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There are two established but fundamentally different empirical approaches to
parametrize the rate of subcritical fracture in brittle materials. While both are relying on
a thermally activated reaction of bond rupture, the difference lies in the way as to how
the externally applied stresses affect the local energy landscape. In the consideration
of inorganic glasses, the strain energy is typically taken as an offset on the activation
barrier. As an alternative interpretation, the system’s volumetric strain energy is added to
its thermal energy. Such an interpretation is consistent with the democratic fiber bundle
model. Here, we test this approach of concerted activation against macroscopic data of
bond cleavage activation energy, and also against ab initio quantum chemical simulation
of the energy barrier for cracking in silica. The fact that both models are able to reproduce
experimental observation to a remarkable degree highlights the importance of a holistic
consideration toward non-empirical understanding.
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INTRODUCTION

The chemistry of glass fracture has been under scientific debate for a long time (Fairbarn and
Tate, 1859; Griffith, 1921). However, a quantitative description of the underlying mechanisms
of crack propagation, critical to the further development of crack-resistant glasses, is presently
unavailable (Wondraczek et al., 2011; Freiman, 2012). This is largely due to the fundamental nature
of cracking as it occurs in the broad group of brittle oxides, and especially in glassy silicates:
crack propagation reflects a complex and, as of yet, not fully understood interplay of chemical and
physical interactions (Ciccotti, 2009). In particular, below a critical value of applied stresses (the
subcritical regime), chemical reactions and the effects of mechanical loading are so intertwined that
the separation of the governing parameters becomes an extremely challenging task. The subcritical
crack growth and its dependence on environmental conditions have profound consequences for
the glass industry and the suitability of glass as a structural material. Here, parametric knowledge
is needed not only for the focused development of new material compositions and toughening
procedures but also for enabling better time-to-failure estimations (Freiman et al., 2009). Beyond
materials development, this need encompasses other related areas such as the understanding of
geophysical fracture processes (Atkinson, 1982; Brantut et al., 2013; Zhang and Zhao, 2014).

Generally speaking, the kinetics of crack propagation below Mode I critical stress concentration
KIc can be divided into three regimes: in region I, even though the applied stresses are much smaller
than the critical value, the crack propagates through a directional corrosion reaction on stressed
bonds. For the case of molecular water as the reaction partner, a theoretical framework has been
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FIGURE 1 | Reactive crack propagation in silica. (A) Atomistic view of a crack tip in silica glass; (B) subcritical crack growth mechanism (Michalske and Freiman,
1982). In the vicinity of the crack tip, one or more water molecules adsorb at a stressed Si–O–Si linkage (I), the Si–O bond is cleaved via a transition structure (II) and
finally converted to surface silanol groups (III).

developed (Michalske and Freiman, 1982; Michalske and Bunker,
1984, 1987) (Figure 1). In this region, the crack propagation
velocity depends strongly on the applied stresses, temperature,
and environment. In region II, the crack growth velocity becomes
increasingly limited by the transport of the reactive molecules to
the crack tip, resulting in a constant crack velocity with increasing
stress intensity. Finally, in region III, the applied stresses are high
enough to break the stressed atomic bonds without environmental
help, so the crack velocity is again strongly dependent on the
applied stresses and temperature, but not on the environment.

ACTIVATION OFFSET

Generally, the rate of crack growth v is modeled as ν = λ·k
(Michalske and Bunker, 1984; Schoeck, 1990), where λ is a geo-
metrical parameter depending on the matrix through which the
crack is growing, and k is the rate of success for the crack to
advance by λ units. The reaction rate is then framed within the
transition state theory, and written in the form of an Arrhenian
expression, k= k0 exp(−ΔF/RT), where k0 is the attempt fre-
quency based on the oscillations of the system around an equi-
librium position and ΔF is the molar energy difference between
the initial and final states, in this case representing the energy
barrier to break the bond. While working on the delayed frac-
ture of glasses, Wiederhorn and coworkers (Wiederhorn, 1967;
Wiederhorn et al., 1974a,b) pioneered a semiempirical equation
to describe the phenomenon of subcritical crack growth in the
presence of water:

v = v0a(H2O)nexp
(

−E∗ − bKI

RT

)
. (1)

Here, v0 is the pre-exponential term, a(H2O) is the water activ-
ity, n is the number of water molecules which interact with the
Si–O–Si bond during its cleavage, E* is the activation energy,
KI is the stress concentration factor at the crack tip, and b is

a function of the activation volume and the crack tip radius
(Wiederhorn et al., 1974a,b). The mathematical formulation for
the activation energy in Eq. 1 is analogous to the enthalpy of gasses
under constant pressure, only the pressure term is substituted
by the applied stresses (Wiederhorn, 1967; Wiederhorn and Bolz,
1970). This expression has found widespread use in the literature,
influencing a great part of the developments on the understanding
of subcritical crack growth since its inception.

For the moment, we note that the primary feature of Eq. 1 is
the reduction of E* by the strain energy Ustrain = bKI. This can be
understood as an offset contribution in the potential well of the
considered bond, increasing the probability for breakage (case I
in Figure 2).

CONCERTED ACTIVATION

The derivation of Eq. 1 assumes that the applied mechanical field
offsets the potential energy at the considered bond, thus reducing
the activation energy of the breakage event and increasing break-
age probability. However, this appears as only one of two extremes:
the second is an increase in the overall excitation of the system
(case II in Figure 2) without directly affecting the activation
barrier. This interpretation is a natural result of the democratic
fiber bundle model (DFBM), in which the material is represented
as a series of springs connecting two parallel bars and oriented
perpendicular to the direction of crack propagation. These springs
are considered to be ideally elastic, ideally brittle with random
failure threshold (modeling inherent structural disorder), and the
load on each spring is also subjected to thermal noise (Kun et al.,
2000; Roux, 2000; Ciliberto et al., 2001; Scorretti et al., 2001).

Here, we consider first the energetic equilibrium for cracks
growing at rates below the limit of dynamic stability (Fineberg and
Marder, 1999),

G =
1 − μ2

E AI(v)K2
I = 2γ, (2)
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FIGURE 2 | Schematic representation of how temperature and applied stresses interact with the potential energy well of the chemical bond at the crack tip. <U> is
the average potential energy of the bond as a function of distance, Uthermal is the thermal energy, Ustrain is the strain energy, and E*, E*,1, and E*,2 are the activation
energies for bond cleavage for non-strained bonds and strained bonds, case I and II, respectively.

where G is the strain release rate, μ is Poisson’s ratio, E is the
elastic modulus, AI is a material and crack speed dependent
variable, and γ is the surface energy. Equation 2 can be reasonably
approximated by Freund (1990),

G =
(1 − v/cR)K2

I

E
/
(1 − μ2)

= 2γ, (3)

∴ v = cR
(
1 − 2Eγ

(1 − μ2)K2
I

)
, (4)

with cR being the Rayleigh wave speed. However, Eq. 4 is only
valid for KI >KIc, so to extend the range for which the equation
is applicable, it has to be rewritten. Here, we consider the term[
1 −

(
2Eγ/(1 − μ2)K2

I
)]

as equivalent to the first two terms of a
Taylor series expansion, leading to this original equation:

v = cR exp
(

− 2Eγ
(1 − μ2)K2

I

)
. (5)

Equation 5 fulfills the requirement of convergence to Eq. 4 for
KI >KIc, and additionally it produces a non-zero crack growth
velocity at KI =KIc and v= 0 for KI = 0. From the transition state
theory, we can write that

v = k0 exp
(

− ΔF
RT

)
= v0 exp

(
−2γ(NA/ρA)

RT

)
, (6)

where the energy difference between the initial and final states
ΔF is approximated by the ratio between the energy needed to

create two surfaces and the number of chemical bonds that make
up this surface, so NA is Avogadro’s constant and surface bond
density (ρA). This approach is consistent with the approximation
of ideally brittle fracture and the lattice trapping understanding of
fracture (Hsieh and Thomson, 1973; Lawn et al., 1980; Michalske
and Bunker, 1984; Schultz et al., 1994; Zhu et al., 2004). Putting
Eqs 5 and 6 together yields:

v = v′
0 exp

[
− 2γ

(RTρA/NA) + ((1 − μ2)K2
I /E)

]
(7)

or alternatively,

v = v′
0 exp

(
− E∗

RT + CK2
I

)
, (8)

where v′
0 is the pre-exponential term, E*= 2γNA/ρA and

C= (1− μ2)NA/EρA. As noted above, Eq. 8 shares the Arrhenian
scaling with the approach of activation offset, and by including
both thermal as well as structural noise into its variance, there is a
clear parallel with the average time-to-failure predictions derived
throughDFBM (Kun et al., 2000; Roux, 2000; Ciliberto et al., 2001;
Scorretti et al., 2001). The main difference to Eq. 1 is that instead
of decreasing the magnitude of the energy barrier to bond failure,
the strain energy Ustrain =CKI

2 acts concertedly with the thermal
energy RT, increasing the excitation level of the bond in question.
This collaborative action can be intuitively thought as stemming
from the fact that elastic deformation and thermal expansion have
its origin on how the acting stress and temperature interact with
the interatomic bond potential, leading to the same outcome: a
shift on the interatomic equilibrium distance.
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APPLICATION TO EXPERIMENTAL DATA

While the empirical usefulness of Eq. 1 is widely accepted in glass
science, here, we focus on testing the parallel validity of Eq. 8. This
is challenging because literature provides a relatively broad scatter
in the values of activation energy for Si–O bond rupture, rang-
ing from approximately 50–150 kJmol−1 (Lindsay et al., 1994;
Walsh et al., 2000; Del Bene et al., 2003; Zhu et al., 2005). Such
a variation may result in prediction errors of crack velocity of
several orders of magnitude. Therefore, we used a highly accurate
multilevel CCSD(T):MP2//DFT approach for generating data on
the homogeneous dissociation of the Si–O bond. Specifically, we
evaluated the energy of 624 kJmol−1 for the central Si–O bond of
a dimeric hydridosilsesquioxane molecule. This model is used to
reflect the energetics of straining and breakage of a single silica
bond at the crack tip because it is small enough to be computa-
tionally accessible, but provides a level of accuracy of<2 kJmol−1,
unmatched by alternative methods on larger systems (Feller et al.,
2011). Since the energy was used to create two “surfaces,” we will
be using the value of 312 kJmol−1 for comparison to experimental
data on region III cracking. Calculations were also performed
for Si–O bond cleavage in the presence of one, two, and three
H2O molecules (mimicking region I cracking), yielding values of
164.2, 166.6, and 158.3 kJmol−1, respectively. No simulation was
performed for more than three water molecules interacting with
the DHS molecule; experimental data suggest that the hydration
number of the Si–O–Si bond in amorphous silica lies between 2.4
and 1.8 (Fournier and Marshall, 1983). These values will be used
in the following for reference.

Applying Eq. 8 to published experimental data on subcritical
crack growth of silica (Suratwala and Steele, 2003) and a soda–lime
silicate glass (Wiederhorn, 1967; Wiederhorn and Bolz, 1970), we
first calculate the constant C. Theoretical calculations yield values
of 1.13× 10−6 and 1.05× 10−6 m4 (Nmol)−1, respectively, for
the two different glasses. In parallel, rearranging Eq. 8 allows for
the experimental determination of C, i.e., using the slope of a plot
of T versus KI

2,

T(KI) = −C
RK

2
I +

E∗

R ln(v0/v)
. (9)

In Figure 3, the relation above is applied to subcritical
crack growth data of soda–lime silicate glass measured between
2 and 90◦C (Wiederhorn and Bolz, 1970). The value of C
does not remain constant through the complete range of
temperature–stress intensity data, and even as it stabilizes there
is a disparity of 4 orders of magnitude between the experimental
fit and the theoretical calculation. This effectively means that the
actual “conversion factor” of strain to thermal energy is much
smaller than the theoretical one, which might be due to many
different effects which are not covered by our approach: first, for
lower crack growth velocities, the applied stress intensity factor
is much closer to the threshold value Kth [the static fatigue limit,
below which the crack ceases to grow (Fett et al., 2005)]. This
means that the stresses around the crack tip become increas-
ingly shielded from the applied stresses due to diffusive exchange
between mobile ions in the glass and the hydronium ions in
the environment, leading to an increased slope of the T ×KI

2

graph. Second, in parallel with the DFBM approach (Scorretti
et al., 2001), the parameter C can be interpreted as a measure of
structural disorder, related to how the applied stresses are prefer-
entially concentrated on the bonds located closer to the crack tip.
However, the stress concentration is assumed to follow a Gaussian
distribution, and that might not reflect the actual distribution,
leading to the disagreement between the experimental and the-
oretical values. It is also worth noting that Eq. 8 is derived under
the assumption of static crack growth with constant KI, while the
experimental tests were conducted under constant load. There-
fore, following the observed disparity, we used the experimentally
fitted values to construct the Arrhenius plots shown in Figure 4.

FIGURE 3 | Determination of molar strain energy in subcritical crack growth.
The temperature is plotted as a function of the square of the stress intensity
factor at the crack tip for constant crack velocity. A linear fit (straight lines)
yields the C-parameter. The inset shows the apparent dependence of C on
crack velocity. Here, the dotted line is just a guide to the eye.

FIGURE 4 | Rate of subcritical crack growth as a function of total stored
energy based on experimental data for soda–lime silicate glass on region I
(right) (Wiederhorn and Bolz, 1970) and on region III (left) (Wiederhorn, 1967)
and for silica glass on region I (Suratwala and Steele, 2003) (see text for
details). Lines represent linear fits.
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The authors are unaware of published crack growth rates of
silica glass under vacuum; therefore, the comparison has to be
made using crack growth in water vapor. Silica glass exhibits
accelerated water diffusion under stress (Tomozawa et al., 1991),
which causes the crack surfaces to expand, creating compressive
stresses and shielding the crack tip from the applied stresses
(Fett et al., 2005; Wiederhorn et al., 2011). This explains the
apparently anomalous results reported for silica (Suratwala and
Steele, 2003), and silica aerogels (Despetis et al., 2004), where
the measured crack propagation speed decreases with increasing
temperature. Wiederhorn et al. (2013b) have developed a formal-
ism that enables the direct calculation of the shielding stresses
as a function of both applied stresses and temperature. The esti-
mated activation energies for region I are 114± 8 kJmol−1 for
the soda–lime silicate glass and 156± 5 kJmol−1 for silica glass;
for region III the activation energy for the soda–lime silicate is
314± 9 kJmol−1.

As commented before, on a first approximation of ideal brittle-
ness (Célarié et al., 2003a,b; Guin and Wiederhorn, 2004, 2006;
Wiederhorn et al., 2013a,b), the only contribution to the strain
release rateG during fracture is the creation of the fracture surface.
Therefore, with proper knowledge of the Si–O–Si surface bond
density, the energy required to break each Si–O bond can be
estimated by the surface energy. As its value depends only on the
type of bond that is being broken, the calculated values for glassy
and crystalline silica should be similar. The surface energy of silica
glass under N2 atmosphere and at 300K is reported (Wiederhorn,
1969) to be approximately 4.4 Jm−2; while MD simulations (Leed
and Pantano, 2003) yield an area density of Si–O–Si bonds of 7.2
bonds nm−2, resulting on an activation energy of 360 kJ mol−1.
This is remarkably consistent with monocrystalline α-quartz,
with values of 310 and 340 kJmol−1 [for cracks propagating on
the a < 112̄0 > plane, on directions normal to the planes
z < 011̄1 > and r < 101̄1 >, respectively] calculated using
fracture (Atkinson, 1979; Timms et al., 2010) and bond density
data (Bloss and Gibbs, 1963) under inert atmosphere.

The activation energy values calculated from cleav-
age in monocrystals and the simulation data obtained by
CCSD(T):MP2//DFT agree to a remarkable extent with the results
from Eq. 8, which leads us to believe that our proposed equation
provides accurate predictions of crack propagation rates.

As noted initially, the principal difference between the two
approaches rests on how the applied mechanical strain affects

the chemical bonds directly at the crack tip. The offset approach
[as seen in Eq. 1, but also revised elsewhere (Henderson et al.,
1970; Bartenev, 1973)] considers that the applied stresses decrease
the energy barrier for bond breakage. Some simulation studies
(Gagnon et al., 2001) support this interpretation, but they also
give a very different mechanistic description of crack propaga-
tion, following the coalescence of voids forming ahead of the
crack tip; a model that seems to be at odds with the most
recent experimental investigation (Wiederhorn et al., 2013a). A
possible route for resolving this apparent discrepancy would
be to combine these considerations with the aspect of con-
certed activation, in which the applied stresses play a role anal-
ogous to temperature, increasing the overall excitation level of
the system without altering the energy profile of the chemical
bonds (Stillinger, 1995; Sciortino, 2005). Thereby, it is impor-
tant to acknowledge the empirical nature of both Eqs 1 and
8, if applied individually. We hypothesize that in reality, the
physical reactions taking place may be best understood on the
basis of simultaneous reactions of activation offset and concerted
activation.

CONCLUSION

We considered parametrization of models for crack propagation
in brittle glasses. The action of strain energy can be modeled in
two empirical ways, i.e., acting either as an offset to the activation
barrier for bond rupture, or concertedly with the thermal energy
of the system. Both approaches provide accurate reproductions of
experimental data. However, non-empirical treatment is expected
to require simultaneous implementation.
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