; Leung and Bates, 2013;
Rosa et al., 2014; Rowley et al., 2014). Moreover, new research
highlights the potential for trade-offs to occur as coastal
sectors compete for different ecosystem services derived from
habitats that are sensitive to climate change (Ruckelshaus et al.,
2013).

Since AR5, efforts to characterize and value ecosystem services
in the context of climate change have been strengthened, with a
specific focus on ecosystem-based adaptation (Lavery et al., 2013;
Nelson et al., 2013; Roebeling et al., 2013; Fanning, 2014; Spalding
et al., 2014). Coastal vegetative habitats have been highlighted as
potential and economically efficient means of achieving multiple

objectives by combining habitat restoration and climate change
mitigation strategies (Nelson et al., 2013; Ross and Adam, 2013;
Tokoro et al., 2014; Wong et al., 2014). Research continues to
focus on the role of coastal habitats in carbon sequestration
and storage, supporting the restoration and cultivation of such
habitats to aid climate mitigation efforts (Duarte et al., 2013;
Spalding et al., 2014).

Lastly, research continues to indicate that climate-induced
changes in tourism flows are likely to create “winners” and
“losers,” with opportunities and losses arising from changes
in environmental conditions and destinations’ attractiveness.
These changes could lead to substantial geospatial shifts in
economic costs and benefits associated with tourism revenue
and coastal infrastructure protection and repairs (Whitehead
et al., 2009; Nelson et al., 2013; DiSegni and Shechter, 2014).
Moreover, increased threat from invasive species (e.g., jellyfish),
diseases, and extreme weather could reduce the attractiveness of
destinations to tourists (Himes-Cornell et al., 2013; Klein et al.,
2013; DiSegni and Shechter, 2014).

AUTHOR CONTRIBUTIONS

LW led the review and the development of the manuscript,
and created Figure 1. WC designed and coordinated the review,
contributed to the development of the manuscript, and provided
feedback on all components of the manuscript. AM, AR, and US
contributed to the development of the manuscript and provided
feedback at various stages of its development.

ACKNOWLEDGMENTS

This is a product of “The Oceans 2015 Initiative,” an expert
group supported by the Prince Albert II of Monaco Foundation,
the Ocean Acidification International Coordination Centre of
the International Atomic Energy Agency, the BNP Paribas
Foundation, and the Monegasque Association for Ocean
Acidification. WC also acknowledges funding support from
the Nippon Foundation-University of British Columbia Nereus
Program, and Natural Sciences and Engineering Council of
Canada. URS and WC are grateful for funding supporting for
the Social Sciences and Humanities Research Council of Canada
through the OceanCanada partnership grant project.

REFERENCES

Aerts, J. C., Botzen, W. J., and Emanuel, K. (2014). Evaluating flood
resilience strategies for coastal megacities. Science 344, 473–475. doi:
10.1126/science.1248222

Ahmed, N., Occhipinti-Ambrogi, A., and Muir, J. F. (2013). The impact of climate
change on prawn postlarvae fishing in coastal Bangladesh: socioeconomic and
ecological perspectives. Mar. Policy 39, 224–233. doi: 10.1016/j.marpol.2012.
10.008

Ainsworth, C. H., and Mumby, P. J. (2014). Coral-algal phase shifts alter fish
communities and reduce fisheries production. Glob. Change Biol. 21, 165–172.
doi: 10.1111/gcb.12667

Ainsworth, C. H., Samhouri, J. F., Busch, D. S., Cheung, W. W. L., Dunne, J.,
and Okey, T. A. (2011). Potential impacts of climate change on Northeast

Pacific marine foodwebs and fisheries. ICES J. Mar. Sci. 68, 1217–1229. doi:
10.1093/icesjms/fsr043

Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S., and Harvell, C. D.
(2013). Climate change and infectious diseases: from evidence to a predictive
framework. Science 341, 514–519. doi: 10.1126/science.1239401

AMAP (2013). AMAP Assessment 2013: Arctic Ocean Acidification Monitoring

and Assessment Programme (AMAP). Oslo: Arctic Monitoring and Assessment
Programme (AMAP), viii+ 99.

Andersson, A. J., Yeakel, K. L., Bates, N. R., and de Putron, S. J. (2013). Partial
offsets in ocean acidification from changing coral reef biogeochemistry. Nat.
Clim. Change 4, 56–61. doi: 10.1038/nclimate2050

Arent, D. J., Tol, R. S. J., Faust, E., Hella, J. P., Kumar, S., Strzepek, K. M., et al.
(2014). “Key economic sectors and services,” in Climate Change 2014: Impacts,

Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution

Frontiers in Marine Science | www.frontiersin.org 16 April 2016 | Volume 3 | Article 48

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Weatherdon et al. Climate Impact on Marine Sectors

of Working Group II to the Fifth Assessment Report of the Intergovernmental

Panel of Climate Change, eds C. B. Field, V. R. Barros, D. J. Dokken, K. J.
Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Cambridge, UK: New York, NY;
Cambridge University Press), 659–708.

Astthorsson, O. S., Valdimarsson, H., Gudmundsdottir, A., and Oskarsson, G.
J. (2012). Climate-related variations in the occurrence and distribution of
mackerel (Scomber scombrus) in Icelandic waters. ICES J. Mar. Sci. 69,
1289–1297. doi: 10.1093/icesjms/fss084

Ateweberhan, M., Feary, D. A., Keshavmurthy, S., Chen, A., Schleyer, M. H., and
Sheppard, C. R. C. (2013). Climate change impacts on coral reefs: synergies with
local effects, possibilities for acclimation, and management implications. Mar.

Pollut. Bull. 74, 526–539. doi: 10.1016/j.marpolbul.2013.06.011
Ban, S. S., Graham, N. A. J., and Connolly, S. R. (2014). Evidence for multiple

stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697.
doi: 10.1111/gcb.12453

Barange, M., Merino, G., Blanchard, J. L., Scholtens, J., Harle, J., Allison, E. H.,
et al. (2014). Impacts of climate change on marine ecosystem production
in societies dependent on fisheries. Nat. Clim. Change 4, 211–216. doi:
10.1038/nclimate2119

Barnhart, K. R., Overeem, I., and Anderson, R. S. (2014). The effect of changing sea
ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 1777–1799. doi:
10.5194/tc-8-1777-2014

Bates, A. E., Barrett, N. S., Stuart-Smith, R. D., Holbrook, N. J., Thompson, P. A.,
and Edgar, G. J. (2013). Resilience and signatures of tropicalization in protected
reef fish communities. Nat. Clim. Change 4, 62–67. doi: 10.1038/nclimate2062

Bates, A. E., Pecl, G. T., Frusher, S., Hobday, A. J., Wernberg, T., Smale,
D. A., et al. (2014). Defining and observing stages of climate-mediated
range shifts in marine systems. Glob. Environ. Change 26, 27–38. doi:
10.1016/j.gloenvcha.2014.03.009

Baudron, A. R., Needle, C. L., Rijnsdorp, A. D., and Tara Marshall, C. (2014).
Warming temperatures and smaller body sizes: synchronous changes in growth
of North Sea fishes. Glob. Change Biol. 20, 1023–1031. doi: 10.1111/gcb.12514

Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and
Regnier, P. A. G. (2013). The changing carbon cycle of the coastal ocean.Nature
504, 61–70. doi: 10.1038/nature12857

Becker, A. H., Acciaro, M., Asariotis, R., Cabrera, E., Cretegny, L., Crist, P., et al.
(2013). A note on climate change adaptation for seaports: a challenge for
global ports, a challenge for global society. Clim. Change 120, 683–695. doi:
10.1007/s10584-013-0843-z

Bell, J., Ganachaud, A., Gehrke, P., Hobday, A., Hoegh-Guldberg, O., Johnson,
J., et al. (2013). “Vulnerability of fisheries and aquaculture to climate
change in Pacific island countries and territories,” in Priority Adaptations

to Climate Change for Pacific Fisheries and Aquaculture: Reducing Risks and

Capitalizing on Opportunities, eds P. Gehrke, A. Hobday, O. Hoegh-Guldberg,
J. Johnson, R. Le Borgne, P. Lehodey, et al. (Rome: FAO), 25–109. Available
online at: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers13-
07/010058314.pdf

Bell, J. D., Ganachaud, A., Gehrke, P. C., Griffiths, S. P., Hobday, A. J., Hoegh-
Guldberg, O., et al. (2013). Mixed responses of tropical Pacific fisheries and
aquaculture to climate change. Nat. Clim. Change 3, 591–599. doi: 10.1038/
nclimate1838

Bell, J. J., Davy, S. K., Jones, T., Taylor, M. W., and Webster, N. S. (2013). Could
some coral reefs become sponge reefs as our climate changes? Glob. Change
Biol. 19, 2613–2624. doi: 10.1111/gcb.12212

Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J., and Saunders, B. J.
(2015). Tropical herbivores provide resilience to a climate-mediated phase shift
on temperate reefs. Ecol. Lett. 18, 714–723. doi: 10.1111/ele.12450

Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., et al.
(2013). Multiple stressors of ocean ecosystems in the 21st century: projections
with CMIP5 models. Biogeosciences 10, 6225–6245. doi: 10.5194/bg-10-62
25-2013

Boyd, P. W., Sundby, S., and Pörtner, H. O. (2014). “Cross-chapter box on
net primary production in the ocean,” in Climate Change 2014: Impacts,

Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects.Contribution
of Working Group II to the Fifth Assessment Report of the Intergovernmental

Panel of Climate Change, eds C. B. Field, V. R. Barros, D. J. Dokken, K. J.
Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Cambridge, UK: New York, NY;
Cambridge University Press), 133–136.

Bramanti, L., Movilla, J., Guron, M., Calvo, E., Gori, A., Dominguez-Carrió, C.,
et al. (2013). Detrimental effects of ocean acidification on the economically
important Mediterranean red coral (Corallium rubrum). Glob. Change Biol. 19,
1897–1908. doi: 10.1111/gcb.12171

Branch, T. A., DeJoseph, B. M., Ray, L. J., and Wagner, C. A. (2013). Impacts
of ocean acidification on marine seafood. Trends Ecol. Evol. 28, 178–186. doi:
10.1016/j.tree.2012.10.001

Brisson, C. P., Coverdale, T. C., and Bertness, M. D. (2014). Salt marsh die-off
and recovery reveal disparity between the recovery of ecosystem structure and
service provision. Biol. Conserv. 179, 1–5. doi: 10.1016/j.biocon.2014.08.013

Brown, A., and Thatje, S. (2014). The effects of changing climate on faunal depth
distributions determine winners and losers.Glob. Change Biol. 21, 173–180. doi:
10.1111/gcb.12680

Burge, C. A., Mark Eakin, C., Friedman, C. S., Froelich, B., Hershberger, P. K.,
Hofmann, E. E., et al. (2014). Climate change influences on marine infectious
diseases: implications for management and society. Annu. Rev. Mar. Sci. 6,
249–277. doi: 10.1146/annurev-marine-010213-135029

Burrows, M. T., Schoeman, D. S., Richardson, A. J., Molinos, J. G., Hoffmann,
A., Buckley, L. B., et al. (2014). Geographical limits to species-range shifts are
suggested by climate velocity. Nature 507, 492–495. doi: 10.1038/nature12976

Busch, D. S., Harvey, C. J., and McElhany, P. (2013). Potential impacts of ocean
acidification on the Puget Sound food web. ICES J. Mar. Sci. 70, 823–833. doi:
10.1093/icesjms/fst061

Calbet, A., Sazhin, A. F., Nejstgaard, J. C., Berger, S. A., Tait, Z. S., Olmos, L., et al.
(2014). Future climate scenarios for a coastal productive planktonic food web
resulting in microplankton phenology changes and decreased trophic transfer
efficiency. PLoS ONE 9:e94388. doi: 10.1371/journal.pone.0094388

Chan, N. C. S., and Connolly, S. R. (2012). Sensitivity of coral calcification
to ocean acidification: a meta-analysis. Glob. Change Biol. 19, 282–290. doi:
10.1111/gcb.12011

Chavez, F. P., Messié, M., and Pennington, J. T. (2011).Marine primary production
in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260.
doi: 10.1146/annurev.marine.010908.163917

Cheung, W. W. L., Pauly, D., and Sarmiento, J. L. (2013c). How to make progress
in projecting climate change impacts. ICES J. Mar. Sci. 70, 1069–1074. doi:
10.1093/icesjms/fst133

Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R., and
Pauly, D. (2009). Projecting global marine biodiversity impacts under climate
change scenarios. Fish Fish. 10, 235–251. doi: 10.1111/j.1467-2979.2008.00315.x

Cheung, W. W. L., Sarmiento, J. L., Dunne, J. P., Frölicher, T. L., Lam, V. W.,
Palomares, M. D., et al. (2013b). Shrinking of fishes exacerbates impacts of
global ocean changes onmarine ecosystems.Nat. Clim. Change 3, 254–258. doi:
10.1038/nclimate1691

Cheung, W. W. L., Watson, R., and Pauly, D. (2013a). Signature of ocean warming
in global fisheries catch. Nature 497, 365–368. doi: 10.1038/nature12156

Christiansen, J. S., Mecklenburg, C. W., and Karamushko, O. V. (2013). Arctic
marine fishes and their fisheries in light of global change. Glob. Change Biol.
20, 352–359. doi: 10.1111/gcb.12395

Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann,
A., et al. (2013). “Sea level change,” in Climate Change 2013: The Physical

Science Basis. Contribution of Working Group I to the Fifth Assessment Report of

the Intergovernmental Panel on Climate Change, ed T. F. Stocker (Cambridge:
Cambridge University Press), 1137–1216.

Ciscar, J.-C., Iglesias, A., Feyen, L., Szabó, L., Van Regemorter, D., Amelung,
B., et al. (2011). Physical and economic consequences of climate change in
Europe. Proc. Natl. Acad. Sci. U.S.A. 108, 2678–2683. doi: 10.1073/pnas.1011
612108

Clark, G. F., Stark, J. S., Johnston, E. L., Runcie, J. W., Goldsworthy, P. M.,
Raymond, B., et al. (2013). Light-driven tipping points in polar ecosystems.
Glob. Change Biol. 19, 3749–3761. doi: 10.1111/gcb.12337

Constable, A. J., Melbourne-Thomas, J., Corney, S. P., Arrigo, K. R., Barbraud, C.,
Barnes, D. K. A., et al. (2014). Climate change and Southern Ocean ecosystems
I: how changes in physical habitats directly affect marine biota. Glob. Change
Biol. 20, 3004–3025. doi: 10.1111/gcb.12623

de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R., and Marinov,
I. (2014). Cessation of deep convection in the open Southern Ocean
under anthropogenic climate change. Nat. Clim. Change 4, 278–282. doi:
10.1038/nclimate2132

Frontiers in Marine Science | www.frontiersin.org 17 April 2016 | Volume 3 | Article 48

http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers13-07/010058314.pdf
http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers13-07/010058314.pdf
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Weatherdon et al. Climate Impact on Marine Sectors

De Silva, S. S. (2012). “Climate change impacts: challenges for aquaculture,” in
Proceedings on the Global Conference on Aquaculture Farming the Waters for

People and Food, eds R. P. Subasinghe, J. R. Arthur, D. M. Bartley, S. S. De Silva,
M. Halwart, N. Hishamunda, et al. (Rome: Food and Agricultural Organization
of the United Nations), 75–110.

Deutsch, C., Berelson, W., Thunell, R., Weber, T., Tems, C., McManus, J., et al.
(2014). Centennial changes in North Pacific anoxia linked to tropical trade
winds. Science 345, 665–668. doi: 10.1126/science.1252332

Di Nitto, D., Neukermans, G., Koedam, N., Defever, H., Pattyn, F., Kairo, J. G.,
et al. (2014). Mangroves facing climate change: landward migration potential
in response to projected scenarios of sea level rise. Biogeosciences 11, 857–871.
doi: 10.5194/bg-11-857-2014

DiSegni, D. M., and Shechter, M. (2014). “Socioeconomic aspects: human
migrations, tourism and fisheries,” in The Mediterranean Sea: Its History and

Present Challenges, eds S. Goffredo and Z. Dubinsky (Netherlands: Springer),
571–575. doi: 10.1007/978-94-007-6704-1_34

Dixson, D. L., Abrego, D., and Hay, M. E. (2014). Chemically mediated behavior of
recruiting corals and fishes: a tipping point that may limit reef recovery. Science
345, 892–897. doi: 10.1126/science.1255057

Duarte, C.M., Losada, I. J., Hendriks, I. E.,Mazarrasa, I., andMarbà, N. (2013). The
role of coastal plant communities for climate changemitigation and adaptation.
Nat. Clim. Change 3, 961–968. doi: 10.1038/nclimate1970

Eyre, B. D., Andersson, A. J., and Cyronak, T. (2014). Benthic coral reef calcium
carbonate dissolution in an acidifying ocean.Nat. Clim. Change 4, 969–976. doi:
10.1038/nclimate2380

Fabbri, E., and Dinelli, E. (2014). “Physiological responses of marine animals
towards adaptation to climate changes,” in The Mediterranean Sea: Its History

and Present Challenges, eds S. Goffredo and Z. Dubinsky (Netherlands:
Springer), 401–417. doi: 10.1007/978-94-007-6704-1_23

Fanning, A. L. (2014). “Towards valuing climate change impacts on the ecosystem
services of a Uruguayan Coastal Lagoon,” in International Perspectives on

Climate Change, eds W. Leal Filho, F. Alves, S. Caeiro, and U. M. Azeiteiro
(Cham: Springer International Publishing), 61–77.

FAO (2014). The State of World Fisheries and Aquaculture. Rome: Food

and Agriculture Organization of the United Nations. Rome: Food and
Agriculture Organization of the United Nations, 243. Available online at:
http://www.fao.org/3/d1eaa9a1-5a71-4e42-86c0-f2111f07de16/i3720e.pdf

Feary, D. A., Pratchett, M. S. J., Emslie, M., Fowler, A. M., Figueira, W. F., Luiz, O.
J., et al. (2013). Latitudinal shifts in coral reef fishes: why some species do and
others do not shift. Fish Fish. 15, 593–615. doi: 10.1111/faf.12036

Feehan, C. J., and Scheibling, R. E. (2014). Effects of sea urchin disease on coastal
marine ecosystems.Mar. Biol. 161, 1467–1485. doi: 10.1007/s00227-014-2452-4

Fleming, A., Hobday, A. J., Farmery, A., van Putten, E. I., Pecl, G. T., Green, B.
S., et al. (2014). Climate change risks and adaptation options across Australian
seafood supply chains – A preliminary assessment. Clim. Risk Manag. 1, 39–50.
doi: 10.1016/j.crm.2013.12.003

Fleming, L. E., McDonough, N., Austen, M., Mee, L., Moore, M., Hess, P., et al.
(2014). Oceans and human health: a rising tide of challenges and opportunities
for Europe.Mar. Environ. Res. 99, 16–19. doi: 10.1016/j.marenvres.2014.05.010

Gamito, R., Teixeira, C. M., and Costa, M. J. (2013). Climate-induced changes in
fish landings of different fleet components of Portuguese fisheries. Reg. Environ.
Change 13, 413–421. doi: 10.1007/s10113-012-0358-6

Gamito, R., Teixeira, C. M., Costa, M. J., and Cabral, H. N. (2015). Are
regional fisheries’ catches changing with climate? Fish. Res. 161, 207–216. doi:
10.1016/j.fishres.2014.07.014

Ganachaud, A., Gupta, S. A., Brown, J. N., Evans, K., and Maes, C., Muir, L. C.,
et al. (2012). Projected changes in the tropical Pacific Ocean of importance to
tuna fisheries. Clim. Change 119, 163–179. doi: 10.1007/s10584-012-0631-1

Garai, J. (2014). “The impacts of climate change on the livelihoods of coastal people
in Bangladesh: a sociological study,” in International Perspectives on Climate

Change, eds W. Leal Filho, F. Alves, S. Caeiro, and U. M. Azeiteiro (Cham:
Springer International Publishing), 151–163.

Gattuso, J.-P., Brewer, P. G., Hoegh-Guldberg, O., Kleypas, J. A., Pörtner, H.
O., and Schmidt, D. N. (2014a). “Cross-chapter box on ocean acidification,”
in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A:

Global and Sectoral Aspects. Contribution of Working Group II to the Fifth

Assessment Report of the Intergovernmental Panel of Climate Change, eds C.
B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E.

Bilir, et al. (Cambridge, UK: New York, NY: Cambridge University Press),
129–131.

Gattuso, J.-P., Hoegh-Guldberg, O., and Pörtner, H. O. (2014b). “Cross-chapter
box on coral reefs,” in Climate Change 2014: Impacts, Adaptation, and

Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working

Group II to the Fifth Assessment Report of the Intergovernmental Panel of

Climate Change, eds C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M.
D. Mastrandrea, T. E. Bilir, et al. (Cambridge, UK: New York, NY: Cambridge
University Press), 97–100.

Gattuso, J.-P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., et al.
(2015). Contrasting futures for ocean and society from different anthropogenic
CO2 emissions scenarios. Science 349:aac4722. doi: 10.1126/science.aac4722

Gilly, W. F., Beman, J. M., Litvin, S. Y., and Robison, B. H. (2013). Oceanographic
and biological effects of shoaling of the oxygenminimum zone.Annu. Rev.Mar.

Sci. 5, 393–420. doi: 10.1146/annurev-marine-120710-100849
Grottoli, A. G., Warner, M. E., Levas, S. J., Aschaffenburg, M. D., Schoepf, V.,

McGinley, M., et al. (2014). The cumulative impact of annual coral bleaching
can turn some coral species winners into losers. Glob. Change Biol. 20,
3823–3833. doi: 10.1111/gcb.12658

Guenette, S., Araújo, J. N., and Bundy, A. (2014). Exploring the potential effects of
climate change on the Western Scotian Shelf ecosystem, Canada. J. Mar. Syst.

134, 89–100. doi: 10.1016/j.jmarsys.2014.03.001
Gurney, G. G., Melbourne-Thomas, J., Geronimo, R. C., Aliño, P. M., and Johnson,

C. R. (2013). Modelling coral reef futures to inform management: can reducing
local-scale stressors conserve reefs under climate change? PLoS ONE 8:e80137.
doi: 10.1371/journal.pone.0080137

Hamon, K. G., Frusher, S. D., Little, L. R., Thébaud, O., and Punt, A. E.
(2013). Adaptive behaviour of fishers to external perturbations: simulation
of the Tasmanian rock lobster fishery. Rev. Fish. Biol. Fish. 24, 577–592. doi:
10.1007/s11160-013-9302-1

Hanna, E. G., and McIver, L. (2014). “19 small island states–canaries in the coal
mine of climate change and health,” in Climate Change and Global Health,

(Butler, PA; Wallingford: UK: CABI), 181–192.
Hewson, I., Button, J. B., Gudenkauf, B. M., Miner, B., Newton, A. L., Gaydos,

J. K., et al. (2014). Densovirus associated with sea-star wasting disease
and mass mortality. Proc. Natl. Acad. Sci. U.S.A. 111, 17278–17283. doi:
10.1073/pnas.1416625111

Hiddink, J. G., Burrows, M. T., and García Molinos, J. (2014). Temperature
tracking byNorth Sea benthic invertebrates in response to climate change.Glob.
Change Biol. 21, 117–129. doi: 10.1111/gcb.12726

Hill, S. L., Phillips, T., and Atkinson, A. (2013). Potential climate change effects on
the habitat of Antarctic krill in the weddell quadrant of the Southern Ocean.
PLoS ONE 8:e72246. doi: 10.1371/journal.pone.0072246

Himes-Cornell, A., Allen, S., Auad, G., Boatman, M., Clay, P. M., Herrick, S.,
et al. (2013). “Impacts of climate change on human uses of the Ocean and
Ocean services,” in Oceans and Marine Resources in a Changing Climate

Oceans and Marine Resources in a Changing Climate, (Washington, DC: Island
Press/Center for Resource Economics), 64–118.

Hollowed, A. B., Barange, M., Beamish, R. J., Brander, K., Cochrane, K.,
Drinkwater, K., et al. (2013). Projected impacts of climate change on marine
fish and fisheries. ICES J. Mar. Sci. 70, 1023–1037. doi: 10.1093/icesjms/fst081

Howes, E. L., Joos, F., Eakin, C. M., and Gattuso, J.-P. (2015). An updated synthesis
of the observed and projected impacts of climate change on the chemical,
physical and biological processes in the oceans. Front. Mar. Sci. 2:36. doi:
10.3389/fmars.2015.00036

Inoue, S., Kayanne, H., Yamamoto, S., and Kurihara, H. (2013). Spatial community
shift from hard to soft corals in acidified water. Nat. Clim. Change 3, 683–687.
doi: 10.1038/nclimate1855

Johansen, J. L., Messmer, V., Coker, D. J., Hoey, A. S., and Pratchett, M. S.
(2013). Increasing ocean temperatures reduce activity patterns of a large
commercially important coral reef fish. Glob. Change Biol. 20, 1067–1074. doi:
10.1111/gcb.12452

Jones, D. O. B., Yool, A., Wei, C.-L., Henson, S. A., Ruhl, H. A., Watson, R. A., et al.
(2013). Global reductions in seafloor biomass in response to climate change.
Glob. Change Biol. 20, 1861–1872. doi: 10.1111/gcb.12480

Jones, M. C., and Cheung, W. W. L. (2015). Multi-model ensemble projections
of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72,
741–752. doi: 10.1093/icesjms/fsu172

Frontiers in Marine Science | www.frontiersin.org 18 April 2016 | Volume 3 | Article 48

http://www.fao.org/3/d1eaa9a1-5a71-4e42-86c0-f2111f07de16/i3720e.pdf
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Weatherdon et al. Climate Impact on Marine Sectors

Jones, M. C., Dye, S. R., Pinnegar, J. K., Warren, R., and Cheung, W. W. L. (2014).
Using scenarios to project the changing profitability of fisheries under climate
change. Fish Fish 20, 1861–1872. doi: 10.1111/faf.12081

Kawaguchi, S., Ishida, A., King, R., Raymond, B., Waller, N., Constable, A.,
et al. (2013). Risk maps for Antarctic krill under projected Southern Ocean
acidification. Nat. Clim. Change 3, 843–847. doi: 10.1038/nclimate1937

Keeling, R. F., Körtzinger, A., and Gruber, N. (2010). Ocean Deoxygenation
in a Warming World. Annu. Rev. Marine. Sci. 2, 199–229. doi:
10.1146/annurev.marine.010908.163855

Klein, S. G., Pitt, K. A., Rathjen, K. A., and Seymour, J. E. (2013). Irukandji jellyfish
polyps exhibit tolerance to interacting climate change stressors. Glob. Change
Biol. 20, 28–37. doi: 10.1111/gcb.12408

Knutsen, H., Jorde, P. E., Gonzalez, E. B., Robalo, J., Albretsen, J., and Almada,
V. (2013). Climate change and genetic structure of leading edge and rear end
populations in a Northwards shifting marine fish species, the corkwing wrasse
(Symphodus melops). PLoS ONE 8:e67492. doi: 10.1371/journal.pone.0067492

Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S.,
et al. (2013). Impacts of ocean acidification on marine organisms: quantifying
sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896.
doi: 10.1111/gcb.12179

Kroeker, K. J., Micheli, F., and Gambi, M. C. (2012). Ocean acidification causes
ecosystem shifts via altered competitive interactions. Nat. Clim. Change 3,
156–159. doi: 10.1038/nclimate1680

Lam, V. W. Y., Cheung, W. W. L., and Sumaila, U. R. (2014). Marine capture
fisheries in the Arctic: winners or losers under climate change and ocean
acidification? Fish Fish. doi: 10.1111/faf.12106. [Epub ahead of print].

Langley, J. A., Mozdzer, T. J., Shepard, K. A., Hagerty, S. B., and Patrick Megonigal,
J. (2013). Tidal marsh plant responses to elevated CO 2, nitrogen fertilization,
and sea level rise. Glob. Change Biol. 19, 1495–1503. doi: 10.1111/gcb.12147

Larsen, J. N., Anisimov, O. A., Constable, A., Hollowed, A. B., Maynard, N.,
Prestrud, P., et al. (2014). “Polar regions,” in Climate Change 2014: Impacts,

Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of

Working Group II to the Fifth Assessment Report of the Intergovernmental

Panel of Climate Change, eds V. R. Barros, C. B. Field, D. J. Dokken, M. D.
Mastrandrea, K. J. Mach, T. E. Bilir, et al. (Cambridge, UK: New York, NY:
Cambridge University Press), 1567–1612.

Lavery, P. S., Mateo, M.-Á., Serrano, O., and Rozaimi, M. (2013). Variability
in the carbon storage of seagrass habitats and its implications for global
estimates of blue carbon ecosystem service. PLoS ONE 8:e73748. doi:
10.1371/journal.pone.0073748

Lefébure, R., Degerman, R., Andersson, A., Larsson, S., Eriksson, L.-O., Båmstedt,
U., et al. (2013). Impacts of elevated terrestrial nutrient loads and temperature
on pelagic food-web efficiency and fish production. Glob. Change Biol. 19,
1358–1372. doi: 10.1111/gcb.12134

Lefort, S., Aumont, O., Bopp, L., Arsouze, T., Gehlen, M., and Maury, O. (2014).
Spatial and body-size dependent response of marine pelagic communities
to projected global climate change. Glob. Change Biol. 21, 154–164. doi:
10.1111/gcb.12679

Leung, T., and Bates, A. E. (2013). More rapid and severe disease outbreaks for
aquaculture at the tropics: implications for food security. J. Appl. Ecol. 50,
215–222. doi: 10.1111/1365-2644.12017

Li, S., Yang, Z., Nadolnyak, D., and Zhang, Y. (2014). Economic impacts of
climate change: profitability of freshwater aquaculture in China. Aquaculture
47, 1537–1548. doi: 10.1111/are.12614

Lluch-Cota, S. E., Hoegh-Guldberg, O., Karl, D., Pörtner, H. O., Sundby, S.,
and Gattuso, J. P. (2014). “Cross-chapter box on uncertain trends in major
upwelling ecosystems,” in Climate Change 2014: Impacts, Adaptation, and

Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working

Group II to the Fifth Assessment Report of the Intergovernmental Panel of

Climate Change, eds C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M.
D. Mastrandrea, T. E. Bilir, et al. (Cambridge, Uk: New York, NY: Cambridge
University Press), 149–151.

Logan, C. A., Dunne, J. P., Eakin, C. M., and Donner, S. D. (2013). Incorporating
adaptive responses into future projections of coral bleaching.Glob. Change Biol.
20, 125–139. doi: 10.1111/gcb.12390

Lynn, K., Daigle, J., Hoffman, J., Lake, F., Michelle, N., Ranco, D., et al. (2013).
The impacts of climate change on tribal traditional foods. Clim. Change 120,
545–556. doi: 10.1007/s10584-013-0736-1

MacKenzie, B. R., Payne, M. R., Boje, J., Høyer, J. L., and Siegstad, H. (2014). A
cascade of warming impacts brings bluefin tuna to Greenland waters. Glob.
Change Biol 20, 2484–2491. doi: 10.1111/gcb.12597

Magnan, A., Hamilton, J., Rosselló, J., Billé, R., and Bujosa, A. (2012).
“Mediterranean Tourism and climate change: identifying future demand
and assessing destinations’ Vulnerability,” in Regional Assessment of Climate

Change in the Mediterranean Advances in Global Change Research, (Dordrecht:
Springer Netherlands), 337–365.

March, H., Saurí, D., and Llurdés, J. C. (2013). Perception of the effects of
climate change in winter and summer tourist areas: the Pyrenees and the
Catalan and Balearic coasts, Spain. Reg. Environ. Change 14, 1189–1201. doi:
10.1007/s10113-013-0561-0

Marques, A., Rosa, R., and Nunes, M. L. (2014). “Seafood safety and human
health implications,” in The Mediterranean Sea: Its History and Present

Challenges, eds S. Goffredo and Z. Dubinsky (Netherlands: Springer)589–603.
doi: 10.1007/978-94-007-6704-1_36

McBride, M. M., Dalpadado, P., Drinkwater, K. F., Godo, O. R., Hobday, A. J.,
Hollowed, A. B., et al. (2014). Krill, climate, and contrasting future scenarios
for Arctic and Antarctic fisheries. ICES J. Mar. Sci. 71, 1934–1955. doi:
10.1093/icesjms/fsu002

McClanahan, T. R., Graham, N. A., and Darling, E. S. (2014). Coral reefs in a
crystal ball: predicting the future from the vulnerability of corals and reef
fishes to multiple stressors. Curr. Opin. Environ. Sustainability 7, 59–64. doi:
10.1016/j.cosust.2013.11.028

Merilä, J., and Hendry, A. P. (2014). Climate change, adaptation, and
phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14. doi:
10.1111/eva.12137

Milazzo, M., Mirto, S., Domenici, P., and Gristina, M. (2012). Climate change
exacerbates interspecific interactions in sympatric coastal fishes. J. Anim. Ecol.

82, 468–477. doi: 10.1111/j.1365-2656.2012.02034.x
Miller, A. W., and Ruiz, G. M. (2014). Arctic shipping and marine invaders. Nat.

Clim. Change 4, 413–416. doi: 10.1038/nclimate2244
Miller, K. A., Munro, G. R., Sumaila, U. R., and Cheung, W. W. L. (2013).

Governingmarine fisheries in a changing climate: a game-theoretic perspective.
Can. J. Agric. Econ. Rev. Can. Agroecon. 61, 309–334. doi: 10.1111/cjag.12011

Mitra, A. (2013). “Impact of climate change on mangroves,” in Sensitivity of

Mangrove Ecosystem to Changing Climate (New Delhi: Springer), 131–159. doi:
10.1007/978-81-322-1509-7_4

Montero-Serra, I., Edwards,M., andGenner,M. J. (2014).Warming shelf seas drive
the subtropicalization of European pelagic fish communities.Glob. Change Biol.
21, 144–153. doi: 10.1111/gcb.12747

Muhlfeld, C. C., Kovach, R. P., Jones, L. A., Al-Chokhachy, R., Boyer, M. C.,
Leary, R. F., et al. (2014). Invasive hybridization in a threatened species is
accelerated by climate change. Nat. Clim. Change 4, 620–624. doi: 10.1038/
nclimate2252

Mumby, P. J., Wolff, N. H., Bozec, Y.-M., Chollett, I., and Halloran, P. (2013).
Operationalizing the resilience of coral reefs in an era of climate change.
Conserv. Lett. 7, 176–187. doi: 10.1111/conl.12047

Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M., andMarshall, D. J. (2013).
Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16,
1488–1500. doi: 10.1111/ele.12185

Nelson, E. J., Kareiva, P., Ruckelshaus, M., Arkema, K., Geller, G., Girvetz, E.,
et al. (2013). Climate change’s impact on key ecosystem services and the human
well-being they support in the US. Front. Ecol. Environ. 11, 483–893. doi:
10.1890/120312

Noble, I. R., Huq, S., Anokhin, Y. A., Carmin, J., Goudou, D., Lansigan, F. P.,
et al. (2014). “Adaptation needs and options,” in Climate Change 2014: Impacts,

Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution

of Working Group II to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change Climate Change 2014: Impacts, Adaptation, and

Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working

Group II to the Fifth Assessment Report of the Intergovernmental Panel on

Climate Change, eds C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M.
D. Mastrandrea, T. E. Bilir, et al. (Cambridge, UK: New York, NY: Cambridge
University Press), 1–36.

Noone, K. J., Sumaila, U. R., and Diaz, R. J. (eds.). (2013). Managing Ocean

Environments in a Changing Climate: Sustainability and Economic Perspectives.
London: Elsevier.

Frontiers in Marine Science | www.frontiersin.org 19 April 2016 | Volume 3 | Article 48

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Weatherdon et al. Climate Impact on Marine Sectors

Nurse, L. A., McLean, R. F., Agard, J., Briguglio, L. P., Duvat-Magnan, V.,
Pelesikoti, N., et al. (2014). “Small islands,” in Climate Change 2014: Impacts,

Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of

Working Group II to the Fifth Assessment Report of the Intergovernmental

Panel of Climate Change, eds V. R. Barros, C. B. Field, D. J. Dokken, M. D.
Mastrandrea, K. J. Mach, T. E. Bilir, et al. (Cambridge, UK: New York, NY:
Cambridge University Press), 1613–1654.

Nursey-Bray, M., Blackwell, B., Brooks, B., Campbell, M. L., Goldsworthy,
L., Pateman, H., et al. (2013). Vulnerabilities and adaptation of ports
to climate change. J. Environ. Plan. Manag. 56, 1021–1045. doi:
10.1080/09640568.2012.716363

Okey, T. A., Alidina, H. M., Lo, V., and Jessen, S. (2014). Effects of climate change
on Canada’s Pacific marine ecosystems: a summary of scientific knowledge. Rev.
Fish Biol. Fish. 24, 519–559. doi: 10.1007/s11160-014-9342-1

Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N., and Bay, R. A. (2014).
Mechanisms of reef coral resistance to future climate change. Science 344,
895–898. doi: 10.1126/science.1251336

Pauly, D., and Zeller, D. (2016). Catch reconstructions reveal that global marine
fisheries catches are higher than reported and declining. Nat. Commun.

7:10244. doi: 10.1038/ncomms10244
Pérez, T., and Vacelet, J. (2014). “Effect of climatic and anthropogenic disturbances

on sponge fisheries,” in The Mediterranean Sea: Its History and Present

Challenges, eds S. Goffredo and Z. Dubinsky (Netherlands: Springer), 577–588.
doi: 10.1007/978-94-007-6704-1_35

Pinsky, M. L., and Fogarty, M. J. (2012). Lagged socio-ecological responses to
climate and range shifts in fisheries. Clim. Change Lett. 115, 883–891. doi:
10.1007/s10584-012-0599-x

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., and Levin, S. A.
(2013). Marine taxa track local climate velocities. Science 341, 1239–1242. doi:
10.1126/science.1239352

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S.,
Moore, P. J., et al. (2013). Global imprint of climate change on marine life. Nat.
Clim. Change 3, 919–925. doi: 10.1038/nclimate1958

Poloczanska, E. S., Hoegh-Guldberg, O., Cheung, W., Pörtner, H. O., and
Burrows, M. (2014). “Cross-chapter box on observed global responses of
marine biogeography, abundance, and phenology to climate change,” inClimate

Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and

Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment

Report of the Intergovernmental Panel of Climate Change, eds C. B. Field,
V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E.
Bilir, et al. (Cambridge,UK: New York, NY: Cambridge University Press),
123–127.

Portner, J. R., Xie, L., Challinot, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M.,
et al. (2014). “Food security and food production systems,” in Climate Change

2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral

Aspects. Contribution of Working Group II to the Fifth Assessment Report of

the Intergovernmental Panel on Climate Change Climate Change 2014: Impacts,

Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution

of Working Group II to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change, eds C. B. Field, V. R. Barros, D. J. Dokken, K. J.
Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Cambridge, UK: New York, NY:
Cambridge University Press), 485–533.

Pörtner, H. O., Karl, D.M., Cheung,W.W., Lluch-Cota, S. E., Nojiri, Y., Schmit, D.
N., et al. (2014). “Ocean systems,” in Climate Change 2014: Impacts, Adaptation,

and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working

Group II to the Fifth Assessment Report of the Intergovernmental Panel on

Climate Change Climate Change 2014: Impacts, Adaptation, and Vulnerability.

Part A: Global and Sectoral Aspects. Contribution of Working Group II to the

Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds
C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach,M. D.Mastrandrea, T. E. Bilir,
et al. (Cambridge, UK: New York, NY: Cambridge University Press), 411–484.

Post, E., Bhatt, U. S., Bitz, C. M., Brodie, J. F., Fulton, T. L., Hebblewhite, M., et al.
(2013). Ecological consequences of Sea-Ice decline. Science 341, 519–524. doi:
10.1126/science.1235225

Quartino, M. L., Deregibus, D., Campana, G. L., Latorre, G. E. J., and Momo, F. R.
(2013). Evidence of macroalgal colonization on newly ice-free areas following
glacial retreat in potter cove (South Shetland Islands), Antarctica. PLoS ONE

8:e58223. doi: 10.1371/journal.pone.0058223

Range, P., Chícharo, M. A., Ben-Hamadou, R., Piló, D., Fernandez-Reiriz, M. J.,
Labarta, U., et al. (2013). Impacts of CO2-induced seawater acidification on
coastal Mediterranean bivalves and interactions with other climatic stressors.
Reg. Environ. Change 14, 19–30. doi: 10.1007/s10113-013-0478-7

Richards, R. G., Davidson, A. T., Meynecke, J.-O., Beattie, K., Hernaman, V.,
Lynam, T., et al. (2015). Effects and mitigations of ocean acidification on wild
and aquaculture scallop and prawn fisheries in Queensland, Australia. Fish. Res.
161, 42–56. doi: 10.1016/j.fishres.2014.06.013

Rodriguez, A. B., Fodrie, F. J., Ridge, J. T., Lindquist, N. L., Theuerkauf, E. J.,
Coleman, S. E., et al. (2014). Oyster reefs can outpace sea-level rise. Nat. Clim.

Change 4, 493–497. doi: 10.1038/nclimate2216
Roebeling, P. C., Costa, L., Magalhães-Filho, L., and Tekken, V. (2013). Ecosystem

service value losses from coastal erosion in Europe: historical trends and future
projections. J. Coast. Conserv. 17, 389–395. doi: 10.1007/s11852-013-0235-6

Roff, G., Bejarano, S., Bozec, Y.-M., Nugues, M., Steneck, R. S., and Mumby,
P. J. (2014). Porites and the Phoenix effect: unprecedented recovery after a
mass coral bleaching event at Rangiroa Atoll, French Polynesia.Mar. Biol. 161,
1385–1393. doi: 10.1007/s00227-014-2426-6

Rogers, A., Harborne, A. R., Brown, C. J., Bozec, Y.-M., Castro, C., Chollett, I., et al.
(2014). Anticipative management for coral reef ecosystem services in the 21st
century. Glob. Change Biol. 21, 504–514. doi: 10.1111/gcb.12725

Rosa, R., Marques, A., and Nunes, M. L. (2014). “Mediterranean aquaculture
in a changing climate,” in The Mediterranean Sea: Its History and Present

Challenges, eds. S. Goffredo and Z. Dubinsky (Netherlands: Springer), 605–616.
doi: 10.1007/978-94-007-6704-1_37

Ross, P. M., and Adam, P. (2013). Climate change and intertidal wetlands. Biology
2, 445–480. doi: 10.3390/biology2010445

Rowley, A. F., Cross, M. E., Culloty, S. C., Lynch, S. A., Mackenzie, C. L., Morgan,
E., et al. (2014). The potential impact of climate change on the infectious
diseases of commercially important shellfish populations in the Irish Sea–a
review. ICES J. Mar. Sci. 71, 741–759. doi: 10.1093/icesjms/fst234

Ruckelshaus, M., Doney, S. C., Galindo, H. M., Barry, J. P., Chan, F., Duffy, J. E.,
et al. (2013). Securing ocean benefits for society in the face of climate change.
Mar. Policy 40, 154–159. doi: 10.1016/j.marpol.2013.01.009

Salvanes, A. G. V., Bartholomae, C., Yemane, D., Gibbons, M. J., Kainge, P.,
Krakstad, J.-O., et al. (2015). Spatial dynamics of the bearded goby and its
key fish predators off Namibia vary with climate and oxygen availability. Fish.
Oceanogr. 24, 88–101. doi: 10.1111/fog.12068

Saunders, M. I., Leon, J. X., Callaghan, D. P., Roelfsema, C. M., Hamylton, S.,
Brown, C. J., et al. (2014). Interdependency of tropical marine ecosystems
in response to climate change. Nat. Clim. Change 4, 724–729. doi:
10.1038/nclimate2274

Saurí, D., Olcina, J., Fernando Vera, J., Martín-Vide, J., March, H., Serra-Llobet,
A., et al. (2013). Tourism, Climate Change and Water Resources: Coastal

Mediterranean Spain as an Example. Chichester, UK: John Wiley & Sons, Ltd.
Scott, D. (2014). Climate-Change Implications for Tourism. Oxford, UK: John

Wiley & Sons, Ltd.
Seebacher, F., White, C. R., and Franklin, C. E. (2015). Physiological plasticity

increases resilience of ectothermic animals to climate change. Nat. Clim.

Change 5, 61–66. doi: 10.1038/nclimate2457
Seth, H., Gräns, A., Sandblom, E., Olsson, C., Wiklander, K., Johnsson, J. I., et al.

(2013). Metabolic scope and interspecific competition in sculpins of Greenland
are influenced by increased temperatures due to climate change. PLoS ONE

8:e62859. doi: 10.1371/journal.pone.0062859
Shaw, M. R., Overpeck, J. T., and Midgley, G. F. (2014). “Cross-chapter box

on ecosystem based approaches to adaptation—emerging opportunities,” in
Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global

and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment

Report of the Intergovernmental Panel of Climate Change, eds C. B. Field, V.
R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, et al.
(Cambridge, UK: New York, NY: Cambridge University Press), 101–103.

Shoo, L. P., O’Mara, J., Perhans, K., and Rhodes, J. R. (2014). Moving beyond
the conceptual: specificity in regional climate change adaptation actions for
biodiversity in South East Queensland, Australia. Reg. Environ. Change 14,
435–447. doi: 10.1007/s10113-012-0385-3

Silbiger, N. J., Guadayol, Ò., Thomas, F., and Donahue, M. J. (2014). Reefs shift
from net accretion to net erosion along a natural environmental gradient.Mar.

Ecol. Progress Ser. 515, 33–44. doi: 10.3354/meps10999

Frontiers in Marine Science | www.frontiersin.org 20 April 2016 | Volume 3 | Article 48

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Weatherdon et al. Climate Impact on Marine Sectors

Silverstein, R. N., Cunning, R., and Baker, A. C. (2014). Change in algal symbiont
communities after bleaching, not prior heat exposure, increases heat tolerance
of reef corals. Glob. Change Biol. 21, 236–249. doi: 10.1111/gcb.12706

Spalding, M. D., Ruffo, S., Lacambra, C., Meliane, I., Hale, L. Z., Shepard, C.
C., et al. (2014). The role of ecosystems in coastal protection: adapting to
climate change and coastal hazards. Ocean Coast. Manag. 90, 50–57. doi:
10.1016/j.ocecoaman.2013.09.007

Stock, C. A., Dunne, J. P., and John, J. G. (2014). Global-scale carbon and
energy flows through the marine planktonic food web: an analysis with
a coupled physical-biological model. Progress Oceanogr. 120, 1–28. doi:
10.1016/j.pocean.2013.07.001

Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen, S., and
Brutemark, A. (2013). Climate change and eutrophication induced shifts
in Northern summer plankton communities. PLoS ONE 8:e66475. doi:
10.1371/journal.pone.0066475

Sumaila, U. R., Cheung, W. W. L., and Lam, V. W. Y. (2014). “Climate change
effects on the economics and management of marine fisheries,” inHandbook on

the Economics of Ecosystem Services and Biodiversity, eds P. A. L. D. Nunes, P.
Kumar, and T. Dedeurwaerdere (Cheltenham: Edward Elgar Publishing Ltd.),
61–77.

Sumaila, U. R., Cheung, W.W. L., Lam, V.W. Y., Pauly, D., and Herrick, S. (2011).
Climate change impacts on the biophysics and economics of world fisheries.
Nat. Clim. Change 1, 449–456. doi: 10.1038/nclimate1301

Sunday, J. M., Calosi, P., Dupont, S., Munday, P. L., Stillman, J. H., and Reusch, T.
B. H. (2014). Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125.
doi: 10.1016/j.tree.2013.11.001

Sydeman, W. J., Garcia-Reyes, M., Schoeman, D. S., Rykaczewski, R. R.,
Thompson, S. A., Black, B. A., et al. (2014). Climate change and wind
intensification in coastal upwelling ecosystems. Science 345, 77–80. doi:
10.1126/science.1251635

Teixeira, C. M., Gamito, R., Leitão, F., and Cabral, H. N. (2014). Trends in landings
of fish species potentially affected by climate change in Portuguese fisheries.
Reg. Environ. Change 14, 657–669. doi: 10.1007/s10113-013-0524-5

Thomson, J. A., Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Fraser,
M. W., Statton, J., et al. (2014). Extreme temperatures, foundation species, and
abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob.
Change Biol. 21, 1463–1474. doi: 10.1111/gcb.12694

Tokoro, T., Hosokawa, S., Miyoshi, E., Tada, K., Watanabe, K., Montani, S.,
et al. (2014). Net uptake of atmospheric CO 2by coastal submerged aquatic
vegetation. Glob. Change Biol. 20, 1873–1884. doi: 10.1111/gcb.12543

Tsikliras, A. C., Dinouli, A., Tsiros, V.-Z., and Tsalkou, E. (2015). The
Mediterranean and Black Sea fisheries at risk from overexploitation. PLoS ONE
10:e0121188. doi: 10.1371/journal.pone.0121188

Tzanatos, E., Raitsos, D. E., Triantafyllou, G., Somarakis, S., and Tsonis, A. A.
(2013). Indications of a climate effect on Mediterranean fisheries. Clim. Change

122, 41–54. doi: 10.1007/s10584-013-0972-4
Vasilakopoulos, P., Maravelias, C. D., and Tserpes, G. (2014). The alarming

decline of Mediterranean fish stocks. Curr. Biol. 24, 1643–1648. doi:
10.1016/j.cub.2014.05.070

Vega Thurber, R. L., Burkepile, D. E., Fuchs, C., Shantz, A. A., McMinds, R., and
Zaneveld, J. R. (2013). Chronic nutrient enrichment increases prevalence and
severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554. doi:
10.1111/gcb.12450

Vergés, A., Steinberg, P. D., Hay, M. E., Poore, A. G. B., Campbell, A.
H., Ballesteros, E., et al. (2014a). The tropicalization of temperate marine
ecosystems: climate-mediated changes in herbivory and community phase
shifts. Proc. R. Soc. B Biol. Sci. 281:20140846. doi: 10.1098/rspb.2014.0846

Vergés, A., Tomas, F., Cebrián, E., Ballesteros, E., Kizilkaya, Z., Dendrinos, P., et al.
(2014b). Tropical rabbitfish and the deforestation of a warming temperate sea.
J. Ecol. 102, 1518–1527. doi: 10.1111/1365-2745.12324

Ware, C., Berge, J., Sundet, J. H., Kirkpatrick, J. B., Coutts, A. D. M., Jelmert, A.,
et al. (2013). Climate change, non-indigenous species and shipping: assessing
the risk of species introduction to a high-Arctic archipelago. Divers. Distrib. 20,
10–19. doi: 10.1111/ddi.12117

Wassmann, P., Duarte, C. M., and Agusti, S. (2011). Footprints of climate
change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249. doi:
10.1111/j.1365-2486.2010.02311.x

Weatherdon, L. V., Ota, Y., Jones, M. C., Close, D. A., and Cheung, W. W. L.
(2016). Projected scenarios for coastal First Nations’ fisheries catch potential
under climate change: management challenges and opportunities. PLoS ONE

1:e0145285. doi: 10.1371/journal.pone.0145285
Wenger, S. J., Som, N. A., Dauwalter, D. C., Isaak, D. J., Neville, H. M., Luce, C.

H., et al. (2013). Probabilistic accounting of uncertainty in forecasts of species
distributions under climate change. Glob. Change Biol. 19, 3343–3354. doi:
10.1111/gcb.12294

Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., de
Bettignies, T., et al. (2012). An extreme climatic event alters marine ecosystem
structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. doi:
10.1038/nclimate1627

Whalan, S., and Webster, N. S. (2014). Sponge larval settlement cues: the role of
microbial biofilms in a warming ocean. Sci. Rep. 4:4072. doi: 10.1038/srep04072

Wheeler, T., and von Braun, J. (2013). Climate change impacts on global food
security. Science 341, 508–513. doi: 10.1126/science.1239402

Whitehead, J. C., Ben, P., Dumas, C. F., and Bin, O. (2009). Measuring the
economic effects of sea level rise on shore fishing. Mitig. Adapt. Strateg. Glob.

Change 14, 777–792. doi: 10.1007/s11027-009-9198-1
Whiteman, G., Hope, C., and Wadhams, P. (2013). Climate science: vast costs of

Arctic change. Nature 499, 401–403. doi: 10.1038/499401a
Wisz, M. S., Broennimann, O., Gronkjaer, P., Moller, P. R., Olsen, S. M.,

Swingedouw, D., et al. (2015). Arctic warming will promote Atlantic–
Pacific fish interchange. Nat. Clim. Change 5, 261–265. doi: 10.1038/
nclimate2500

Wittmann, A. C., and Pörtner, H.-O. (2013). Sensitivities of extant animal taxa to
ocean acidification. Nat. Clim. Change 3, 995–1001. doi: 10.1038/nclimate1982

Wolfe, K., Dworjanyn, S. A., and Byrne, M. (2013). Effects of ocean warming
and acidification on survival, growth and skeletal development in the early
benthic juvenile sea urchin (Heliocidaris erythrogramma). Glob. Change Biol.
19, 2698–2707. doi: 10.1111/gcb.12249

Wong, P. P., Losada, I. J., Gattuso, J. P., Hinkel, J., Khattabi, A.,McInnes, K. L., et al.
(2014). “Coastal systems and low-lying areas,” inClimate Change 2014: Impacts,

Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution

of Working Group II to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change Climate Change 2014: Impacts, Adaptation, and

Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working

Group II to the Fifth Assessment Report of the Intergovernmental Panel on

Climate Change, eds C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M.
D. Mastrandrea, T. E. Bilir, et al. (Cambridge, UK: New York, NY: Cambridge
University Press), 361–409.

Woodworth-Jefcoats, P. A., Polovina, J. J., Dunne, J. P., and Blanchard, J. L.
(2013). Ecosystem size structure response to 21st century climate projection:
large fish abundance decreases in the central North Pacific and increases
in the California Current. Glob. Change Biol. 19, 724–733. doi: 10.1111/gcb.
12076

Ziervogel, G., New, M., Archer van Garderen, E., Midgley, G., Taylor, A., Hamann,
R., et al. (2014). Climate change impacts and adaptation in South Africa.WIREs

Clim. Change 5, 605–620. doi: 10.1111/gcb.12597

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Weatherdon, Magnan, Rogers, Sumaila and Cheung. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Marine Science | www.frontiersin.org 21 April 2016 | Volume 3 | Article 48

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive

	Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal Tourism, and Human Health: An Update
	Introduction
	Key Findings in IPCC AR5
	Systematic Review of Literature
	Fisheries and Auxiliary Sectors
	Projected Impacts on the Distribution of Fisheries Stocks
	Projected Impacts on Fisheries' Yield, Catch Quality, and Composition
	Regional Impacts on Fisheries
	Tropical fisheries
	Temperate and subtropical fisheries
	Polar Fisheries


	Aquaculture
	Projected Impacts on Future Shellfish and Fish Aquaculture Production

	Coastal Tourism and Local Economies
	Ocean Warming and Acidification Impacts on Tourism Flows
	Impact of Ocean Warming and Acidification on Tourism Operators' Infrastructure, Strategies, and Revenue

	Human Health and Food Security
	Brief Insights on Coastal Adaptation Across Sectors
	Adaptation in Fisheries, Aquaculture, and Auxiliary Sectors
	Adaptation in the Tourism Sector
	Ecosystem-Based Adaptation for Coastal Communities


	Agreement and Points of Departure from AR5
	Author Contributions
	Acknowledgments
	References


