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Burkholderia pseudomallei is the etiological agent of melioidosis. Because of the bac-
terium’s intrinsic resistance and propensity to establish latent infections, melioidosis ther-
apy is complicated and prolonged. Newer generation β-lactams, specifically ceftazidime,
are used for acute phase therapy, but resistance to this cephalosporin has been observed.
The chromosomally encoded penA gene encodes a putative twin arginine translocase (TAT)-
secreted β-lactamase, and penA mutations have been implicated in ceftazidime resistance
in clinical isolates. However, the role of PenA in resistance has not yet been systematically
studied in isogenetic B. pseudomallei mutant backgrounds. We investigated the effects
of penA deletion, point mutations, and up-regulation, as well as tat operon deletion and
PenA TAT-signal sequence mutations. These experiments were made possible by employ-
ing a B. pseudomallei strain that is excluded from Select Agent regulations. Deletion of
penA significantly (>4-fold) reduced the susceptibility to six of the nine β-lactams tested
and ≥16-fold for ampicillin, amoxicillin, and carbenicillin. Overexpression of penA by single-
copy, chromosomal expression of the gene under control of the inducible Ptac promoter,
increased resistance levels for all β-lactams tested 2- to 10-fold. Recreation of the C69Y
and P167S PenA amino acid substitutions previously observed in resistant clinical isolates
increased resistance to ceftazidime by ≥85- and 5- to 8-fold, respectively. Similarly, a S72F
substitution resulted in a 4-fold increase in resistance to amoxicillin and clavulanic acid.
Susceptibility assays with PenA TAT-signal sequence and �tatABC mutants, as well as
Western blot analysis, confirmed that PenA is a TAT secreted enzyme and not periplasmic
but associated with the spheroplastic cell fraction. Lastly, we determined that two LysR-
family regulators encoded by genes adjacent to penA do not play a role in transcriptional
regulation of penA expression.
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INTRODUCTION
Burkholderia pseudomallei, the etiological agent of melioidosis, is
a saprophytic Gram negative bacterium endemic to many trop-
ical and subtropical regions of the world although much of the
disease and its investigation has historically been confined to
Northern Australia and regions of SE Asia, notably NE Thailand,
Singapore, and Malaysia (Cheng and Currie, 2005; Wiersinga et al.,
2006; Currie et al., 2008). Partially because of its large genome
and diverse repertoire of metabolic functions B. pseudomallei can
survive hostile conditions and is resilient to many antimicrobial
agents, including antibiotics (Holden et al., 2004). This makes
choosing effective therapeutic strategies difficult. In the past three
decades even the most effective treatment could not prevent a mor-
tality rate of 74% (White et al., 1989). Clinical outcomes improved
steadily with implementation of new therapies but the real break-
through was achieved with the introduction of ceftazidime, an
extended-spectrum cephalosporin, which halved the mortality

rate compared to the traditional multidrug therapy of chlo-
ramphenicol, doxycycline, and trimethoprim–sulfamethoxazole
(White et al., 1989). Currently recommended melioidosis treat-
ment involves acute phase therapy followed by a lengthy eradi-
cation therapy. Initial parenteral therapy involves ceftazidime or a
carbapenem for a minimum of 10–14 days and longer (4–8 weeks)
for deep-seated infection. This regimen may be supplemented
with trimethoprim–sulfamethoxazole given orally for treatment
of patients with neurologic, prostatic, bone, or joint melioidosis.
Oral eradication therapy is trimethoprim–sulfamethoxazole with
or without doxycycline for at least 3–6 months (Peacock et al.,
2008).

Because of the pivotal role that β-lactams play in the
acute phase treatment of melioidosis emergence of resistance,
though still considered rare, is of concern. It is believed that
B. pseudomallei’s resistance to β-lactams is due to chromosoma-
lly encoded β-lactamases (Livermore et al., 1987; Godfrey et al.,
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FIGURE 1 | Genomic organization of the B. pseudomallei penA

region. The genes and gene order are from sequenced strain K96243
(GenBank accession number NC_006351). The penA region encodes two
LysR-type regulators (BPSS0944 and BPSS0948) and a putative peptidase
(BPSS0945). The names of the mutants harboring gene deletion and
extents of deleted sequences are shown above each gene. The putative

PenA twin arginine translocase (TAT) signal sequence is shown below
the penA gene with the two conserved arginine residues shown in
red letters. Arrows indicate amino acid substitutions, R7K and R8A, in
the TAT-signal sequence and the names of the mutants are shown
next to the respective amino acids replacing the original
arginines.

1991). These include a number of Ambler Class A, B, and D
β-lactamases that are encoded by the K96243 and other B. pseudo-
mallei genomes (Holden et al., 2004). The penA gene (K96243 gene
BPSS0946 found on chromosome II; Figure 1) encodes a Class A
β-lactamase (Cheung et al., 2002; Tribuddharat et al., 2003). This
gene is present and expressed in prototype B. pseudomallei strains.
PenA confers resistance to numerous β-lactam antibiotics when
expressed in Escherichia coli (Cheung et al., 2002; Tribuddharat
et al., 2003) and several reports described a role of this enzyme in
acquired ceftazidime resistance in patients treated with this antibi-
otic (Godfrey et al., 1991; Tribuddharat et al., 2003; Sam et al.,
2009). Mutations identified in clinical strains included a C69Y sub-
stitution leading to high-level ceftazidime resistance (Sam et al.,
2009), a P167S substitution leading to medium-level ceftazidime
resistance (Tribuddharat et al., 2003) and a S72F mutation that
led to resistance to clavulanic acid (Tribuddharat et al., 2003). A
Class D Oxa-57 β-lactamase has been studied in vitro but its role
in clinically significant β-lactam resistance remains unclear (Keith
et al., 2005).

While B. pseudomallei PenA β-lactamase has been studied in
some detail, previously published reports suffered until recently
from some unavoidable shortcomings. First, many mutations con-
tributing to clinically significant β-lactam resistance were iden-
tified in genetically largely intractable clinical isolates. Thus, it
remained unclear whether the mutations were solely responsible
for causing the observed resistance. Second, because methods for
genetic manipulation of B. pseudomallei were rather rudimen-
tary until recently, most studies involved expression of putative
β-lactamase enzymes in E. coli. Third, United States Select Agent
and recombinant DNA regulations, as well as dual use concerns,
do complicate studies of clinically significant antibiotic resistance
mechanisms. To address shortcomings of previous studies, we
employed state-of-the-art Select Agent-compliant genetic and bio-
chemical methods and a defined genetic background of a Select
Agent excluded B. pseudomallei strain, where applicable, to study
the contribution of PenA to B. pseudomallei’s resistance to clini-
cally significant β-lactam antibiotics. The studies also revealed that
PenA is secreted via the twin arginine translocase system and that
its expression in prototype strains does not seem to be regulated
by local transcriptional regulators.

Table 1 | Burkholderia pseudomallei strains used in this study.

Strain Description Source

Strain 1026b-based mutants

1026b Clinical isolate, wild-type DeShazer et al. (1997)

Bp319 1026b �penA This study

Bp409 1026b �tatABC This study

Bp420 1026b �penA �tatABC This study

Bp343 1026b �BPSS0945 This study

Bp344 1026b �BPSS0944 This study

Bp349 1026b �BPSS0948 This study

Bp342 1026b PenA R7K This study

Bp421 1026b PenA R8A This study

Strain Bp82-based mutants

Bp82 1026b �purM Propst et al. (2010)

Bp82.3 Bp82 PenA C69Y This study

Bp82.4 Bp82 PenA S72F This study

Bp82.5 Bp82 PenA P167S This study

Bp82.11 Bp82 �penA This study

Bp82.14 Kmr; Bp82:Tn7T-Ps12-FKM-lox-BPSS0944a This study

Bp82.15 Kmr; Bp82:Tn7T-Ps12-FKM-lox-BPSS0945 This study

Bp82.16 Kmr; Bp82:Tn7T-Ps12-FKM-lox-BPSS0948 This study

Bp82.21 Kmr; Bp82:Tn7T-LAC-FKM-penA + b This study

aCloned genes are transcribed from the constitutive B. thailandensis ribosomal

s12 gene promoter.
bCloned penA gene is transcribed from the IPTG-inducible E. coli lactose

operon/tryptophan hybrid promoter Ptac.

MATERIALS AND METHODS
BACTERIAL STRAINS AND GROWTH CONDITIONS
Burkholderia pseudomallei strains used in this study are listed
in Table 1. E. coli strains DH5α (Liss, 1987) and MACH1
(Invitrogen, Carlsbad, CA, USA) were used as general cloning
strains, and DB3.1 (Invitrogen) for cloning with Gateway Vec-
tors. RHO3 was used as a mobilizer strain for conjugation of
plasmids from E. coli to B. pseudomallei (López et al., 2009).
Bacterial strains were grown in Lennox LB (MO BIO Labo-
ratories, Carlsbad, CA, USA) or LB without salt (10 g/L tryp-
tone and 5 g/L yeast extract) at 37˚C. Antibiotics were used
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at the following concentrations: 100 μg/mL ampicillin (Amp),
35 μg/mL kanamycin (Km), and 15 μg/mL zeocin (Zeo) for E.
coli and 1,000 μg/mL Km and 2,000 μg/mL Zeo for B. pseudo-
mallei. Antibiotics were purchased from Sigma (St. Louis, MO,
USA) except Zeo which was from Invitrogen. The �purM strain
Bp82 was grown in media supplemented with 0.6 mM adenine
to ensure growth rates comparable to strain 1026b. RHO3 was
grown in media containing 400 μg/mL diaminopimelic acid (DAP;
LL-, DD-, and meso-isomers; Sigma). Induction of gene expres-
sion from Ptac was achieved by adding 1 mM isopropyl β-d-1-
thiogalactopyranoside (IPTG; Gold Biotechnology, St. Louis, MO,
USA) to growth media.

ISOLATION OF MUTANTS CONTAINING CHROMOSOMAL DELETION OR
POINT MUTATIONS
All deletion and allelic-exchange procedures were based on
pEXKm5 (López et al., 2009; plasmids used in this study are listed
in Table 2) and were performed using previously described proto-
cols. The desired chromosomal deletions were verified by colony
PCR (Choi et al., 2008).

For construction of penA deletion mutants, PCR with primers
1687 + 1712 (PCR primers and mutagenic oligonucleotides are
listed in Table 3) and Taq polymerase (New England BioLabs,
Ipswich, MA, USA) was used to amplify a 1,308-bp region contain-
ing the BPSS0946 (penA) gene from 1026b chromosomal DNA.
The gel-purified PCR fragment was cloned into the SmaI site of
pUCP20 to yield pPS2370. This plasmid was then cleaved with
NsiI + PmlI, blunt ended with T4 DNA polymerase, followed by
re-ligation. This procedure deleted a 291-bp NsiI − PmlI fragment
from the penA gene and resulted in pPS2549. A 1,339-bp PvuII
�penA fragment was excised from this plasmid and ligated into
the SmaI site of pEXKm5 to create pPS2550. This plasmid was
used to create Bp82.11 and Bp319 by transferring the plasmid-
borne deletion alleles to either Bp82 or 1026b, respectively, via
conjugation from RHO3.

For deletion of tatABC, splicing by overlap extension (SOE-
ing) PCR was employed for engineering of deletion constructs.
SOEing reactions consisted of separately amplifying two frag-
ments, one using an “internal” primer with overlapping sequence
with the internal primer from the other fragment. These bands
were gel purified and 50 ng of each product was added to a new
PCR reaction where it underwent PCR for five cycles (95˚C for
60 s, 54˚C 30 s, and 72˚C for 60 s). At this point, the two non-
overlapping primers were added and the reaction proceeded for
another 30 cycles. Using in-house purified Pfu polymerase and
primer sets 2018 + 2019 (amplifying a 537-bp tatA 5′ fragment)
and 2020 + 2021 (amplifying a 501-bp tatC 3′ fragment), a 1,038-
bp SOEing PCR product was generated to delete 1,527 bp from the
tatABC gene cluster. This PCR product was ligated into pGem-
T Easy (Promega; Madison, WI, USA) to create pPS2612. An
EcoRI fragment was rescued from this plasmid and inserted into
pEXKm5 to create pPS2617, which was used to create Bp409
and Bp420 by transferring the plasmid-borne deletions to either
1026b or Bp319 (1026b �penA), respectively. PCR using primers
2047 + 2048 was used to confirm the deletion.

Other genes located in the penA region of the chromo-
some were deleted using a SOEing PCR strategy and pCR2.1

(Invitrogen) as TA cloning vector. The BPSS0944 deletion
construct was created using primer sets 2014 + 2015 and
2016 + 2017 to generate pPS2609, from which a Bst XI frag-
ment was excised and inserted into the SmaI site of pEXKm5
to yield pPS2614. The BPSS0945 deletion construct was gen-
erated using primer sets 2010 + 2011 and 2012 + 2013 to cre-
ate pPS2610, from which an EcoRI fragment was excised and
inserted into the EcoRI site of pEXKm5 to yield pPS2615.
The BPSS0948 deletion construct was created using primer
sets 2006 + 2007 and 2008 + 2009 to generate pPS2611, from
which an EcoRI fragment was excised and inserted into
the EcoRI site of pEXKm5 to yield pPS2616. The plasmid-
borne deletion alleles were transferred to the B. pseudomallei
1026b genome which resulted in strains Bp343, Bp344 and
Bp349, respectively. Deletions were verified by colony PCR
using primer sets 2045 + 2446, 2041 + 2042 and 2043 +
2044, respectively.

Chromosomal penA point mutations were engineered using
the QuikChange Multi Kit (Stratagene, La Jolla, CA, USA),
5′-phosphorylated mutagenic oligonucleotides, and plasmid DNA
templates. Mutagenic oligonucleotide 2075 was used with pPS2674
to create pPS2675 for the PenA C69Y mutation. A 736-bp EcoRI
fragment from pPS2675 was then ligated into the EcoRI site of
pEXKm5 to construct pPS2677. Plasmid pPS2712 was created as a
platform for other mutations by ligating the NruI–HincII contain-
ing penA fragment from pPS2676 into the SmaI site of pEXKm5.
Employing pPS2712 template DNA, mutagenic oligonucleotides
2136 and 2137 were used separately to create pPS2721 and
pPS2722 carrying PenA P167S and PenA S72F substitutions,
respectively. Allelic exchange was carried out by conjugal transfer
of pPS2677 (C69Y), pPS2721 (P167S), and pPS2722 (S72F) from
RHO3 into Bp82. Mutations were verified by PCR amplifying and
sequencing the region containing the expected mutation. TAT-
signal sequence mutations were generated using a similar strategy.
The R7K mutation was engineered using mutagenic oligonu-
cleotide 2022 and pPS2674 to create pPS2613. The 736-bp EcoRI
fragment from this plasmid was ligated into pEXKm5 to yield
pPS2618. The R7K allele contained on this fragment was trans-
ferred to the 1026b genome which created Bp342. The mutagenic
oligonucleotide 2076 was used with pPS2674 to engineer pPS2676
to create an R8A mutation. The 736-bp EcoRI fragment was excised
from this plasmid and ligated into pEXKm5 to create pPS2678.
The R8A allele contained on this fragment was transferred to the
1026b genome which created Bp421. The presence of the desired
point mutations on plasmids and the genome was verified by DNA
sequencing.

GENE COMPLEMENTATION AND OVEREXPRESSION USING
SINGLE-COPY, CHROMOSOMALLY INTEGRATED MINI-Tn7 VECTORS
The mini-Tn7 system was used for introducing site-specific, sta-
ble insertions into the B. pseudomallei genome for purposes of
gene complementation or overexpression (Choi et al., 2008). Tn7
transposition was achieved by tri-parental mating involving RHO3
harboring the mini-Tn7 vector, RHO3 containing the helper plas-
mid pTNS3 and the B. pseudomallei recipient strain, as previously
described (Choi et al., 2006). Integration events were verified using
primers Tn7L and either BPGLMS1, BPGLMS2, or BPGLMS3
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Table 2 | Plasmids used in this study.

Designation Descriptiona Source

PLASMIDS FOR penA DELETION AND OVEREXPRESSION

pUCP20 Apr; Broad host-range cloning vector West et al. (1994)

pEXKm5 Kmr; Allelic-exchange plasmid López et al. (2009)

pTNS3 Apr; Tn7 insertion helper plasmid Choi et al. (2008)

pUC18T-mini-

Tn7T-Km-LAC

Apr Kmr; Tn7 cassette vector with Ptac and lacIq for regulated expression of cloned genes This study

pPS2370 Apr; pUCP20 with a 1,308 bp penA fragment (amplified with primers 1687 + 1712) inserted into SmaI site This study

pPS2549 Apr; pPS2370 with 291 bp Nsi I-Pml I fragment deleted from penA This study

pPS2550 Kmr; 1,339 bp PvuII fragment from pPS2549 was inserted into the SmaI site of pEXKm5 This study

pPS2605 Apr Kmr; pCR2.1 with 1,230 bp penA fragment (amplified with primers 2003 + 2005) This study

pPS2608 Apr Kmr; pCR2.1 with the 1,261 bp penA fragment from pPS2605 (amplified with primers 2003 + 2004 to

modify the 5′ region)

This study

pPS2627 Apr Kmr; pUC18T-mini-Tn7T-Km-LAC with the 1,266 bp penA fragment from pPS2608 This study

PLASMIDS FOR penA PUTATIVE REGULATORY GENE DELETION AND OVEREXPRESSION

pPS2609 Apr Kmr; 1,043 bp SOEing PCR product using primer sets 2014 + 2015 and 2016 + 2017 was ligated into

pCR2.1

This study

pPS2610 Apr Kmr; 1,300 bp SOEing PCR product using primer sets 2010 + 2011 and 2012 + 2013 was ligated into

pCR2.1

This study

pPS2611 Apr Kmr; 1,239 bp SOEing PCR product using primer sets 2006 + 2007 and 2008 + 2009 was ligated into

pCR2.1

This study

pPS2614 Kmr; blunt ended 1,085 bp BstXI fragment from pPS2609 ligated into SmaI site of pEXKm5 This study

pPS2615 Kmr; 1,316 bp EcoRI fragment from pPS2610 ligated into EcoRI site of pEXKm5 This study

pPS2616 Kmr; 1,255 bp EcoRI fragment from pPS2611 ligated into EcoRI site of pEXKm5 This study

pUC18-mini-Tn7T-

Gm-Gateway

Apr Gmr; mini-Tn7T-Gm with GATEWAY cassette. GenBank accession number AY737004
Choi et al. (2005)

pPS2735 Apr Kmr; pUC18T-mini-Tn7T-Km-FRT with Ps12 This study

pPS2737 Apr Kmr; Gateway-ready Tn7 cassette vector with s12 promoter toward insert (KpnI-AfeI fragment containing

1,824 bp Gateway cassette from pPS1612 ligated into pPS2735 between KpnI-StuI)

This study

pPS2745 Kmr; Nested PCR with primers 2015 + 2016, then 2155 + 2156 for 1,051 bp fragment, cloned into

pENTR-SD-D-TOPO

This study

pPS2746 Kmr; Nested PCR with primers 2013 + 2010, then 2157 + 2158 for 1,056 bp fragment, cloned into

pENTR-SD-D-TOPO

This study

pPS2747 Kmr; Nested PCR with primers 2009 + 2006, then 2159 + 2160 for 1,456 bp fragment, cloned into

pENTR-SD-D-TOPO

This study

pPS2748 Apr Kmr; Gateway LR recombination reaction with pPS2737 + pPS2745 This study

pPS2749 Apr Kmr; Gateway LR recombination reaction with pPS2737 + pPS2746 This study

pPS2750 Apr Kmr; Gateway LR recombination reaction with pPS2737 + pPS2747 This study

PLASMIDS FOR ENGINEERING OFTAT-SIGNAL SEQUENCE MUTATIONS

pPS2674 Apr Kmr; 740 bp of the 5′ region of penA gene amplified with primers 2010 + 2011 and cloned into pCR2.1 This study

pPS2613 Apr Kmr; Mutagenic primer 2022 substituted AAG for CGC at bases 19-21 of penA in pPS2674 to provide a

R7K substitution

This study

pPS2618 Kmr; 736 bp EcoRI fragment from pPS2676 ligated into EcoRI of pEXKm5 This study

pPS2676 Apr Kmr; Mutagenic primer 2076 substituted GC for CG at bases 22-23 of penA in pPS2674 to provide a R8A

substitution

This study

pPS2678 Kmr; 736 bp EcoRI fragment from pPS2676 ligated into EcoRI of pEXKm5 This study

PLASMIDS FOR ENGINEERING OF penA POINT MUTATIONS

pPS2675 Apr Kmr; Mutagenic primer 2075 mutated G to A at base 224 of penA to provide a C69Y substitution in

pPS2674 sequence

This study

pPS2677 Kmr; 736 bp EcoRI fragment from pPS2675 ligated into EcoRI of pEXKm5 This study

pPS2712 Kmr; 1,094 bp NruI-HincII fragment (entire penA) from pPS2370 ligated into the SmaI site of pEXKm5 This study

(Continued)
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Table 2 | Continued

Designation Descriptiona Source

PLASMIDS FOR ENGINEERING OF penA POINT MUTATIONS

pPS2721 Kmr; Mutagenic primer 2136 mutated C to T at base 517 of penA to provide a P167S substitution using

pPS2712 (pEXKm5-based)

This study

pPS2722 Kmr; Mutagenic primer 2137 C to T at base 233 of penA to provide a S72F mutation using pPS2712

(pEXKm5-based)

This study

PLASMIDS FOR tatABC DELETION

pPS2612 Apr; 1,038 bp Soeing PCR product using primer sets 2018 + 2019 and 2020 + 2021 ligated into pGem-T Easy

(Promega, Madison, WI, USA)

This study

pPS2617 Kmr; 1,058 bp EcoRI fragment from pPS2612 ligated into EcoRI of pEXKm5 This study

aAp, ampicillin; Km, kanamycin; Gm, gentamicin; Ps12, B. thailandensis ribosomal s12 gene promoter.

(Choi et al., 2008). All Tn7 mutants retained and used for fur-
ther experimentation had insertions at the glmS2-associated Tn7
insertion site.

For regulated penA expression and overproduction, the gene
was PCR amplified from pPS2370 using primers 2003 + 2005 and
Pfu polymerase and the 1,230-bp PCR product cloned into pCR2.1
(Invitrogen) to yield pPS2605. An optimized ribosome binding site
(RBS) was introduced upstream of penA to create pPS2608 by PCR
amplifying the penA region of pPS2605 with primers 2003 + 2004
and cloning the resulting 1,261 bp fragment into pCR2.1. (The
amplicon was expected to be 1,295 bp but the 5′ end was trun-
cated by 34 bp which did not affect the integrity of the penA gene.)
An expression construct where penA was transcribed from the
inducible Ptac was obtained by cloning the 1,300-bp EcoRI frag-
ment from pPS2608 into pUC18T-mini-Tn7T-Km-LAC to create
pPS2627. The mini-Tn7 expression cassette from pPS2627 was
integrated into the genome of Bp82 at the glmS2-associated Tn7
integration site to form Bp82.21.

Constitutive expression of genes was achieved from chro-
mosomally integrated mini-Tn7 elements where the respec-
tive genes were transcribed from the B. thailandensis s12 pro-
moter (Choi et al., 2008). Nested PCR and Pfu polymerase
was used to PCR amplify BPSS0944 (primers 2015 + 2016 and
2155 + 2156), BPSS0945 (primers 2010 + 2013 and 2157 + 2158),
and BPSS0948 (primers 2006 + 2009 and 2159 + 2160) from
strain 1026b genomic DNA. Each PCR began with three cycles
using only the outside set (listed first) then the inner set (listed sec-
ond) was added for 30 more cycles. Inner primers were designed
for use with the pENTR/SD/D-TOPO cloning vector (Invitro-
gen, Carlsbad, CA, USA), which provides a RBS and direction-
ality, and created pPS2745, pPS2746, and pPS2747, respectively.
These plasmids then underwent the Gateway LR recombination
reaction (Invitrogen) with pPS2737, a mini-Tn7 vector which
enables constitutive expression from the B. thailandensis s12 pro-
moter (this promoter is directed toward the Gateway recombina-
tion cassette). To create pPS2737 the 1,824-bp Gateway-cassette-
containing the KpnI-AfeI fragment from pUC18-mini-Tn7T-Gm-
Gateway was ligated into pPS2735 between the KpnI and StuI sites.
This Gateway-compatible mini-Tn7 element was used to create
pPS2748, pPS2749, and pPS2750 for constitutive expression of
BPSS0944, BPSS0945, and BPSS0948, respectively. The mini-Tn7
elements contained on these plasmids were individually inserted

at the glmS2 site of Bp82 with the help of pTNS3 to create Bp82.14,
Bp82.15, and Bp82.16.

MIC DETERMINATIONS
MICs were determined following general procedures recom-
mended by the Clinical and Laboratory Standards Institute (2010).
However, since �tatABC mutants do not grow well in the presence
of salts LB without salt was substituted for Mueller–Hinton Broth.
MICs for ampicillin, carbenicillin, and BAL30072 (obtained from
Basilea Pharmaceutica, Basel, Switzerland) were determined by
the two-fold broth microdilution technique. Etest strips were used
to determine MICs for amoxicillin, amoxicillin–clavulanic acid,
ceftazidime, imipenem, meropenem, and piperacillin according
to manufacturer’s instructions (AB BioMérieux, Marcy l’Etoile,
France). When needed, IPTG was added to media at a final con-
centration of 1 mM. The MICs were recorded after incubation at
37˚C for 18–24 h.

QUANTIFICATION OF penA TRANSCRIPT LEVELS
Overnight cultures were subcultured into LB medium, grown to
an OD600 nm of 0.5 and RNA was extracted with the RNeasy
Protect Bacteria Mini Kit (Qiagen, Valencia, CA, USA). cDNA
was synthesized using the SuperScript III First-Strand Synthesis
SuperMix for qRT-PCR (Invitrogen) and quantified using SYBR
GreenER qPCR SuperMix for iCycler Instruments (Invitrogen)
and the Bio-Rad iQ5 iCycler. The Bp23S-F + Bp23S-R primer set
was used for the 23s rRNA housekeeping gene for data normal-
ization and primers 2077 + 2078 were used to quantify the penA
transcript. Data analyses were performed using the iCycler soft-
ware. For induction studies with both wild-type and the mutants
with constitutive regulatory gene expression or deletion several
methods were employed. For salt stress testing, strains were grown
in media with 150 mM NaCl or no NaCl according to Pumirat et al.
(2009). For testing induction by β-lactams at sub-inhibitory levels,
strains were subcultured into LB with 4-fold lower than MIC con-
centrations of either ceftazidime or carbenicillin until an OD600 nm

of 0.5 was reached. Induction was also tested with fourfold higher
than MIC concentrations of ceftazidime, carbenicillin, imipenem,
or penicillin G (2,000 μg/mL for penicillin G) by growing in LB
to an OD600 nm of 0.5, then adding β-lactams and shaking for an
additional 2 h before RNA extraction, according to Trépanier et al.
(1997).
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Table 3 | Primers used in this study.

Primer Sequencea,b,c,d Source

CLONING/DELETION

1687 5′-GGATCCGACGAGAGCTGATACGCTAG This study

1712 5′-AAGCTTATACCGGCATCGTTTCGCTG This study

2003 5′- GAATTCGATACCGGCATCGTTTCG This study

2004 5′-GATATCAGCCGTTGACTTAGTTGGTATTTCCGGAATATCATGCTGGTTCCGAATAA

TTTTGTTTAACTTTAAGAAGGAGATATAC

This study

2005 5′-ACTTTAAGAAGGAGATATACATGAATCATTCTCCGTTGCGC This study

2006 5′-CAATCTCGACGGAGCACG This study

2007 5′-CTTGAATGCCCTGCAGATCTTGGCCGCTACAGATACGACACb This study

2008 5′-AAGATCTGCAGGGCATTCAAG This study

2009 5′-GGTCATCGGGGACGAGTG This study

2010 5′-CGAATAGCGGATGAGATCG This study

2011 5′-GTTGTCTCGAGCATGAGCAAGGATTTTCTGACCGCTTACG This study

2012 5′-TTGCTCATGCTCGAGACAAC This study

2013 5′-AATGGGCGATACGGTAACAG This study

2014 5′-ACGAGCTTCCGAAATACACG This study

2015 5′-ATCGAGACGATTCGTTCAGC This study

2016 5′-CGAGCATCTCAAAATTCATCC This study

2017 5′-CGTGTATTTCGGAAGCTCGTTAATGGGCGATACGGTAACAG This study

2018 5′- ATGAATCACGACCCGAACTG This study

2019 5′- CTTGCTCTCGTCCTCTTCCTACGATCAGCAACACGATCAG This study

2020 5′- AGGAAGAGGACGAGAGCAAG This study

2021 5′- GACGAAGCTGCTGAACGTC This study

2041 5′-AGATACGGCATCGGATTGAC This study

2042 5′-GTCGCCGGCTGATTATTTC This study

2043 5′-GCAACGCTTGTTTCAATACG This study

2044 5′-GAAAGGCTCGGTCACGTTC This study

2045 5′-AATTCGTCACACGAACATGC This study

2046 5′-CGTCATTCCACCTTCCATTG This study

2047 5′-AGGAGGTCTACCACCTGCAC This study

2048 5′-TTTTGTTTGCCGCCATTC This study

2187 5′-CGAGCTTTCGCTGTCCTATC This study

2188 5′-CGTGATCTTCGTGTCCTTGAGTTGTGTCATTGCGCTTCTC This study

2189 5′-TCAAGGACACGAAGATCACG This study

2190 5′-CCGGCAATTGATCGAACTC This study

2191 5′-CGATCAACGTGATCTTCGTG This study

MUTAGENIC PRIMERS

2022 5′Phos/-GAATCATTCTCCGTTG AAG CGCTCGCTGCTCGTCGCAGC This study

2075 5′Phos/-GCTTTCCCGTTCT A CAGCACATCCAAGATGATGC This study

2076 5′Phos/-GAATCATTCTCCGTTGCGC GC CTCGCTGCTCGTCGCAGC This study

2136 5′Phos/-GCGCCGTGTTCAGCTCAG A CTCGCGGCGATCGAGC This study

2137 5′Phos/-AAAGCATCATCTTG A ATGTGCTGCAGAACTGG This study

REALTIME PCR PRIMERS

Bp23S-F 5′-GTAGACCCGAAACCAGGTGA Mima and Schweizer (2010)

Bp23S-R 5′-CACCCCTATCCACAGCTCAT Mima and Schweizer (2010)

2077 5′-GTTCTGCAGCACATCCAAGA This study

2078 5′-CGGTGTTGTCGCTGTACTGA This study

CLONING

1687 5′-GGATCCGACGAGAGCTGATACGCTAG This study

1712 5′-AAGCTTATACCGGCATCGTTTCGCTG This study

2010 5′-AGGCTGGCTGTACTTGAACG This study

2011 5′-CGGGCGATATTCTGATGTC This study

(Continued)
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Table 3 | Continued

Primer Sequencea,b,c,d Source

TN7 INTEGRATION CONFIRMATION

Tn7L 5′-ATTAGCTTACGACGCTACACCC Choi et al. (2005)

BPGLMS1 5′-GAGGAGTGGGCGTCGATCAAC Choi et al. (2008)

BPGLMS2 5′-ACACGACGCAAGAGCGGAATC Choi et al. (2008)

BPGLMS3 5′-CGGACAGGTTCGCGCCATGC Choi et al. (2008)

aBold indicates a newly generated restriction enzyme cleavage site.
bUnderline indicates overlapping sequence for SOEing PCR; a double underline indicates a ribosome binding site.
cItalics indicates introduced point mutations.
dPhos, 5′ phosphorylated oligonucleotide.

PROTEIN TECHNIQUES
Burkholderia pseudomallei cells were fractionated into periplasm
and spheroplastic protein fractions (cytosol and membranes)
using the PeriPreps™ Periplasting Kit (Epicentre Biotechnologies,
Madison, WI, USA) Cells were grown overnight and diluted 1:100
at 37˚C in LB medium without NaCl until an optical density of 0.7
(600 nm) was reached. The kit was used according to manufac-
turer’s protocols, including extended incubation times and higher
concentrations of lysozyme (25 μg/reaction), as recommended for
hardier bacteria.

Escherichia coli Origami 2 DE3 cells (Novagen, Madison, WI,
USA) expressing blapenA minus the first 90 nucleotides (30 amino
acids) which encode the N-terminal signal sequence were sub-
cloned in the pET24a(+) vector (Stratagene) and used for protein
production and purification. The PenA β-lactamase was extracted
from E. coli and purified using preparative isoelectric focusing.
After verification of purity by SDS PAGE, 3.0 mg of PenA was sent
to New England Peptide (Gardner, MA, USA) where the poly-
clonal anti-PenA antibodies were raised in rabbits. The antibodies
were subsequently isolated from serum using a Protein G column
(GE Healthcare Life Sciences, Piscataway, NJ, USA) purification
according to the manufacturer’s instructions.

For Western blots, protein samples were separated on NuPAGE
®

4–12% Bis–Tris polyacrylamide gels (Invitrogen) alongside Pre-
cision Plus Protein Prestained Dual Color Standards (Bio-Rad,
Hercules, CA, USA). A goat anti-Rabbit IgG alkaline phosphatase-
conjugated antibody (Sigma) was used as a secondary antibody

and SIGMAFAST™ BCIP
®
/NBT tablets (Sigma) as a detection

reagent according to the manufacturer’s protocol.

RESULTS
THE ROLE OF OF penA IN β-LACTAM RESISTANCE
To assess whether Bp82 and its parent 1026b could interchangeably
be used for PenA characterization experiments, the susceptibili-
ties of these strains to various β-lactams were tested. Observable
differences in the susceptibilities of these two strains for any of
the beta-lactams and clavulanic acid tested (Table 4) were not
seen, thereby validating the use of Bp82 in experiments otherwise
not feasible under Select Agent regulations. Deletion of the penA
gene from 1026b (strain Bp319) and Bp82 (strain Bp82.11) caused
a significant (≥4-fold) decrease in the susceptibilities for six of
nine β-lactams tested, and ≥16-fold for three of them (ampicillin,
amoxicillin, and carbenicillin; Table 4). Likewise, up-regulation

of penA by single-copy expression from the IPTG-inducible Ptac

(Bp82.21) significantly increased the MIC for seven of the eight
β-lactams tested with meropenem showing only slight change.
(Amoxicillin could not be tested as the resistance level for the wild-
type was already beyond detection.) Quantitative real time PCR
experiments showed that in the Ptac-penA strain (Bp82.21) penA
transcript levels were 36-fold higher when compared to transcript
levels observed in the wild-type strain (data not shown). This
increase in transcript levels corresponds to the observed increases
in resistance to all β-lactams. These experiments demonstrated
that although PenA is a clinically significant β-lactam resistance
mechanism, it affects some β-lactams more than others. While
mutations in penA can significantly affect the utility of ceftazidime
and amoxicillin + clavulanic acid, the enzyme has a lesser effect on
the activity of carbapenems and novel experimental drugs such as
BAL30072.

penA MUTATIONS ARE RESPONSIBLE FOR CLINICALLY SIGNIFICANT
CEFTAZIDIME AND AMOXICILLIN + CLAVULANIC ACID RESISTANCE
Previous studies identified several penA mutations in clinical and
laboratory isolates that led to clinically significant ceftazidime
or clavulanic acid resistance. Specifically, a C69Y substitution
caused high-level ceftazidime resistance (Sam et al., 2009), a
P167S substitution medium-level ceftazidime resistance (Tribud-
dharat et al., 2003), and a S72F mutation resistance to clavu-
lanic acid (Tribuddharat et al., 2003). To assess whether these
mutations alone were sufficient to cause the observed resistance
phenotypes, they were engineered into the penA gene of strain
Bp82 resulting in expression of a mutated PenA from the native
penA promoter. Susceptibility studies revealed that the C69Y
(Bp82.3) and P167S (Bp82.5) point mutations caused signifi-
cant increases in ceftazidime resistance of ≥85- and 5- to 8-fold,
respectively (Table 4). These changes are clinically significant since
the ceftazidime susceptibility, intermediate and resistance break-
points are defined as MICs of ≤8, 16, and ≥32 μg/mL, respec-
tively. The C69Y mutation sensitized strains to other β-lactams
such as amoxicillin, ampicillin, carbenicillin, and imipenem but
not amoxicillin + clavulanic acid, piperacillin, meropenem, and
BAL30072, whose MICs were already at low levels. The S72F
point mutation caused a four-fold increase in resistance to amox-
icillin + clavulanic acid in the resulting strain Bp82.4 and did not
cause any changes in susceptibility to other β-lactams.
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PenA IS SECRETED VIA THE TAT SYSTEM
Analysis of the amino-terminal PenA amino acid sequence
revealed the presence of a putative TAT-signal sequence indicat-
ing that it may be a TAT secreted protein (Figure 1). To test this
notion, the two signature arginine residues at positions 7 and 8
were changed to a lysine or alanine, respectively. MIC determi-
nations revealed that disruption of the TAT-signal sequence by
an R7K mutation (Bp342) did not affect PenA activity. This is
in accordance with previous studies which have shown that muta-
tion of the first arginine to a lysine can either have little effect or be
completely inhibitory, depending on the rest of the signal sequence
(Stanley et al., 2000). However, an R8A substitution (Bp421) com-
pletely abrogated PenA activity, consistent with PenA being a TAT
secreted enzyme. This notion was further supported by the finding
that a tatABC deletion mutant (Bp409) exhibited a susceptibility
profile similar to those of the R8A substitution (Bp421) and �penA
deletion strains (Bp319 and Bp82.11). As expected then, a �penA
�tatABC double mutant (Bp420) was most susceptible to PenA
substrates.

CELLULAR LOCALIZATION OF PenA
We next attempted to localize the PenA protein in the cell enve-
lope using Western blot analysis and polyclonal α-PenA antibodies.
Using this method, PenA could not be localized to the periplasmic
fraction but rather only to the spheroplastic fraction which con-
tains both cytosolic and membrane proteins. Multiple attempts at
isolation of PenA from the periplasmic fraction employing other
fractionation methods such as chloroform (Ames et al., 1984) or
magnesium chloride (Imperi et al., 2009) extraction yielded the
same results. Western blot analysis of the spheroplastic fraction
(Figure 2) showed the mature 27 kDa PenA protein is seen only
in an extract derived from wild-type 1026b (lane 5). In contrast,
the unprocessed 31 kDa PenA protein was observed in extracts
from the R8A (lane 1) and �tatABC (lane 2) mutants Bp421 and
Bp409, respectively. A mixture of mature and unprocessed PenA
was seen in the R7K mutant Bp342 extract with the majority being
the mature protein (lane 3). As expected, no PenA protein was
observed in the extract from the �penA mutant Bp319 (lane 4).
This experiment provides biochemical evidence for PenA process-
ing only in 1026b and the R7K mutants, both of which secrete
active PenA via the TAT system as judged by β-lactam susceptibility
assays. All other strains are susceptible to β-lactams.

LOCAL REGULATORS ARE NOT INVOLVED IN REGULATION OF penA
GENE EXPRESSION
As shown in Figure 1, the B. pseudomallei penA region encodes
two LysR-type transcriptional regulators and a putative peptidase.
Since chromosomal β-lactamase gene expression was shown to
be regulated by products of adjacent regulatory genes in several
bacteria, including B. cepacia (Trépanier et al., 1997), the struc-
tural genes encoding for these regulators were either deleted or
overexpressed and their effects on PenA transcription and activity
assessed by either qRT-PCR or MIC determinations. Carbenicillin
was used as a “sentry”β-lactam for assessing PenA activity by MIC
experiments because it is one of the best PenA substrates (Table 4).
MIC determinations showed that neither deletion of putative

regulators (Bp343 and Bp349 nor constitutive expression of the
regulators (Bp82.14 and Bp82.16) affected PenA activity (data
not shown). The same observations were made when ceftazidime
was used in susceptibility assays instead of carbenicillin. Likewise,
deletion (Bp344 and Bp82.31) or overexpression (Bp82.15) of the
putative peptidase gene upstream of penA had no effect on PenA
activity (data not shown). Lastly, since bacterial β-lactamase gene
expression can either be subject to substrate induction or influ-
enced by environmental factors such as salts (Pumirat et al., 2009),
MIC determinations were performed in the presence or absence
of substrate and salt. However, presence of ceftazidime, carbeni-
cillin, or high salt and the absence salt had no apparent effect on
β-lactam susceptibilities. qRT-PCR assays supported the MIC data,
with no change in penA expression levels observed between con-
trols and strains treated with ceftazidime, carbenicillin, imipenem,
penicillin G, or high salt (data not shown).

DISCUSSION
The data presented in this study employing isogenetic mutants in a
defined genetic background confirm that PenA is a major β-lactam
resistance factor in B. pseudomallei. Increased expression of penA
conferred increased resistance levels to the majority of β-lactams
tested. Conversely, penA deletion resulted in susceptibility to all β-
lactams tested. Furthermore, clinically observed penA mutations
were responsible for the altered β-lactam substrate spectrum of the
enzyme and consequently the new resistance profile. Point muta-
tions near the active site are the most common reason for substrate
profile shifting because they accommodate different side chains of
various β-lactams by either changing the active site steric proper-
ties or locations of the actual active residues (Drawz and Bonomo,
2010). Complete shifts in substrate profiles have been previ-
ously documented, such as with a mutant gram negative TEM-1
β-lactamase showing increased ceftazidime hydrolysis but
decreased activity against ampicillin (Venkatachalam et al., 1994).
The good news is that the B. pseudomallei C69Y PenA mutation
sensitizes the cell to other β-lactams thus possibly enabling new
therapeutic strategies. Additionally, our studies showed that of
all β-lactams tested meropenem is the only β-lactam not affected

FIGURE 2 | PenA is aTAT secreted protein. Spheroplastic proteins were
analyzed by Western blot using anti-PenA polyclonal antibodies. The arrows
point to the expected unprocessed (31 kDa) and processed (27 kDa) forms
of PenA. Lanes: 1, R8A TAT-signal sequence mutant; 2, �tatABC mutant; 3,
R7K TAT signal sequence mutant; 4, �penA mutant; 5, wild-type 1026b; M,
molecular weight markers (two proteins of the 10- to 250-kDa Precision
Plus Protein Dual Color Standards from Bio-Rad, Hercules, CA, USA).
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by penA mutations and overproduction, and thus the supe-
rior β-lactam antibiotic for melioidosis treatment with regard to
potential emergence of PenA β-lactamase mutants. Unfortunately,
current costs limit use of meropenem in many clinical settings,
especially resource poor areas of the world (Cheng et al., 2004).

The mutants created and analyzed in this study did not pre-
cisely mimic previously documented mutants. In all cases, our
strains had an equal or lower resistance level. This may simply
be due to variations in MIC methodologies, which can change
the measurements significantly (Wuthiekanun et al., 2005, or
B. pseudomallei strain variability that may affect resistance patterns
(Thibault et al., 2004). Using the S72F clinical mutant as an exam-
ple, two groups determined the MIC of the parental strain 392a
and its mutant, 392f. The first group showed a 16-fold increase
in amoxicillin–clavulanic acid resistance (Godfrey et al., 1991) but
the other group only showed a two-fold increase (Tribuddharat
et al., 2003). These numbers are significantly different from one
another. The susceptibilities observed with our isogenetic Bp82
derivatives fell between the two previously reported set of num-
bers at 4- to 5- fold. Another potential cause for inconsistency was
that some of the published experiments cloned the mutant penA
gene and expressed it in an unrelated bacterium, E. coli, from a
high-copy number plasmid (Ho et al., 2002; Tribuddharat et al.,
2003). Our data showed that increased expression of penA from
a single-copy, chromosomally inserted expression element with a
strong inducible promoter can change the profile from suscepti-
ble to resistant. A high-copy number plasmid will obviously lead
to higher gene expression and consequently high resistance lev-
els. Additionally, other cellular factors, including outer membrane
permeability, can affect the efficacy of resistance mechanisms. For
the P167S mutation, Tribuddharat et al. (2003) showed a 16-fold
increase in ceftazidime resistance in B. pseudomallei, but only a
two-fold change in an E. coli strain expressing recombinant penA
genes.

Besides playing a crucial role in the export of virulence fac-
tors in many bacteria (De Buck et al., 2008), the TAT system
has previously been shown to be required for the export of
β-lactamases in Mycobacterium smegmatis (McDonough et al.,
2005). Through deletion of the tatABC operon and mutation
of a crucial arginine residue of the putative TAT-signal sequence
of B. pseudomallei PenA, we showed that PenA is indeed a TAT
secreted enzyme. The exact cellular location of PenA β-lactamase
could not be pinpointed. Various periplasmic extraction tech-
niques failed to localize the enzyme to the periplasm but rather
indicated that it is localized in the spheroplastic compartments
of the cell which encompasses the cytosol and the membranes.
Since a secreted enzyme is unlikely to be localized in the cytosol
this experimental evidence points to the fact that PenA may be a
membrane-associated enzyme. This is in agreement with earlier
findings by Livermore et al. (1987) who demonstrated that after
sonication and centrifugation, the vast majority of β-lactamase
activity was present in the membrane fraction. Membrane associ-
ation of β-lactamases is not common but has been documented.
The first account of a membrane-associated β-lactamase in Gram
negative bacteria was from work with Moraxella catarrhalis
(Bootsma et al., 1999). In this case it was hypothesized that

the gene was a lipoprotein of Gram positive origin, as mem-
brane association in Gram positive bacteria had been previously
observed. This is unlikely the case for PenA because penA has
70% GC content, comparable to the overall genome (68%).
How B. pseudomallei PenA could become membrane associated
is unclear since there is no evidence of the enzyme being a
lipoprotein.

Further evidence for TAT secretion was obtained by analyz-
ing the PenA processing. Tullman-Ercek et al. (2007) describe
the processing of TAT-signal sequences and the cleavage of
their amino-termini upon passing through the inner mem-
brane, using MdoD as an example. The authors describe a
hydrophobic region before the processing site determined to be
an AXA motif. A comparative analysis of the amino-termini
of MdoD (MDRRRFKGSMAMAAVCGTSGASLFSQAAFA) and
PenA (MNHSPLRRSLLVAAISTPLIGACAOLRGQAKNVAAA) at
http://expasy.org/tools/protscale.html using the Kyte and Doolit-
tle hydrophobicity algorithm revealed that the two sequences
exhibited a similar hydrophobicity profile and comparable pre-
dicted processing sites (underlined AFA in MdoD and AAA in
PenA). Using this information, we calculated that the molecular
mass of PenA changes from 31 to 27 kDa after processing. Bands
corresponding to these sizes were seen observed using Western
blot analysis (Figure 2).

Some β-lactamase genes require LysR regulatory factors for
expression, with or without a β-lactam inducer. Trépanier et al.
(1997) showed that the penA gene from B. cepacia was regu-
lated by a LysR-family regulator encoded by the divergently tran-
scribed penR gene when expressed from plasmids in E. coli. PenA
β-lactamase gene expression was not only regulated by PenR but
was also inducible in the presence of imipenem in this system.
A gene, BPSS0948, homologous to B. cepacia penR is found in
B. pseudomallei downstream of penA (Figure 1). An addi-
tional LysR-family regulator encoding gene, BPSS0944, is located
upstream of penA, but it has less sequence homology to penR
and is separated from penA by a putative peptidase gene.
Our analyses involving gene deletions, induction experiments,
as well as growing cells under conditions such as salt stress
(Pumirat et al., 2009 that may trigger β-lactamase induction
showed that neither the LysR-type regulators BPSS0944 and
BPSS0948 nor the putative peptidase encoded by BPSS0945
are involved in regulation of penA expression in B. pseudo-
mallei strain 1026b, at least not under the experimental con-
ditions employed during these studies. Although many chro-
mosomal β-lactamases are inducible, others are constitutively
expressed (Neu and Chin, 1985; Jacoby and Bush, 2005).
When multiple β-lactamases are present in a bacterial strain,
they can be subject to complex regulation, including co-
regulation with penicillin binding protein 2 (Hackbarth and
Chambers, 1993; Naas et al., 1995). In this context it is
noteworthy that by analysis of clinical strains obtained from
patients that failed ceftazidime therapy and studies of recre-
ated 1026b-based mutants we and others recently identified
deletion of a B. pseudomallei PBP3 homolog as a mecha-
nism causing high-level ceftazidime resistance (Chantratita et al.,
unpublished observations).
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Definition of the molecular basis of resistance mechanisms for
clinically significant β-lactams forms the basis for design of diag-
nostic tools that allow rapid detection of emergence of resistance
and thus redirection (clinical settings) or initiation (biodefense)
of proper melioidosis therapy or prophylaxis.
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