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Neonatal sepsis (NS) is responsible for over 1 million yearly deaths worldwide. In the 
developing world, NS is often treated without an identified microbial pathogen. Amplicon 
sequencing of the bacterial 16S rRNA gene can be used to identify organisms that are 
difficult to detect by routine microbiological methods. However, contaminating bacteria are 
ubiquitous in both hospital settings and research reagents and must be accounted for to 
make effective use of these data. In this study, we sequenced the bacterial 16S rRNA gene 
obtained from blood and cerebrospinal fluid (CSF) of 80 neonates presenting with NS to 
the Mbarara Regional Hospital in Uganda. Assuming that patterns of background con-
tamination would be independent of pathogenic microorganism DNA, we applied a novel 
quantitative approach using principal orthogonal decomposition to separate background 
contamination from potential pathogens in sequencing data. We designed our quantitative 
approach contrasting blood, CSF, and control specimens and employed a variety of statisti-
cal random matrix bootstrap hypotheses to estimate statistical significance. These analyses 
demonstrate that Leptospira appears present in some infants presenting within 48 h of 
birth, indicative of infection in utero, and up to 28 days of age, suggesting environmental 
exposure. This organism cannot be cultured in routine bacteriological settings and is enzo-
otic in the cattle that often live in close proximity to the rural peoples of western Uganda. 
Our findings demonstrate that statistical approaches to remove background organisms 
common in 16S sequence data can reveal putative pathogens in small volume biological 
samples from newborns. This computational analysis thus reveals an important medical 
finding that has the potential to alter therapy and prevention efforts in a critically ill population.

Keywords: neonatal sepsis, 16s rrna, bacteria, Leptospira, principal orthogonal decomposition, singular value 
decomposition
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inTrODUcTiOn

Neonatal sepsis (NS) is responsible for over 1 million yearly deaths 
worldwide (1, 2). In the developing world, NS is often treated 
without an identified microbial pathogen. Pathogen recovery 
rates in large scale neonatal and infant sepsis in the developing 
world can be remarkably low (5–10%) using culture techniques 
(3, 4). In Uganda, two recent reports from high quality referral 
center laboratories have failed to identify an agent in >60% of NS 
patients (5, 6).

Amplicon sequencing of the 16S ribosomal RNA gene is 
useful to identify the spectrum of bacteria present in biological 
and environmental samples. However, even under optimal con-
ditions, contaminating bacteria from recombinant enzymes and 
reagents are present, and these can dominate the analysis from 
low-biomass specimens (7). Numerous approaches have been 
applied to attempt to correct for contamination in human micro-
biota samples (8–10). Nevertheless, at present, the identification 
of dilute putative pathogens within what are normatively sterile 
body fluids, such as blood and cerebrospinal fluid (CSF), remains 
an open challenge.

In this study, we applied a novel quantitative approach to 
separate background contamination from potential pathogens 
in sequencing data from blood and CSF in a cohort of neonates 
presenting with clinical evidence of sepsis in Uganda. We uncover 
evidence of Leptospira within these infants presenting at 0–28 days 
following birth. Our findings demonstrate that appropriate 
statistical modeling to address background contamination from 
sample handling and library preparation may increase the utility 
of 16S amplicon sequencing to augment traditional microbiologi-
cal diagnostic efforts.

MaTerials anD MeThODs

ethics statement
Under Institutional Review Board approval from the Mbarara 
University of Science and Technology (MUST), Harvard 
University, and Penn State University (approved protocol 
#31264EP), the following study was performed. Written consent 
was obtained from the mothers of neonates meeting clinical cri-
teria for sepsis in both English (the primary national language of 
Uganda) and Runyankore (the regional language of southwestern 
Uganda). Further oversight as well as a material transfer agree-
ment was obtained through the Uganda National Council for 
Science and Technology.

Neonates are a protected population for human studies. In this 
work, we only examine fluids drawn as a small volume in excess 
of that required for clinical diagnostics. Although one might 
consider consenting for blood draws on normal neonates, neither 
the investigators of this present work nor our institutional ethics 
boards would be comfortable with such sampling. Furthermore, 
CSF can never be drawn from normal infants. In the absence 
of validated immunological tests for the presence of Leptospira 
infection in neonates, the gold standard remains polymerase 
chain reaction (PCR) or DNA sequencing (11). This study is one 
in which, although we will rigorously define handling and reagent 

contamination through appropriate controls, we lack the ability 
to sample from a control population that is environmentally and 
age matched with our clinically septic neonates. We therefore will 
create a sophisticated statistical framework to separate handling 
and reagent contamination from putative pathogens with the 
following methods.

clinical sampling
The Mbarara Regional Referral Hospital is the main teaching 
hospital for, and is situated adjacent to, the campus of MUST. It is 
the referral center for southwestern Uganda, and typically admits 
over 100 cases of presumed NS each year to its pediatric wards.

Eligibility was sought from neonates (<1 month of age) whose 
mothers were at least 18 years of age and who met the following 
inclusion criteria: (1) infant with presumed bacterial sepsis with 
either (1a) fever, lethargy, and poor feeding, or (1b) hypothermia, 
lethargy, and poor feeding, or (1c) fever, full fontanel, and poor 
feeding, (2) infant >2.0 kg weight, and (3) infant 1 month or less 
in age. Exclusion criteria were (1) known local infection other 
than sepsis, (2) known congenital malformation, (3) known cuta-
neous or gastrointestinal fistula, or (4) known birth trauma such 
as wounds or fractures. We used these relatively strict clinical 
criteria to maximize our yield of sick neonates who were likely to 
have primary microbiological sepsis, as opposed to having signs 
due to hypoxic–ischemic encephalopathy (HIE) or a known 
nidus for infection. The period of greatest potential confound for 
HIE is, of course, in the immediate postpartum period, and such 
potential confusion decreases progressively for cases presenting 
after the first few days of neonatal life.

At MUST, procedures on neonates presenting with clinical 
NS consist of a blood draw for culture and a lumbar puncture. 
Under no circumstances were procedures performed to retrieve 
additional volume of blood or CSF for experimental sampling. 
Withdrawal of blood volumes in the range of 1% for analysis is 
well below the volumes expected to have any chance of significant 
effect on the cardiovascular system. Similarly, withdrawal of <5% 
of total CSF volume are routinely withdrawn from neonates with-
out adverse consequences. In order not to expose these infants 
to any significant risk beyond that of routine medical care, we 
restricted our study to infants >2 kg. Lower birth weight infants 
pose technical difficulties with both blood and CSF withdrawal 
and have smaller blood and CSF reservoirs to sample. There are, 
unfortunately, relatively few low birth weight infants who survive 
in Uganda where the facilities to salvage them are lacking.

Following maternal informed consent, the following samples 
were collected. Lumbar punctures were performed with sterile 
disposable styletted neonatal spinal needles using aseptic tech-
nique, withdrawing up to 0.6 mL of CSF (<5% of CSF volume in a 
2-kg infant), allocated for culture and gram stain (0.2 mL), and up 
to 0.4 mL onto Whatman FTA Indicating Sample Collection Cards 
(GE healthcare) for genomic analysis. CSF was only withdrawn 
as free flow from the spinal needle within 1 min after insertion 
without suction, and only so long as free flow was obtained.

Blood for all required tests was collected using standard 
aseptic technique; withdrawing up to 1.0  mL blood (<1% of 
blood volume in a 2-kg infant), of which 0.4 mL was allocated 
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for culture, malaria smear, and HIV testing, followed by up to 
0.6 mL for FTA cards.

Cerebrospinal fluid and blood samples were taken immediately 
(within 2 h) upon admission and prior to antibiotic administra-
tion. However, some neonates referred from a community clinic 
or health center had received antibiotics prior to referral (31 of 
80, 38.7%). No infants were directly admitted from in-hospital 
delivery settings, and none had an indwelling catheter prior to 
samples being taken.

In addition, with maternal consent at MUST, a vaginal smear 
was collected, cultured, and placed on FTA cards. Maternal 
blood was drawn as well, with consent, for malaria smear, HIV 
testing (CD4 counts if HIV+), and additional immunologi-
cal testing. The vaginal bacteriological culture results for the 
mothers of these NS cases were reported in Ref. (6), and the 
genomic analysis will be performed in the future and reported 
elsewhere.

These filter paper-based sample collection cards contain cell 
lysis chemicals, and 100 μL aliquots were placed onto multiple 
card disks. They were dried overnight in room temperature dessi-
cators, and then sealed in Tyvek pouches with enclosed desiccant 
pending shipment to the US.

FTa card extraction Protocol
Two 6 mm diameter punches were taken from the center of each 
dried blood spot (and three from each dried CSF spot), and placed 
in a 1.7-mL Eppendorf tube with ATL Buffer and Proteinase K 
from the Qiagen DNA Micro kit. Punches were taken surround-
ing the blood or CSF spots (there is an indicator dye on the cards) 
to serve as negative controls. The card punches were incubated at 
56°C for 60 min, vortexing briefly every 10 min. After addition 
of 300 μL Buffer AL, the tube was transferred to 70°C for 10 min. 
The lysate was transferred to a Qiagen Micro DNA spin column 
and processed according to protocol. The DNA was eluted in 
30 μL 10 mM Tris.

Preparation of Libraries for 454 Sequencing
All samples were first screened by PCR for 16S rRNA using uni-
versal primers 27F and 907R to determine if there was sufficient 
sample to generate a library. PCR conditions were as follows: 
94°C for 3 min followed by 35 cycles of 94°C for 30 s to melt the 
DNA, 60°C for 30  s to anneal primers, and 72°C for 1  min to 
synthesize the product. Products that yielded a band of the cor-
rect size were advanced for library production. Of the 80 patients 
sampled, we were able to extract sufficient DNA to process 65 
blood and 27 CSF specimens (in addition to 3 control specimens 
detailed below).

In order to detect potentially rare pathogenic bacteria in the 
background of human DNA, we performed five replicate PCR 
each with 1 μL of patient DNA extracted from the filter paper. 
The first step of the protocol was to produce a template to use for 
library construction and employed the primers and PCR condi-
tions used above with the exception that 18 cycles of amplification 
were used. The products were pooled and purified using a Qiagen 
PCR clean up column.

There are 4 quadrants on the 454 flow cell and contamina-
tion can occur between wells. Thus, the second step introduced 

a novel sequence to the 16S molecule to tag all sequence data, 
as originated in our laboratory. Five reactions were set up using 
1 μL of sample from the pooled product of the PCR in step 1. 
Primers LTR29aF and 700R were used in a PCR reaction with 
the following conditions: 94°C for 3 min followed by 18 cycles of 
94°C for 30 s to melt the DNA, 58°C for 30 s to anneal primers, 
and 72°C for 30 min to synthesize the product. The products of 
the five PCR were pooled and purified using a Qiagen PCR clean 
up column.

The third step of the protocol used PCR to add the 454 
sequencing adaptors to the 16S fragments. These adaptors incor-
porate the standard 454 indices but the 3′ portion is modified to 
recognize the unique sequence tag added to the fragment 5′ end 
in step 2. Five reactions were set up using 1 μL of sample from 
the pooled product of the PCR in step 2. Primers consist of 454 
adaptor A and B and include the universal 16S primer 534R. PCR 
reaction conditions were 98°C for 3 min followed by 14 cycles of 
98°C for 30 s to melt the DNA, 57°C for 30 s to anneal primers, 
72°C for 30 min to synthesize the product, a final extension of 
5  min at 72°C. This yields a fragment spanning V1–V4 of the 
16S rRNA gene. The amplified fragments were gel isolated and 
subjected to AmpureBead purification. Each library was quanti-
fied by fluorimetry and checked for quality on a BioAnalyzer. 
Those who passed all quality screens were pooled in equal molar 
amounts for 454 sequencing. Between 20 and 30 samples were 
included in each sequencing run.

Taxon Identification
The fastQ files from each sequencing run were processed for 
read quality, the presence of our lab-specific sequence tag, and a 
minimum length of 200 bp. Reads were demultiplexed, and the 
individual libraries were submitted to the Ribosomal Database 
Project (Michigan State University) classifier for bacterial 
identification. The reads classified to the genus level at the 80% 
confidence level were collated for all patients and blanks.

amplification of Leptospira rpoB 
and Streptococcus rnpB
We utilized LeRpoB1F [CCTATGTGGGAACCGGAATGGA] 
and LeRpoB2R [CGTTTCGTCCTAATGCAAGAGTTC] to 
amplify a 489-bp fragment of the Leptospira rpoB gene. PCR con-
ditions were 94°C for 3 min followed by 36 cycles of 94°C for 30 s, 
57°C for 30 s, and 72°C for 30 min. For Streptococcus species level 
identification, we amplified a 330- to 380-bp fragment of the RNase 
P Beta gene (rnpB) using strF [YGTGCAATTTTTGGATAAT] 
and strR [TTCTATAAGCCATGTTTTGT] (12). PCR conditions 
were 94°C for 3 min followed by 36 cycles of 94°C for 30 s, 56°C 
for 30 s, and 72°C for 30 min.

Products were gel isolated. A representative of each was Sanger 
sequenced. The Streptococcus rnpB product was used for a heter-
oduplex mobility assay (HMA).

The HMA is a rapid gel-based method to identify the sequence 
similarity between two PCR fragments. If the two fragments 
are identical, they will migrate as a single band after they are 
melted and allowed to re-anneal. If there are sequence differ-
ences between the two fragments then both homoduplexes and 
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heteroduplexes, which represent the reannealed mismatched 
strands, are formed. Heteroduplexes migrate more slowly on a 
polyacrylamide gel at distances from the homoduplex roughly 
proportional to the number of nucleotide differences between the 
two fragments.

For our assay, we identified a patient who was culture positive 
for Streptococcus pneumoniae and had detectable Streptococcus 
16S rRNA genome sequence, which was most closely related to 
S. pneumoniae in our 454 library screen. Additionally, we chose 
several patients with detectable 16S rRNA for Streptococcus that 
was most closely related to S. thermophilus. We amplified the 
rnpB gene from these patients and sequenced them to confirm 
species identification. These fragments served as our standards 
in all assays.

Samples were resuspended in Annealing Buffer (10 mM Tris, 
100 mM NaCl, and 2 mM EDTA) and heated to 94°C for 2 min. 
The sample is cooled over 10 min to 4°C in a thermocycler and 
then placed on ice. The samples were resuspended in loading 
buffer and resolved on a 10% polyacrylamide gel. Standards 
consisting of the S. thermophilus and S. pneumoniae alone mixed 
together were included on every gel to identify the position of 
the heteroduplex. Gels were visualized by staining with GelRed.

sequence controls
We expected environmental contaminants would be present in 
our samples and took the following steps to identify them. First, 
we extracted blank cards and prepared libraries from any that 
amplified a 16S rRNA product. Two such card samples taken 
from the filter paper surrounding a centralized blood (1) or CSF 
(1) sample (where the indicator dye was colored) were used as 
negative controls in the paper. In addition, two negative controls 
(reaction mix without added template) were included in all PCR 
reactions. A library was prepared from the only one that yielded a 
DNA band, which formed our third negative control in our table 
of read counts (see Supplemental Material).

statistical Methods
Fisher’s Canonical Discrimination
In 1936, Fisher (13) created a method of multivariable discrimi-
nation to help classify data that had more than one measure-
ment and that came from more than one group of items. Fisher’s 
problem was motivated by related species of flowers. He had 
petal and sepal length and width measurements of each of 3 
species (50 samples each). He was able to find the optimal way 
of adding these four measurement variables together (a linear 
combination), so that he could clearly show that these sets of 
measurements could separate and classify each species type. 
Indeed, the method provides a recipe to measure a new item, 
weight the measurements, and optimally classify the likely 
species for such out of sample data (14). In our previous work, 
we have refined this method, to take into account modern 
numerical computer algorithms (15) (Fisher did all of his work 
on a hand calculator), and we employ this numerically stable 
form of discrimination in our analysis of groups of genomic data 
(blood, CSF, and controls in Figure 1), in this work. Full details 
are offered in Appendix A.

Modal Reconstruction
Methods of optimal statistical decomposition of sets of data 
(matrices) into a set of modes has been available for over a cen-
tury [see review in Ref. (16)] and has been applied to data from 
turbulent fluid mechanics (17) to decisions of court justices (18). 
Using singular value decomposition is a way to optimally con-
struct modes that are linear combinations of the original data, 
in such a way that each mode forms an optimal projection of the 
original data set. That is, the first mode is the most statistically 
optimal projection of the patterns within the original data onto a 
single pattern. The second mode is the most optimal orthogonal 
projection to the first mode for what was not accounted for in the 
first mode, and so on for each successively smaller mode. We here 
employ this technique of singular value decomposition in a novel 
way. Generally, one retains the most prominent modes in such 
decompositions and removes smaller noise dominated modes 
(16). On the other hand, in the case of contamination dominated 
analysis of low-mass bacterial microbiomes, one might wish to 
remove the dominating contaminants that are the most universal 
feature in the largest modes.

In genomic analysis of microbiomes, contaminants from a 
wide variety of sources, including the analysis reagents them-
selves, can dominate the bacterial DNA sequences (7). We draw 
on an old theorem original specified in 1907 (19) wherein it 
was shown how to sum up a set of modes to approximate the 
underlying original data. We rebuild our data set removing one 
or more of the largest modes that appear most heavily burdened 
by contamination. A detailed description of this modal analysis 
is given in Appendix B.

Bootstrap Statistics
We examine a set of specific hypotheses in our statistical analysis 
of such modal data. We can randomize by patient – swapping the 
labeling of data by permuting the codes of the patient samples. We 
can randomize by genomic taxa – permuting the identification 
of the taxonomic matches. Finally, we can assume that our entire 
data set is random noise and permute the entire data matrix (see 
Table S1 in Supplementary Material) where all points in the matrix 
are exchanged with points randomly chosen from any patient or 
taxonomic designation. We apply such bootstrap statistics in the 
analysis of our data.

resUlTs

sequencing
To develop a comprehensive understanding of the bacterial 
composition of the neonatal septisome in Ugandan infants, we 
sequenced a fragment of the bacterial 16S rRNA gene using 
Roche 454 technology from samples of blood and CSF stored 
on filter paper cards. Of the samples from 80 infants, 65 blood 
and 27 CSF samples had PCR detectable 16S DNA. Five of the 80 
infants (6%) were born to HIV+ mothers (similar to the general 
population rate in this region).

To control for contaminants introduced from sample han-
dling and recombinant reagents, we included specimens from 
filter paper cut from around (the periphery) of blood and CSF 
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FigUre 1 | The characterization of the dataset and modes. (a) The graphical representation of read counts, sorted by columns of total reads for each taxa 
from left to right in descending order for 131 genus identifications in 95 samples. Color map is scaled to amplify the lowest 1% of read counts, and the color bar 
maximum dark red color is the same for counts from 320 to 32,000 in order to aid visualization of the dataset. This image is a visualization of the data in Table S1 in 
Supplementary Material, and the taxa for each column, from left to right, are given in the table in the same columnar order. (B) Fisher’s canonical linear discrimination 
demonstrates the optimal linear combinations of the read counts (Z1 and Z2) that separate samples from blood, CSF, and controls. These Fisher’s discriminants are 
optimal combinations of the read counts that maximally separate the different groups. Two of the three control samples overlap in the plot. Group means are large 
symbols. (c) First 10 eigenmodes from principal orthogonal decomposition and total energy [cumulative energy fraction, E] accounted for by summing modes 
progressively from left to right. Only the first 10 columns are plotted in each mode. The sum of all modes, which are weighted by their eigenvalues, would equal the 
original data set [a full discussion of this geometry can be found in Chapter 7.3 of Schiff (16)]. (D) The weighting of each mode (log of eigenvalue amplitudes) are 
shown, as well as the tolerance for insignificance (dashed line) below which eigenvalues are not resolvable. There are 95 eigenvalues, one for each patient sample 
and control. (e) Composition of the first three modes in terms of their representative genera sorted in descending order as blue, green, and red.
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specimens. All PCR amplification steps included a reagent 
 control to which no patient DNA was added, and the solitary 
reagent control that yielded a 16S band after PCR was sequenced. 
The results of these three handling and reagent contamination 
controls are given in Table S1 in Supplementary Material (see 
results of control sequencing in Table S1).

We first assessed the data for potential contaminating organ-
isms. The patterns of bacteria associated with NS and those from 
background contamination should have different distributions 
within the data. In Figure 1A, we show the 131 organisms that 
could be assigned with 80% confidence at the genus level using 
the Ribosomal Database classifier (20) and their presence in each 
patient sample. These data demonstrate that some organisms 
were ubiquitous among the patient samples and hence were 
putative contaminants.

Quantitative analysis
We first asked whether there was any signal in our data that 
could distinguish samples and controls. Fisher’s canonical linear 
discrimination tests whether there are correlations between 
versus within putative groups of variables that can discriminate 
groups based on the correlation structure of the variables (13). 
We applied Fisher’s canonical linear discrimination to the read 
counts from all of the samples and controls and find that the 
pattern of bacterial distribution among blood, CSF, and control 
samples are readily discriminable [Wilks’ λ chi-square p < 0.007, 
plug-in error rate 0.01, Figure 1B, see Ref. (14)]. These statistics 
demonstrate that there is signal to discriminate patient samples 
and controls, indicating that it is extremely unlikely that all 16S 
reads were the result of random contamination.

We assume that the correlation patterns among bacteria 
contributing to background contamination are independent 
of patterns of invasive pathogenic species causing disease. The 
matrix of bacterial genera in each patient sample can be decom-
posed into a weighted set of orthogonal patterns using principal 
orthogonal decomposition, which has shown broad utility in 
fields as diverse as fluid dynamics (17), legal decisions (18), and 
neurophysiology (21). In this approach, we ask what is the most 
statistically significant projection of all of the data, generating a 
pattern or mode that is composed of linear combinations of the 
taxonomic assignments represented on the abscissa in Figure 1A. 
We then produce a second mode that is the next best projection, 
etc. Such modes generate a weighting (an “eigenvalue”) that we 
can use to gauge the percentage of a mode within an entire dataset 
as an energy.

In the combined blood and CSF specimens, 99% of the energy 
of the data signal is accounted for by three patterns (modes) 
of the data (Figure  1C), the largest of which is dominated by 
Ralstonia, a common contaminant and rare opportunistic patho-
gen (22) (Figures  1D,E, blue). The second mode is composed 
of Streptococcus sp., Corynebacteria sp., and E. coli (Figure 1E, 
green). Leptospira species dominate the third largest mode 
(Figure 1E, red).

We anticipate that the interactions of putative bacterial 
contaminants or the interactions of pathogens in polymicrobial 
infections will demonstrate correlations within these patterns. 
Random matrix theory was developed initially to help explain 

the interactions between elements of complex nuclei (23) and, 
similarly, have been used to study the interactions of stocks that 
increase and decrease value together in financial analysis (24). 
We employ a random matrix approach to quantify the mode 
significance, randomizing the data matrix (Figure 1A) by patient 
(rows), genera (columns), or full randomization permuting all 
read counts among patients and genera (Figure 2B), generating a 
variety of null hypotheses. Bootstrap ensembles of 1000 separate 
randomizations from the original data demonstrate that for all 
samples (Figure  2A), the first mode, dominated by Ralstonia, 
is the only highly significant mode when compared with full or 
bacterial (not shown) randomization.

In typical uses, one might filter noise contamination in data 
by removing all small modes below a certain size (25). But in our 
case, we wish to do the opposite removing large modes that rep-
resent putative contaminants and then rebuilding the data set by 
summing the remaining modes to evaluate potential pathogenic 
bacteria. The mathematics to approximate a matrix with a subset 
of modes in this way was described by Schmidt (19), and we 
employ that approximation to reconstruct the data set without the 
first mode [a detailed discussion of such modal sums can be found 
in Ref. (16)]. After removing the Ralstonia-dominated mode from 
all samples, there are two significant modes (Figure  2C): one 
dominated by Streptococcus sp. and one dominated by Leptospira 
sp. (note the two red asterisks above the randomized confidence 
limits in Figure 2D). We confirmed that 68 of 74 Streptococcal 
assignments were Streptococcus salivarius subsp. thermophilus 
(previous name S. thermophiles, a common contaminant) using 
a HMA (see Materials and Methods). We now need to address 
whether Leptospira is a putative pathogen in these neonates.

evidence for neonatal Leptospira
We first assessed whether the distribution of Leptospira was 
random in the blood versus the CSF of patients, which would be 
expected if it were a contaminant. Of the 40% (32/80) of samples 
with identified Leptospira 16S rRNA, 31 patients had evidence of 
Leptospira only in the blood. One patient had Leptospira present 
in both blood and CSF, and one in CSF only. A chi-square analysis 
of specimens with and without evidence of Leptospira in blood 
versus CSF rejects the null hypothesis of random contamination 
(chi-square = 32.1, df = 1, p < 0.001). Importantly, unlike the 
case with Ralstonia and Streptococci (Table S1 in Supplementary 
Material), Leptospira was not detected in any of our control 
cards analyzed from blank regions of patient and laboratory 
cards (n = 3), or negative control PCRs. Since only two patients 
had Leptospira in CSF, we examine the modal patterns of only 
blood. We find that blood has a single significant dominant mode 
(Figure 2E), which is Ralstonia (Figure 2F). If we remove this 
first mode from blood, the single remaining dominant mode 
(Figure  2G) is a nearly pure Leptospira mode (Figure  2H). 
Examining the distribution of the magnitudes of these modes 
(eigenvalues) from 1000 bootstrap permutations, this solitary 
Leptospira mode is significant at p < 0.001 (Figure 2I).

Our data were only classified at the 80% confidence level to 
the genus level. Because 454 read length is variable (<500 bp), we 
extracted the longest sequences of those classified as Leptospira 
from each patient and submitted them to basic local alignment 
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(a) Random matrix bootstrap ensemble distribution for all samples showing the mean (black solid line) and ±1 SD (blue dotted lines) for 1000 randomizations of all 
matrix eigenvalue amplitudes, and original data set eigenvalues (red asterisks). (B) Graphical representation of a randomization of Figure 1a using same color map 
scale. (c) All samples with mode 1 removed, and comparable mode composition in (D). (e) shows eigenvalue distribution for blood samples only, with mode 
composition in (F). (g) shows eigenvalues for blood with mode 1 removed, and in (h) the mode composition. (i) illustrates the probabilities of obtaining the first 
mode eigenvalues for all eigenvalues, and the bootstrap histograms that underlie the probabilities of the first three modal eigenvalues from (g,h) illustrating the 
significance of dominant Leptospira mode from (h) (similar results randomizing only by bacterial type not shown). Note that by removing the mode dominated by 
Ralstonia in the blood sample, the Leptospira dominant mode has an eigenvalue far larger than any eigenvalue generated from the randomized dataset. In contrast, 
the next two modes generate relatively small eigenvalues compared with the bootstrapped values. These results demonstrate that with the removal of the 
contaminating mode, it is highly statistically unlikely that random contamination was responsible for the pattern of Leptospira reads observed.
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search (BLAST) (26) to ascertain the closest match. Thirty-one 
NS patient sequences matched equally well to either of the closely 
related pathogenic species Leptospira broomii or Leptospira inadai 
(27). To provide additional support for species designation, we 
amplified the RpoB gene using PCR from blood samples 19, 21, 
and 27, and submitted it for Sanger sequencing. The data confirm 
the placement of Leptospira into the broomii/inadai cluster.

Of the 32 patients with evidence of Leptospira 16S DNA, 1 had 
a positive CSF culture for S. pneumoniae. Streptococcal 16S DNA 
was present in both CSF and blood of this patient, and we con-
firmed that the organism was S. pneumoniae by sequencing the 
RnpB gene. Eight patients were culture positive for Staphylococcus 
aureus, which was not identified in our sequence data.

The timing of the presentation of the NS patients with evidence 
of Leptospira revealed 4/32 (12.5%) presenting with evidence of 
sepsis on the day of birth (day 0). These day 0 sepsis patients imply 
in  utero infection, and all had high read counts for Leptospira 
(704–3951). There were 19/32 (59%) patients presenting during 
the first week, days 1–6 suggesting peripartum infection, and 9/32 
(28%) late infections, presenting with NS on days 9–29 after birth 
suggesting environmental sources.

evidence for Other Organisms
Combining culture and sequencing results supports the possi-
bility that there might be polymicrobial underpinnings of NS in 
this setting (28). Of the 32 patients with sequence evidence for 
Leptospira, 8 (25%) had positive blood cultures for S. aureus (6), 
and 4 of these patients had low read counts of Staphylococcal 
taxa in our 16S data. One patient with sequence evidence of 
Leptospira in the blood was positive by culture for S. pneumo-
niae in the CSF. We detected S. pneumoniae in the 16S data 
and confirmed it by PCR to the Streptococcal ribosomal poly-
merase gene (rPoB). Three patients with Leptospira sequences 
had evidence based on 16S gene detection for Acinetobacter, 
which can be a virulent nosocomial pathogen, as well as a 
frequent hospital and reagent contaminant. Our prior work 
on postinfectious hydrocephalus (29) presenting in survivors 
of NS provided evidence of Acinetobacter species infection in 
Ugandan neonates (28).

There were 10/160 samples that yielded coagulase-negative 
Staphylococcal sequences at the genus level, and our assump-
tion is that in the absence of indwelling catheters or known 
immunocompromise, that the most likely explanation of such a 
distribution of coagulase-negative Staphylococcal genera is due to 
recovery of commensal skin organisms.

DiscUssiOn

Neonatal mortality rates of 34/1000 births (1) in sub-Saharan 
Africa have been difficult to control, in part because of NS 
which accounts for a substantial fraction of neonatal mortality 
[estimated as 26% from UN Children’s Fund (UNICEF) (30)]. 
In addition, the long-term sequelae in the survivors of NS, such 
as postinfectious hydrocephalus (28, 29), may add an effective 
10% mortality to reported NS mortality (hydrocephalic mortality 
occurs after the neonatal period) (31).

Leptospirosis is presumed to be the most common zoonotic 
disease in the world (32). It is present in East African commu-
nities at high rates. A recent study in Tanzania demonstrated a 
seroprevalence of 15.5%, with higher rates for people with exten-
sive contact with cattle (33). Leptospira is enzootic in cattle and 
buffalo herds in Western Uganda (34), geographically coincident 
to where our patients live, in addition to dogs (35), goats, and 
hippopotami (36). Although infants do not have contact with 
buffalo or hippopotami, they often live in intimate contact with 
domestic cattle, goats, and dogs (28).

Our data demonstrate multiple instances of Leptospira in 
blood samples of infants with NS at birth. Leptospira crosses all 
tissue barriers, including the placenta, and maternal infection 
during pregnancy has been typically associated with miscarriage 
and stillbirth; nevertheless, there have been rare documented 
cases of congenital cases of Leptospirosis with survival following 
treatment (37). Our data reveal evidence of neonatal Leptospira 
consistent with congenital vertical transmission, peripartum 
infection during the first week of life, and later environmental 
infections during weeks 2–4 of life. Such a distribution of case 
presentations speaks to the ubiquity of this organism in both 
animal and human hosts in this setting.

Leptospira species are broadly susceptible to the antibiot-
ics typically used when neonates present with NS (38, 39). 
Nevertheless, the extreme difficulty in identifying this organism 
using bacteriological culture can lead to a lack of adequate anti-
biotic coverage even in extremely well-resourced settings (40).

Of the 26 culture-positive patients, 17/26 (65%) had sequence 
evidence of a pathogen, but only 5/26 (19%) had sequence evi-
dence congruent with the culture organism type. If we exclude 
S. aureus, for which we had no sequence confirmation, there 
were 11 culture-positive patients remaining, of which there 
was sequence congruence in 5/11 (45%). Of the 54/80 (67.5%) 
culture-negative patients, there was sequence evidence of a 
pathogen in 32/54 (59%). These included sequence identification 
of Acinetobacter baumannii (6), and sequence, PCR, and HMA 
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confirmation S. agalactiae (1) and S. pneumoniae (2). Thus, the 
addition of bacterial sequence to bacterial culture data suggests 
evidence that increases the potential diagnostic yield from our 
prior bacteriological analysis from 26/80 (32.5%) to at least 49/80 
(61%), an increase of 23/26 (88%) across our patient population.

Despite recent encouraging results demonstrating that 
individual actionable diagnostic information might come from 
DNA sequencing (40), our findings do not achieve such promise 
at the individual patient level. Our results highlight the integral 
role that rigorous analytic approaches to 16S or other sequencing 
methods may have in identifying organisms that do not grow in 
routine culture conditions, such as Leptospira, and in confirm-
ing the identity of those organisms that are identified by typical 
bacteriological methods. Our sequencing further appears useful 
to help differentiate genus and species of organisms for which 
comprehensive bacterial biochemical testing is not available, to 
provide an informed estimation of bacterial spectrum in settings 
when the lack of a priori knowledge about the relevant pathogen 
spectrum would otherwise render test panel selection (such as 
PCR) incomplete, and to raise questions regarding potential false 
positives if genetic information is unable to confirm culture and 
biochemical identification.

A combined diagnostic approach consisting of organism 
culture and computational metagenomics may substantially 
improve our characterization of the neonatal septisome. As part 
of this methodology, rigorous statistical analyses of data, such 
as what we employ here, are needed to address the significant 
problem of bacterial contamination that occurs at all steps of 
sample collection and processing.

Our principal orthogonal decomposition approach is an unsu-
pervised strategy based on the data set at hand. We do not require 
a priori knowledge of the contaminating taxa (10), or subjective 
manual taxa removal (8), but incorporate all of the negative 
control data taxa in our analysis to provide an objective basis to 
define contamination patterns that differ from putative patho-
gens. We use theorems and mathematics in our approach that are 
all well proven throughout twentieth century mathematics and 
physics, adapt them in a way that to the best of our knowledge 
is truly unique, and use the basic hypothesis that there should 
be independence of background contamination patterns and our 
putative pathogens. The possible challenges to our hypothesis are 
not that reagent contaminants might be pathogenic, but rather 
that the environment contains DNA from the same pathogens 
present in the patients. In our study, we attempted to control for 

this with sample collection materials that passed through our 
patient environment (peripheral to our fluid spots on our filter 
paper cards). Finally, it is critical to suggest that our strategy is 
fully compatible with the filtering strategies proposed by both 
Schmieder and Edwards (9) and Jervis-Bardy et al. (8).

Furthermore, although we have confined our present analysis 
to potential bacterial causes of NS, future strategies will need 
to embrace potential non-bacterial causes of sepsis. Only once 
we have more comprehensively defined the spectrum of the 
underlying microbial etiologies of these infections, can we 
more effectively undertake the task of addressing the routes of 
infection to better prevent NS in settings where it remains out of  
control.
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aPPenDiX

a. Fisher’s canonical Discrimination

Discrimination was performed using methods described in 
detail in Ref. (15). In brief, the data matrix was assembled into 
a matrix Y, where the rows are patient or control samples (95), 
and the columns represent the genus resolved organisms (131). 
We partition the matrix in blocks of rows corresponding to 
blood (group 1), CSF (group 2), and controls (group 3), yielding 
upper, middle, and lower matrices Y1, Y2, and Y3 (see Table S1 in 
Supplementary Material), respectively. The multivariate means of 
these matrices were computed as y yj

j
ji

i

Ni

=
=
∑1

1N
, where yji are i 

rows (samples) from the matrix Yj for groups j = 1, 2, 3. The corre-

sponding covariance matrices are Ψ j
j

ji j
i

N

ji j

j

= − −
=
∑1

1N
( ) ( )y y y yT ,  

where T indicates transpose, and the full covariance matrix for 
the entire data set is Ψ total

T=
−

− −
=
∑N

N
1

2
1

( ) ( )y Y y Yi
i

N

i . Pooled 

covariance within groups, Ψwithin, was calculated as

Ψ Ψ

Ψ Ψ

within = + +
− ×

+ − × + − × 

1 1

1 1
1 2 3

1 1

2 2 3 3

N N N
N

N N

( )

( ) ( )

and the between group variance is thus

Ψ Ψ Ψbetween total within= −

Fisher (13) recognized that for any linear combination z = Yb, 
where b is a column vector of coefficients, that the variance, 
var[z], is

var[ ]z b b b b b b= = +T
total

T
within

T
betweenΨ Ψ Ψ

and that separate groups j implies that Ψ Ψtotal within>> . 
Our goal is to find the discrimination function Z(γ) that best 

emphasizes the between with respect to the within covariances or 
in other words to maximize the ratio

b b
b b

b b
b b

T
total

T
within

T
between

T
within

Ψ
Ψ

Ψ
Ψ

= + = +1 1 α

over all vectors of coefficients b. Then Z(γ) = Yb will be the opti-
mal discriminator, and the maximum α will quantify the excess 
between covariance, Ψbetween.

Fisher’s insight (14) was that this maximization can be achieved 

with a simultaneous spectral decomposition of b b
b b

T
between

T
within

Ψ
Ψ

max b b
b b

b H H b
b HH b

b b
b b

T
between

T
within

T T

T T

T

T

Ψ
Ψ

Λ Λ







 ⇒ = = α

Maximizing α leads to k = 1, …, m orthogonal linear combina-
tions zk = Yγk, where γk are the columns of (HT)−1. Λ is a diagonal 

matrix, whose values are λ1 ≥ … ≥ λm > 0 = λm+1 = … = λp, where 
p are the number of variables, in our case 131. Thus, there are m 
canonical discrimination functions, zk which are linear combina-
tions Yγk corresponding to the non-zero eigenvalues λ1, …, m.

In Ref. (15), we used singular value decomposition (SVD)

Y USV= T

to find the optimal discrimination functions. We change coordi-
nates to simplify the discrimination problem. Let Ψwithin = USUT 
be the SVD of Ψwithin, where S is diagonal, and U appears twice 
because covariance matrices are symmetrical. Define a new vari-
able v = US1/2UTb, or equivalently b = US−1/2UTv. In terms of v,

α
Ψ
Ψ

=
v US U US U v
v US U US U v

=
v

T 1/2 T 1/2 T

T 1/2 T 1/2 T

T

− −

− −
between

within

UUS U US U v
v v

1/2 T 1/2 T

T

− −Ψbetween

This is a much better coordinate system in which to do the 
maximization (15). Since the length of v scales out of the ratio, 
it is equivalent to maximize over unit vectors v. We know that 
in general, the maximum of vTAv for a symmetric matrix A is 
reached for v = v1, the first singular vector of A. Furthermore, 
the maximum subject to being orthogonal to v1 is v2, the second 
singular vector of A, etc. So the maximization is solved by taking 
the SVD

US U US U = VAV1/2 T 1/2 T T− −Ψbetween

and the maximum α is v VAV v1
T T

1 1= λ , the largest singular 
value from A. Converting back to b-coordinates, the optimal b, 
called the first canonical variate, is

b = US U v1
1/2 T

1
−

which is the first column of US−1/2UTV. The second column b2 
of US−1/2UTV is the second canonical variate, and so on. The m 
canonical variates b1, …, bm, are the m columns of US−1/2UTV. 
They provide the coefficients of m canonical discrimination 
functions Z YbT

i( )γ = i
. We plot the first two columns of Zi in 

Figure 1B.
For each multivariate data vector Y, the transformed vectors 

z have means u and normal p-variate distributions f(z). Prior 
probabilities πj are determined from the fraction of total samples 
within group j, πj = Nj/N. The posterior probability πjz is the prob-
ability that for a given value of z, that the data came from group 
j of n groups

π
π

π
jz

j j

k k
k

n k= =

∑

f

f
n

( )

( )
, , ...,

z

z
=1

 1

A suitable approximation to πj fj (z) is given by exp[q(z)] where 

q j j j j( ) lnz u z u u= − +T T1
2

π  (14). The highest posterior probabil-

ity among all possible groups is the predicted group membership 
used in our calculation of plug-in error rate reported in the text 
referring to Figure 1B.
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smaller than the tolerance are considered computationally 
meaningless.

Using the Schmidt approximation theorem (19), one typically 
reconstructs a data matrix Y with a subset of modes as

Y =
=
∑u vi i i

T

i

m

λ
1

where i = 1, …, m represent the m largest eigenvalues.
Such approximations are generally done by retaining the larg-

est modes because a small subset may contain a disproportionate 
amount of the variance or energy in the signal, E, defined as

E =
= =
∑ ∑λ λi
i

m

i
i

n

1 1

where m < n.
In typical use, one anticipates that the largest m out of n com-

ponents contains the signal of interest. In our case, our signal 
contains a mixture of background contamination and potential 
pathogens, and the background may dominate the eigenspec-
trum. We therefore reconstruct our data set without inclusion of 
putative background modes, as

Y =
=

−

∑u vi i i
T

i

n k

λ
1

where we here remove k of the largest modes. We employ this 
formulation in Figure 2 when we remove background modes. 
A much more detailed description of the reconstruction of such 
data sets from sums of modes can be found in chapter 7 of 
Schiff (16).

Our reconstruction is focused on modes with large eigenval-
ues. Recent work exploring smaller eigenvalues in undersam-
pled complex biological data can be found in Ref. (41).

A normal theory method to test for the significance of 
 discrimination is to examine the magnitude of the eigenvalues 
of Λ above. We make use of Wilks’ statistic, W. After calculating 
the log likelihood ratio as LLRS = +

=
∑N ln( )1

1

λλi
i

m

, where λi are 

the diagonal entries of Λ, W
N

= −





exp 1 LLRS . A poor discrimi-

nation yields small eigenvalues λi, and W approaches 1. Good 
discrimination yields large eigenvalues, and W becomes small. 
Since W is chi-squared distributed, we can calculate confidence 
limits that the discrimination shown in Figure 1B is significant 
as described in the text.

B. Modal reconstruction

For an arbitrary matrix Y, the SVD is

Y U V= Λ T

where U is matrix of orthogonal columns of sample eigenmodes, 
Λ a diagonal matrix of eigenvalues, λi, and V a matrix of orthogo-
nal columns of genus modes.

We make use of the fact that the sum of the outer products 
of the columns of ui and vi, weighted by their eigenvalues λi, are 
equal to the original data matrix Y

Y =
=
∑u vi i i

T

i

n

λ
1

where n are the total number of modes, in this case, 131.
We employ a definition of tolerance for eigenvalue size in 

Figure 1D which is the product of the largest singular value, λmax, 
times the machine precision of the computer (16). Eigenvalues 
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