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The theory of temperature-dependent topological constraints has been used to success-
fully explain the compositional dependence of glass properties for oxide and non-oxide
compositions. It relates the number of topological degrees of freedom with the glass
transition temperature through the configurational entropy of the system. Based on this,
we estimated the number of degrees of freedom directly from viscosity measurements
of binary alkali borate and silicate glasses. Both approaches exhibit a strong decoupling,
which we suggest can be traced to the presence of medium- and long-range constraints
that are not taken into account by bond constraint counting. The observed variation of the
energy barrier for structural rearrangement and floppy mode degeneracy also corroborate
our interpretation.We provide evidence that the degeneracy of floppy modes changes with
chemical composition and that the parameter K (x ) of the MYEGA viscosity equation could
be used to assess changes in the medium-range order.
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INTRODUCTION
The theory of “topological constraints” has drawn significant
attention for the prediction of specific properties of glassy materi-
als (Phillips, 1979; Phillips and Thorpe, 1985; Gupta and Mauro,
2009; Mauro et al., 2009a; Smedskjaer et al., 2010; Wondraczek
et al., 2011). It relates atomistic potentials and spatial relations
between constituents of the glass to the ensemble’s degrees of
freedom and the average number of atomic bond constraints,
respectively. An estimate of the number of constraints can be
obtained via the Adam–Gibbs equation (Adam and Gibbs, 1965),
which relates the viscosity of a liquid with its configurational
entropy:

log10η (T , x) = log10η∞ (x)+
B (x)

T · Sc (T , x)
(1)

where η∞(x) is the viscosity of the liquid at infinite tempera-
ture, B(x) corresponds to the energy barrier, which opposes the
rearrangement of the melt structural units (Russell et al., 2003) and
Sc(T,x) is the configurational entropy of the melt. The configura-
tional entropy can, in principle, be determined from calorimetric
(Richet et al., 1993) or electrochemical measurements (Jordanov
et al., 2012) and is calculated from Eqs 2–4 (Richet, 1984, 2009;
Richet et al., 1993).

Sc (T , x) = Sc
(
Tg , x

)
+

∫ T

Tg

Cconf
p (x)

T
dT (2)

Sc
(
Tg , x

)
= ∆Sf +

∫ Tm

0

C
crystal
p (x)

T
dT+

∫ Tg

Tm

C
liquid
p (x)

T
dT

+

∫ 0

Tg

C
glass
p (x)

T
dT (3)

Cconf
p (x) = C

liquid
p (x)− C

glass
p

(
Tg
)

(4)

where the difference in heat capacity between glassy state and
super-cooled liquid state is typically taken as the configurational
heat capacity Cconf

P (x) (Richet et al., 1986). In reality, the experi-
mental determination of Sc(T,x) is problematic at best (Sipp et al.,
1997). So, while the Adam–Gibbs equation successfully links the
thermodynamic state of a liquid with its dynamic properties, its
practical application is restricted by the difficulties arising from
the experimental determination of all required calorimetric data
(Richet, 2009).

Recently, Mauro et al. (2009b) proposed a new equation to
describe the viscosity of liquids,which is based on the Adam–Gibbs
approach, the energy landscape analysis of Naumis (2006) and the
temperature-dependent constraint model of Gupta and Mauro
(2009) (Mauro et al., 2009a). The model states that temperature-
induced changes in the glass topology are related to changes in the
number of atomic constraints relative to the number of atomic
degrees of freedom. The new equation postulates a link between
the configurational entropy of the liquid and its topological
degrees of freedom per atom, f(T,x):

Sc (T , x) = f (T , x) Nk ln Ω (5)

where N is the number of atoms, k is Boltzmann’s constant, and
Ω is the number of degenerate configurations per floppy mode
(Mauro et al., 2009b). Furthermore, the authors consider that the
network constraints exist in a simple two-state system: the con-
straints are either intact or broken. The energy difference between
both states is given by H (x) (Mauro et al., 2009b):

f (T , x) = 3 · exp

(
−

H (x)

kT

)
(6)
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Rodrigues and Wondraczek Decoupling of constraint predictions in glasses

Rearranging Eq. 1 with K (x)=B(x)/3NklnΩ and C(x)=H (x)/k,
the MYEGA equation is obtained (Mauro et al., 2009b):

log10η (T , x) = log10η∞ (x)+
K (x)

T
· exp

(
C (x)

T

)
(7)

Equation 7 can be rewritten as a function of the glass transition
temperature Tg(x) and the fragility index m(x) (Angell, 1995)
assuming that logη∞(x)=−3 [log(Pa · s)] (Zheng et al., 2011):

log10η (T , x) = −3+ 15 ·
Tg (x)

T
· exp[(

m (x)

15
− 1

)
·

(
Tg (x)

T
− 1

)]
(8)

This equation provides a versatile tool, which allows for the deter-
mination of the glass transition temperature, the kinetic fragility of
the melt and the viscosity parameters K (x) and C(x) from viscos-
ity data. Substituting C(x) in Eq. 6 one can calculate the number
of degrees of freedom per atom from viscosity:

fvisc (T , x) = 3 · exp

(
−

C (x)

T

)
(9)

NUMBER OF TOPOLOGICAL DEGREES OF FREEDOM
The temperature-dependent constraint theory of Gupta and
Mauro (2009) provides another way of calculating the number of
atomic degrees of freedom from experimental data (Mauro et al.,
2009a). Starting with the Adam–Gibbs equation (Eq. 1), for two
different but similar systems x and w at their glass transition tem-
perature, the equilibrium viscosity should be equal to 1012 Pa · s,
resulting in the following equality:

B (x)

Tg (x) · Sc
(
Tg (x) , x

) = B (w)

Tg (w) · Sc
(
Tg (w) , w

) (10)

Assuming that the variation of the energy barrier is independent
on chemical composition, B(x)≈B(w), and using Eq. 5 one gets:

Tg (w)

Tg (x)
=

Sc
(
Tg (x) , x

)
Sc
(
Tg (w) , w

) = f
(
Tg (x) , x

)
f
(
Tg (w) , w

) (11)

In order to test if the number of atomic degrees of free-
dom calculated from viscosity (Eq. 9) and the Bond Constraint
Theory (Eq. 11) coincide, we took viscosity data for B2O3,
xNa2O× (1−x)B2O3, and xLi2O× (1−x)B2O3 glasses and fit-
ted with Eqs 7 and 8 assuming logη∞(T,x)=−3. The results are
shown in Table 1.

Considering that the relative number of degrees of freedom
[given by f(Tg(x), x)/f(Tg(w), w)] is the same for both approaches,
Eqs 9 and 11 can then be combined as:

f
(
Tg (x) , x

)
f
(
Tg (w) , w

) = Tg (w)

Tg (x)
=

exp
(
−

C(x)
Tg (x)

)
exp

(
−

C(w)
Tg (w)

) (12)

Taking vitreous B2O3 as a reference composition, Tg(w)= 522.9 K
[see Table 1; this temperature is somewhat lower than the one
reported by Mauro et al. (2009a)], C(w)= 557 K from Table 1
and f(Tg(w),w)= 3/5(Mauro et al., 2009a), then the comparison
with the binary alkali glasses becomes straightforward and the
results are found in Figures 1 and 2.

Interestingly, in Figure 1, we see that the number of floppy
modes calculated from viscosity measurements has a stronger
dependence on the chemical composition than the one calculated
from glass transition temperature data. Figure 2 illustrates this
mismatch very well and we see that both alkali borate glasses follow
the same trend.

DEGENERACY AND DECOUPLING OF CONSTRAINT
PREDICTIONS
From Figures 1 and 2, the experimental data suggest that the num-
ber of degrees of freedom from viscosity and the BCT diverge sig-
nificantly. Recalling Eq. 5,we see that the configurational entropy is
a function of the atomic degrees of freedom, the number of atoms
and the degeneracy of each floppy mode. Equation 11 assumes
that the size of the system and the floppy mode degeneracy can be
considered constant as the chemical composition changes. While
the number of atoms in the system may vary slowly enough to
be considered constant [as the molar volume of sodium borate
glasses does not exhibit a strong compositional variation (Berke-
meier et al., 2005)], the floppy mode degeneracy has to be analyzed
more carefully. As stated above, Mauro et al. (2009a) modeled the
bond constraints as a simple two-state system with the energy dif-
ference between the broken and intact constraints given by H (x)
and the number of topological degrees of freedom given by Eq. 6.
This simple system is represented schematically in Figure 3A.

The fraction of bond constraints that are either broken or
intact can then be calculated through the Boltzmann distribution
(Landau and Lifshitz, 1980):

Ni

N
=

gi exp
(
−

Ei
kT

)
Z (T )

(13)

where Ni is the number of bond constraints with energy Ei, N is the
total number of bond constraints, gi is the degeneracy of the state
of energy Ei (or, in other words, the number of different states with
the same energy Ei), and Z (T ) is the partition function, given by:

Z (T ) =
∑

i
gi exp

(
−

Ei

kT

)
(14)

It is important to note that this calculation of the fractions of
intact and broken constraints requires that the constraint break-
age to not be a step-function of the temperature, which is in
line with recent MD simulations (Bauchy and Micoulaut, 2011).
From Figure 3A, we have that the intact bond constraints have
ground energy Eg(x) and the broken constraints have an energy of
Eg(x)+H (x). Thus, the relation between the number of broken
and intact constraints is given by:

Nb (T , x)

Ni (T , x)
=

gb (T , x) exp
(
−

Eg (x)+H (x)

kT

)
gi (T , x) exp

(
−

Eg (x)

kT

) (15)
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Rodrigues and Wondraczek Decoupling of constraint predictions in glasses

Table 1 | Parameters of Eqs 7 and 8 as a function of chemical composition for binary xNa2O·(100−x )B2O3 and xLi2O·(100−x )B2O3.

Composition

xM2O·(100−x )

B2O3 (mol%)

K (x ) (Eq. 7) C (x ) (Eq. 7) m (Eq. 8) Tg (Eq. 8) Reference

0 2653 557 31.3 522.9 Sasek et al. (1984), Shartis et al. (1953a,b), Matusita et al. (1980), Suzuki et al.

(1979), Suzuki et al. (1981a,b), Imaoka and Suzuki (1982), Volarovich and Tolstoi

(1934), Rabinovich (1942), Yamate and Kadogawa (1984)

M=Na

3 2022 763 36.0 545.5 Shartis et al. (1953a,b), Yamate and Kadogawa (1984), Li et al. (1960), Li et al.

(1962); Nemilov (1966)

4.2 2146 783 35.7 567.9 Sasek et al. (1984), Yamate and Kadogawa (1984)

5.2 1586 981 40.5 577.8 Matusita et al. (1980), Suzuki et al. (1979), Suzuki et al. (1981a,b), Imaoka and

Suzuki (1982), Nemilov (1966), Visser and Stevels (1972a), Visser and Stevels

(1972b), Stevels (1973)

6.3 1174 1245 45.7 607.5 Shartis et al. (1953a,b), Volarovich and Tolstoi (1934), Li et al. (1960), Li et al.

(1962), Visser and Stevels (1972a), Visser and Stevels (1972b), Stevels (1973)

7.8 1706 975 39.7 591.2 Sasek et al. (1984), Nemilov (1966)

10 1056 1372 47.8 627.3 Shartis et al. (1953a,b), Suzuki et al. (1979), Suzuki et al. (1981a,b), Imaoka and

Suzuki (1982), Yamate and Kadogawa (1984), Li et al. (1960), Li et al. (1962)

10.9 1166 1321 46.4 631.0 Matusita et al. (1980); Li et al. (1960), Li et al. (1962), Nemilov (1966), Stolyar

et al. (1984)

13.5 1299 1301 45.2 647.1 Nemilov (1966)

14.6 857 1704 52.3 685.7 Sasek et al. (1984) Suzuki et al. (1979), Suzuki et al. (1981a,b), Imaoka and

Suzuki (1982), Yamate and Kadogawa (1984), Visser and Stevels (1972a), Visser

and Stevels (1972b), Stevels (1973), Stolyar et al. (1984), Leedecke and

Bergeron (1976), Leedecke and Bergeron (1977)

15.7 963 1586 50.3 674.7 Shartis et al. (1953a), Shartis et al. (1953b), Matusita et al. (1980), Volarovich

and Tolstoi (1934), Nemilov (1966), Visser and Stevels (1972a), Visser and

Stevels (1972b), Stevels (1973)

18 1163 1512 47.8 691.1 Sasek et al. (1984), Nemilov (1966), Jenckel (1935)

19.6 565 2123 59.3 719.6 Shartis et al. (1953a,b), Matusita et al. (1980), Volarovich and Tolstoi (1934),

Nemilov (1966)

20.1 638 2052 57.5 723.9 Suzuki et al. (1979), Suzuki et al. (1981a,b), Imaoka and Suzuki (1982),

Volarovich and Tolstoi (1934), Li et al. (1960), Li et al. (1962), Nemilov (1966),

Stolyar et al. (1984), Leedecke and Bergeron (1976), Leedecke and Bergeron

(1977), Jenckel (1935)

24.1 556 2186 59.8 732.4 Sasek et al. (1984), Volarovich and Tolstoi (1934), Nemilov (1966), Leedecke and

Bergeron (1976), Leedecke and Bergeron (1977)

24.5 556 2205 59.8 737.6 Shartis et al. (1953a,b), Matusita et al. (1980), Volarovich and Tolstoi (1934),

Yamate and Kadogawa (1984), Li et al. (1960), Li et al. (1962), Nemilov (1966),

Visser and Stevels (1972a,b), Stevels (1973), Stolyar et al. (1984), Jenckel (1935)

27.2 443 2398 63.4 743.3 Sasek et al. (1984), Nemilov (1966), Stolyar et al. (1984)

28.7 623 2121 58.2 737.2 Shartis et al. (1953a,b), Stolyar et al. (1984), Jenckel (1935)

29.6 475 2326 62.3 738.5 Matusita et al. (1980), Suzuki et al. (1979), Suzuki et al. (1981a,b), Imaoka and

Suzuki (1982), Nemilov (1966), Visser and Stevels (1972a,b), Stevels (1973),

Jenckel (1935)

(Continued)
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Rodrigues and Wondraczek Decoupling of constraint predictions in glasses

Table 1 | Continued

Composition

xM2O·(100−x )

B2O3 (mol%)

K (x ) (Eq. 7) C (x ) (Eq. 7) m (Eq. 8) Tg (Eq. 8) Reference

33.4 305 2627 68.8 733.1 Sasek et al. (1984), Shartis et al. (1953a,b), Volarovich and Tolstoi (1934),

Rabinovich (1942),Yamate and Kadogawa (1984), Li et al. (1960), Li et al. (1962),

Nemilov (1966), Stolyar et al. (1984), Jenckel (1935), Danek and Licko (1981)

M=Li

2 1711 916 39.1 569.4 Shartis et al. (1953a,b), Yamate and Kadogawa (1984)

6.3 1211 1245 45.4 613.8 Shartis et al. (1953a,b), Matusita et al. (1980), Visser and Stevels (1972a,b),

Stevels (1973)

9.9 975 1470 49.4 642.0 Shartis et al. (1953a,b), Yamate and Kadogawa (1984)

13.9 656 1941 56.6 699.9 Shartis et al. (1953a,b), Yamate and Kadogawa (1984), Visser and Stevels

(1972a,b), Stevels (1973)

14.9 441 2312 63.0 722.4 Matusita et al. (1980), Visser and Stevels (1972a,b), Stevels (1973)

FIGURE 1 | Relative number of topological degrees of freedom per
atom as a function of glass composition for binary sodium borates
according to Eqs 9 and 11. The dashed line shows the predicted variation
obtained from the structural analysis of Mauro et al. (2009a).

where Nb(T,x) is the number of broken bond constraints, Ni(T,x)
is the number of intact bond constraints, gb(T,x) is the degeneracy
of the broken state, and gi(T,x) is the degeneracy of the intact state.
Eq. 15 simplifies to:

Nb (T , x)

Ni (T , x)
=

gb (T , x)

gi (T , x)
exp

(
−

H (x)

kT

)
(16)

The number of floppy modes is equal to the number of bro-
ken constraints, Nb(T,x)= f(T,x), and according to Gupta and
Mauro (2009) the number of floppy modes is also given by
f(T,x)= d − n(T,x), where d is the dimensionality of the net-
work and n(T,x) is the number of intact bond constraints.

FIGURE 2 | Relative number of atomic degrees of freedom according to
Eqs 9 and 11. The dashed line represents a 1:1 correlation.

In our case d= 3, resulting in n(T,x)=Ni(T,x)= 3− f(T,x). As
C(x)=H (x)/k, Eq. 16 can be rewritten as:

gb
(
Tg (x) , x

)
gi
(
Tg (x) , x

) = f
(
Tg (x) , x

)
3− f

(
Tg (x) , x

) exp

(
C (x)

Tg (x)

)
(17)

By taking values of C(x) and using Eq. 11 to calculate f(Tg(x),x),
as it gives the best agreement with structural data, we can esti-
mate the relative degeneracy of states as a function of chemical
composition (Figure 3B).

As the glasses get richer in alkali (i.e., more polymerized), the
floppy modes get more degenerate in relation to the intact bond
constraints. This might provide an explanation for the transition
in the type of floppy mode, which controls the glass transition
temperature in these alkali borate glasses (Mauro et al., 2009a).
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Rodrigues and Wondraczek Decoupling of constraint predictions in glasses

FIGURE 3 | (A) Energy scheme of the bond constraint two-state system,
where H (x ) is the energy difference between both states. (B) Relative
degeneracy of states as a function of chemical composition for binary
lithium and sodium borates.

FIGURE 4 | Compositional dependence of K (x ) for the borate binary
glasses. The lines represent linear fits of the data within the two distinct
compositional regimes.

The compositional changes might render the intact B–O–B angu-
lar constraints less degenerate and we interpret this as a reduc-
tion in the angular flexibility, meaning that as the degeneracy
decreases these constraints become more rigid. At some composi-
tional range, these transitions become so unlikely that it becomes
more probable to break other constraints, in this case, the O–
B–O angular constraint. The transition between floppy modes is
very discernible independently of how the number of topological
degrees of freedom is calculated (Figure 1). This also correlates
with the variation of K (x) with the chemical composition, as can
be seen in Figure 4.

According to Mauro et al. (2009b), K (x) is written as:

K (x) =
B (x)

3Nk ln Ω
(18)

Therefore, any change in K (x) means that either B(x) and/or Ω

are changing. If the assumption that B(x)≈B(w) used in the

FIGURE 5 | K (x ) as a function of 1/ln(Ω(x )) for the lithium and sodium
binary borate glasses. Ω(x ) is calculated according to Equation 17.

derivation of Eq. 11 is correct, then plotting the values of K(x)
as a function of 1/ln(Ω(x)) should result in a straight line passing
through the origin, but as we can see from Figure 5 this is far from
what we get. Therefore, not only the degeneracy is causing K(x) to
change with composition but also the energy barrier of structural
rearrangement, B(x). From Eqs 1 and 7 we get that, at T=Tg:

B (x)

Sc
(
Tg (x) , x

) = K (x) · exp

(
C (x)

Tg (x)

)
(19)

Thus,plotting K (x)exp(C(x)/Tg(x)) as a function of 1/Sc(Tg(x),x)
should yield a straight line passing through the origin with a
constant, positive slope of B(x) for all glasses of the same “fam-
ily.” Analyzing the available thermodynamic and viscosity data
for xNa2O · (1−x)SiO2 glasses (Knoche et al., 1994; Toplis, 2001)
resulted in the graph in Figure 6, where one can see that even
though B(x) appears to be constant for x ≥ 0.25, it increases as
the glass compositions get richer in silica. The observed change
in the behavior of B(x) at x≈ 0.2 is consistent with the glass net-
work transitioning from stressed-rigid to floppy. Such transition
has already been reported in experimental (Vaills et al., 2005) and
MD simulations (Bauchy and Micoulaut, 2011).

Adam and Gibbs (1965) demonstrated that B(x) is given by:

B (x) =
np∆µ (x) S∗c (x)

k
(20)

where np is the number of particles in the system, ∆µ(x) is
the average energy barrier each rearranging region has to over-
come during cooperative motion, and s∗

c
(x) is the configurational

entropy of the smallest rearranging region. As argued before, the
number of particles in the system is considered to be constant,
meaning that the observed variations in K (x) are due to changes
in ∆µ(x) and s∗

c
(x). These two parameters are sensitive to changes

in the medium- and long-range orders, as they are associated with
cooperative rearranging regions (CRRs); thus, we suggest that the
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Rodrigues and Wondraczek Decoupling of constraint predictions in glasses

FIGURE 6 | K (x )exp(C (x )/Tg(x )) as a function of 1/Sc(Tg(x ),x ) for binary
sodium silicate (Knoche et al., 1994;Toplis, 2001) glasses. The labels
indicate the value of x in mol% xNa2O · (100-x )SiO2.

observed variation of K (x) as a function of composition stems
from the changes in the CRRs, which can only change if the floppy
modes enable these regions to become more or less flexible. This
line of reasoning suggests that the properties of the CRRs are
deeply connected to the number and types of floppy modes in the
glass network, as they should dictate the possible rearrangements
a certain region can reach.

As B(x) 6=B(w), one should observe a decoupling on the val-
ues of topological degrees of freedom per atom estimated from
viscosity and bond constraint counting. We propose that the main
reason for this decoupling is that while the viscosity reflects the
behavior of the whole system, combining the responses of short-,
medium-, and long-range interactions, the bond constraints are,
by their own definition, restricted to short-range interactions. It
is known that medium-range interactions affect the measured
viscosity of polymers, with the molecular weight of side groups
(Rogers and Mandelkern, 1957; Gargallo et al., 1987, 1988) and the
shape of chains (Gonzalez et al., 1988; Hur et al., 2011; Khalyavina
et al., 2012) having significant influence even though the cova-
lent chemical bonds that make the backbone of the chains stay
constant; and recent evidence points that the same effects may be
present in inorganic oxide glasses (Rodrigues and Wondraczek,
2013). The coulombic interactions between the modifiers and the
non-bridging oxygens extend beyond its first coordination shell,
and it has been shown that they are a major part of the constraints
present in phosphate glasses (Hermansen et al., 2014; Rodrigues
and Wondraczek, 2014; Rodrigues et al., 2014), so they might also
have an effect here. The apparent influence of the medium range
also ties with the possible differentiability of the floppy modes.
When counting, the constraints are either intact or broken and two
floppy modes are considered the same even if their surroundings
are very different. For example, in the binary alkali borate glasses,
when considering the breakage of the angular constraints of the
bridging oxygens, each trigonally coordinated boron has three
floppy modes regardless of the fact that it may be bonded to three
other trigonal borons or three tetragonal borons. But these two

different configurations may very well have different configura-
tional entropies associated, influencing the CRRs and, ultimately,
the viscosity of the system. This may indicate that the parameter
K (x) can be used to probe changes in the medium-range order of
super-cooled liquids as a function of chemical composition.

CONCLUSION
In this paper, the viscosity of binary alkali borates and silicates
was used to estimate the number of topological degrees of free-
dom as a function of glass composition. The number of floppy
modes estimated from viscosity decouples from the values, which
are obtained by bond constraint counting. We suggest that the
origin of this decoupling is due to the difference in scale: while
viscosity covers the whole system, bond constraint counting only
handles short-range interactions; hence the observed inequality of
B(x). We provide evidence that the degeneracy of floppy modes
changes with chemical composition and that the parameter K (x)
of the MYEGA viscosity equation could be used to assess changes
in the medium-range order.
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