
HYPOTHESIS ANDTHEORY ARTICLE
published: 09 January 2012

doi: 10.3389/fmicb.2011.00273

Evolutionary history, immigration history, and the extent
of diversification in community assembly
Matthew L. Knope1, Samantha E. Forde2 andTadashi Fukami 1*

1 Department of Biology, Stanford University, Stanford, CA, USA
2 Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA

Edited by:

Diana Reid Nemergut, University of
Colorado Boulder, USA

Reviewed by:

Susannah Green Tringe, DOE Joint
Genome Institute, USA
Uli Stingl, King Abdullah University of
Science and Technology KAUST,
Saudi Arabia

*Correspondence:

Tadashi Fukami, Department of
Biology, Stanford University, 371
Serra Mall, Stanford, CA 94305-5020,
USA.
e-mail: fukamit@stanford.edu

During community assembly, species may accumulate not only by immigration, but also by
in situ diversification. Diversification has intrigued biologists because its extent varies even
among closely related lineages under similar ecological conditions. Recent research has
suggested that some of this puzzling variation may be caused by stochastic differences
in the history of immigration (relative timing and order of immigration by founding pop-
ulations), indicating that immigration and diversification may affect community assembly
interactively. However, the conditions under which immigration history affects diversifi-
cation remain unclear. Here we propose the hypothesis that whether or not immigration
history influences the extent of diversification depends on the founding populations’ prior
evolutionary history, using evidence from a bacterial experiment.To create genotypes with
different evolutionary histories, replicate populations of Pseudomonas fluorescens were
allowed to adapt to a novel environment for a short or long period of time (approximately
10 or 100 bacterial generations) with or without exploiters (viral parasites). Each evolved
genotype was then introduced to a new habitat either before or after a standard competitor
genotype. Most genotypes diversified to a greater extent when introduced before, rather
than after, the competitor. However, introduction order did not affect the extent of diversi-
fication when the evolved genotype had previously adapted to the environment for a long
period of time without exploiters. Diversification of these populations was low regardless
of introduction order. These results suggest that the importance of immigration history
in diversification can be predicted by the immigrants’ evolutionary past. The hypothesis
proposed here may be generally applicable in both micro- and macro-organisms.
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INTRODUCTION
During community assembly, species can accumulate both ecolog-
ically, by immigration, and evolutionarily, by in situ diversification.
Traditionally, these processes have been studied separately by ecol-
ogists on one hand and evolutionary biologists on the other.
However, an increasing number of recent studies on both micro-
and macro-organisms consider immigration and diversification
simultaneously (e.g., Hubbell, 2001; Gillespie, 2004; Fukami et al.,
2007). Much of this change has been prompted by the growing
appreciation of “eco-evolutionary dynamics,”where ecological and
evolutionary processes operate interactively at the same time scales
(Hairston et al., 2005; Schoener, 2011). One idea that is emerging
from eco-evolutionary research is that the extent of diversifi-
cation can be affected by stochastic differences in immigration
history, such as the relative timing and order of immigration of
competing genotypes (Silvertown, 2004; Fukami et al., 2007; Gille-
spie and Emerson, 2007; Seehausen, 2007). This interactive effect
of immigration and diversification arises because early arriving
immigrants pre-empt available niches, thereby suppressing diver-
sification of late-arriving immigrants – an evolutionary “priority
effect” (Samuels and Drake, 1997; Chase, 2003; Gillespie, 2004;

Silvertown, 2004; Fukami et al., 2007; Gillespie and Emerson, 2007;
Seehausen, 2007; Urban and De Meester, 2009). It remains unclear,
however, under what conditions immigration history influences
the extent of diversification. As a first step toward answering this
question, this paper proposes one hypothesis, namely that the
importance of immigration history is determined by the degree of
prior adaptation of founding populations to the new environment.
To provide empirical support for this hypothesis, we present the
results of an experiment that involved the plant-colonizing bac-
terium Pseudomonas fluorescens and its viral parasite, phage Φ2.

Pseudomonas fluorescens is a useful model system to study diver-
sification. It has been shown to rapidly diversify into spatial niche
specialists by de novo mutation when propagated in a novel habi-
tat (static vial containing nutrient-rich liquid medium; Rainey and
Travisano, 1998). Primary classes of niche specialists that emerge
through this adaptive radiation include “smooth morphs” (SM),
which resemble the ancestral type and primarily colonize the liquid
phase, “wrinkly spreader (WS) morphs,” which form a biofilm at
the air–liquid interface, and “fuzzy spreader (FS) morphs,” which
appear to inhabit the bottom of the vial (Rainey and Travisano,
1998). Heritable variation exists within each class, and evolved
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morphotypes coexist via negative frequency-dependent selection
(Rainey and Travisano, 1998; Fukami et al., 2007; Meyer and
Kassen, 2007). Because reproduction in P. fluorescens is entirely
asexual, genotypes are analogous to species in other organisms
(Kassen et al., 2004). Further, previous work has shown strong
effects of the presence of phage Φ2 on P. fluorescens diversification
via reduction in bacterial density and selection for phage resistance
(Buckling and Rainey, 2002).

Using P. fluorescens and phage Φ2, we examined the effects of
two aspects of prior evolutionary history on the role of immigra-
tion history in diversification: how long immigrants have pre-
viously evolved in an environment similar to the new habitat,
and whether or not immigrants have previously evolved in the
presence of the exploiters that they encounter in the new habi-
tat. We examined these two aspects because both theory (Wright,
1932; Dobzhansky, 1937; Simpson, 1953; Kauffman, 1989; Whit-
lock et al., 1995; Schluter, 2000) and observations from the field
(Simpson, 1953; Schluter, 2000) suggest that the degree of simi-
larity between the prior environment that immigrants come from
and the new environment (both biotic and abiotic) is a key factor
affecting diversification in the new environment. In our exper-
iment, we allowed replicate bacterial populations to evolve in a
novel environment, with and without phage Φ2, for approximately
10 or 100 generations. We then introduced each of the evolved
genotypes into a new habitat either before or after a standard
competitor genotype to evaluate the effect of immigration history.
We found that whether or not the extent of diversification was
influenced by immigration history did depend significantly on the
adaptation history of the immigrants prior to immigration. We
will discuss possible mechanisms for this effect, and suggest that
they may be generally applicable to other systems of both micro-
and macro-organisms, with the caveat that results of microbial
experiments should not be extrapolated uncritically (Carpenter,
1996; Cadotte et al., 2005).

MATERIALS AND METHODS
CREATION OF GENOTYPES WITH DIFFERENT PRIOR EVOLUTIONARY
HISTORIES
We propagated six independent replicate lineages of wild type
P. fluorescens SBW25 (Rainey and Travisano, 1998) at 28˚C in
static 25-ml universal vials with loose caps containing 6 ml of stan-
dard King’s B (KB) liquid medium (Rainey and Travisano, 1998;
Fukami et al., 2007; Meyer and Kassen, 2007), in the absence of
phage (three lineages) and in the presence of phage (three lin-
eages). All of these lineages were initiated with a common isogenic
SM population of P. fluorescens. Approximately 3 × 105 particles
of phage SBW25Φ2 were also introduced to all appropriate vials
at the start of the propagation. Subsequently, 60 μl of culture was
transferred to fresh media every 48 h for 30 days. We harvested
1 ml of each replicate at every transfer, starting on day 1. Imme-
diately after each harvest, the samples were stored in 70% glycerol
at −80˚C. From this collection of evolved SM genotypes, we chose
genotypes isolated after 3 days (corresponding to approximately
10 bacterial generations) and 27 days (approximately 100 bacterial
generations) of propagation to represent brief and long periods of
prior adaptation to the novel environment, respectively. Thus we
had four treatments of prior evolutionary history: short or long

periods of adaptation, each in either the presence or absence of
exploiters. It has been shown under laboratory conditions that P.
fluorescens evolves to have increased general resistance to phage
over time when continuously exposed to phage (Brockhurst et al.,
2003).

MANIPULATION OF PRIOR EVOLUTIONARY HISTORY AND
IMMIGRATION HISTORY
Using the same conditions as above, we inoculated fresh vials with
an isogenic population of SM genotype isolated from an evolved
lineage (one of each of the three replicates for all four of the varied
evolutionary histories as described above; hereafter referred to as
focal genotype) and that of a common ancestral SM genotype with
a neutral lacZ genetic marker (Zhang and Rainey, 2007; used as
a standard competitor; hereafter referred to as competitor geno-
type). Use of a lacZ lineage as the competitor genotype allowed
the origin of each bacterial cell to be determined by observation
of colonies developed on KB agar plates supplemented with X-gal
(see below).

The following 12 treatments of immigration history were used:
(1) focal genotype with 3-day prior history with phage (hereafter
called 3W) introduced by itself; (2) focal genotype with 3-day prior
history without phage (3WO) introduced by itself; (3) focal geno-
type with 27-day prior history with phage (27W) introduced by
itself; (4) focal genotype with 27-day prior history without phage
(27WO) introduced by itself; (5) competitor genotype introduced
first, then 3W introduced 24 h later; (6) 3W introduced first, then
competitor genotype introduced 24 h later; (7) competitor geno-
type introduced first, then 3WO introduced 24 h later; (8) 3WO
introduced first, then competitor genotype introduced 24 h later;
(9) competitor genotype introduced first, then 27W introduced
24 h later; (10) 27W introduced first, then competitor genotype
introduced 24 h later; (11) competitor genotype introduced first,
then 27WO introduced 24 h later; and (12) 27WO introduced first,
then competitor genotype introduced 24 h later.

To initiate these replicates, we separately grew the competitor
genotype and the focal genotypes overnight (for 16 h) in liquid
KB medium at 28˚C in an orbital shaker (at 150 r.p.m.). We
then introduced 6 μl of these overnight samples to each appro-
priate vial. Additionally, all vials were inoculated with phage, as
described above. Replicates were destructively harvested every
24 h for 10 days to measure bacterial diversity and abundances
(see below). We used a total of 360 vials, i.e., 12 treatments × 3
replicates × 10 destructive harvests.

This experimental design allowed us to test if the effect of
immigration history on diversification depended on the prior evo-
lutionary history of the focal genotype. Additionally, inclusion of
phage in all replicates enabled us to determine if diversification
was affected by prior evolution with the exploiters that the focal
genotype would encounter in the new habitat.

MEASURING BACTERIAL MORPHOTYPE DIVERSITY AND ABUNDANCES
For each harvest (every 24 h), we determined cell densities of dif-
ferent morphotypes by counting colonies after 2 days of growth
on KB agar supplemented with 50 μg ml−1 5-bromo-4-chloro-
3-indolyl-beta-d-galactopyranoside (X-gal). Colony morphotype
diversity was measured following the standard methods used in
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previous work (Buckling et al., 2003; Meyer and Kassen, 2007).
Niche preference of each morphotype was confirmed by observ-
ing growth of each genotype in static medium and establishing
whether they mainly colonized the liquid phase (SM), the air–
liquid interface (WS), or the bottom (FS) of the medium. This
measure of diversity is ecologically relevant because colony mor-
phology corresponds to spatial niche use. It should be noted,
however, that genetic diversity may have also existed within colony
morphotypes, which we did not measure.

Ecological differences among these mutants can be regarded
as large as those among species in many systems of animals and
plants, for three reasons. First, previous research has identified the
genetic bases of the colony morphotypes (Spiers et al., 2002, 2003;
Kassen and Rainey, 2004; Spiers and Rainey, 2005), indicating
that they reflect genetic variation rather than phenotypic varia-
tion within the same genotype. Second, when colonies of a given
morphotype were isolated, inoculated into a fresh medium, grown

for 2 days, and plated, they produced the same colony morphotype
(Fukami et al., 2007), further confirming that the colony morpho-
types have genetic bases. Third,colony morphology corresponds to
spatial niche differentiation that is of similar or greater ecological
magnitude compared to that found among species in many other
systems. However, in future research, full genome sequencing of
different morphotypes should be helpful in further uncovering the
genetic mechanisms underlying diversification in this system.

STATISTICAL ANALYSES
Data were assessed for normality and log-transformed when nec-
essary prior to analyses. Two-way analysis of variance (ANOVA)
was used to test for effects of length of time of prior evolution,
prior evolution in the presence of phage, and their interaction
on the following response variables: the number of morphotypes
observed (time-averaged for days 8–10; Figure 1; Tables 1–3), dif-
ferences in the number of morphotypes observed (time-averaged

FIGURE 1 | Effects of prior evolutionary history and immigration

history on bacterial diversification. Black and gray lines indicate focal and
competitor genotypes, respectively. Each panel (A–L) shows mean number
of morphotypes ± SEM (n = 3) for the corresponding treatment of
immigration history and prior evolutionary history. For each treatment of

immigration history, two-way ANOVA results are indicated as follows: n.s.
denotes p > 0.05, *denotes p < 0.05, and **denotes p < 0.01 (see
Tables 1–3). “Time,” “Phage,” and “T × P” refer to the effect of length of
time of prior adaptation, of prior evolution with phage, and of their
interaction, respectively.
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for days 8–10) between early immigration and late-immigration
treatments (Figure 2; Table 4), and total number of morphotypes
descended from both the focal genotype and the competitor geno-
type (time-averaged for days 0–10; Figure 4; Table 5). All statistical
results were for two-tailed tests with α = 0.05. Statistical analyses
were performed using JMP v.8 (SAS Institute Inc.).

RESULTS AND DISCUSSION
Genotypes differing in prior evolutionary history showed sig-
nificant differences in the degree to which immigration history
affected diversification (Figures 1 and 2). In three of the four
prior-history treatments, after approximately 35 bacterial gener-
ations (at days 8–10), the focal genotype diversified to a greater
extent when it was introduced before, rather than after, its com-
petitor (compare Figures 1A vs. 1E, 1B vs. 1F, and 1C vs. 1G, see
also Figure 2). This result is an expected outcome from previous
work (Brockhurst et al., 2007; Fukami et al., 2007). However, when
the focal genotype had a long history of adaptation to the labo-
ratory environment in the absence of phage, immigration history
did not have a significant effect on the extent of diversification
(compare Figures 1D vs. 1H, see also Figure 2).

Why did the importance of immigration history depend on
prior evolutionary history? To address this question, we exam-
ined the effect of prior evolutionary history within each of the
two immigration treatments separately, i.e., when the focal geno-
type was introduced first and when it was introduced after the
competitor. When introduced first, the focal genotype almost

completely suppressed the competitor genotype, both in diver-
sity (Figures 1A–D) and abundance (Figures 3A–D), regardless
of prior evolutionary history. Therefore, diversification of early
immigrants can be considered equivalent to diversification fol-
lowing a single immigration event, simplifying interpretation of
results. In fact, when the focal genotype was introduced alone,
diversification patterns resembled those observed in the early
immigrant treatments (compare Figures 1A–D vs. 1I–L).

We expected that, if introduced alone, genotypes with shorter
prior history, and therefore with decreased opportunity for pre-
vious adaptation to the novel environment, would diversify more
extensively. Two possible mechanisms underlie this expectation.
First, both theory (Wright, 1932; Dobzhansky, 1937; Kauffman,
1989; Whitlock et al., 1995) and empirical evidence from P. fluo-
rescens (Buckling et al., 2003) indicate that poorly adapted geno-
types have a high potential to diversify via ascending of multiple
adaptive peaks. If an immigrant is already adapted to a particu-
lar peak, it may be difficult to shift to a new peak, consequently
hampering diversification via niche specialization (Buckling et al.,
2003; Brockhurst et al., 2007). Second, poorly adapted genotypes
may be unable to out-compete descendant genotypes, facilitating
the descendants’ increase in abundance once they arise by muta-
tion. Although our data do not allow us to ascertain which of these
two mechanisms (or both) operated, our results are consistent with
the expectation that shorter prior adaptation to the environment
results in more extensive diversification (compare Figures 1I vs.
1K and 1J vs. 1L).

Table 1 | ANOVA results on the number of morphotypes (time-averaged for days 8–10) for focal genotypes introduced 24 h before the

competitor genotype.

Factor df SS MS F p

Time 1 2.99 2.99 20.10 0.002

Phage 1 1.80 1.80 12.10 0.008

Time × phage 1 2.99 2.99 20.10 0.002

Error 8 1.19 0.15

Table 2 | ANOVA results on the number of morphotypes (time-averaged for days 8–10) for focal genotypes introduced 24 h after the competitor

genotype.

Factor df SS MS F p

Time 1 0.59 0.59 0.60 0.461

Phage 1 0.04 0.04 0.04 0.847

Time × phage 1 4.48 4.48 4.58 0.065

Error 8 7.83 0.98

Table 3 | ANOVA results on the number of morphotypes (time-averaged for days 8–10) for focal genotypes introduced alone.

Factor df SS MS F p

Time 1 8.91 8.91 20.02 0.002

Phage 1 6.75 6.75 15.17 0.005

Time × phage 1 1.00 0.00 0.00 1.000

Error 8 3.56 0.45
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We also expected that genotypes that previously evolved in
the presence of phage would diversify more than those that did
not evolve with phage. There are three possible mechanisms for
this expectation. First, previous work has shown that reduction
in P. fluorescens density by phage results in reduced resource
competition, weakening selection pressure for competitive ability
(Buckling and Rainey, 2002). Genotypes that previously evolved
with phage may therefore be relatively poorly adapted to the labo-
ratory environment, thereby facilitating subsequent diversification
as discussed above. Second, genotypes that previously evolved with
phage multiplied more quickly (compare Figures 3I vs. 3J and 3K
vs. 3L), which may have caused more intense competition, result-
ing in more extensive diversification. Third, previous work has also
found the existence of fitness trade-offs in P. fluorescens between
phage resistance and competitive ability (Brockhurst et al., 2004).
With such trade-offs, genotypes that previously evolved with phage
may be relatively weak in competition and may not strongly sup-
press descendant mutants, thereby allowing adaptive radiation.
Although we cannot determine which mechanism(s) operated, we
found that, as expected, prior evolution with phage led to more
extensive diversification (compare Figures 1I vs. 1J and 1K vs. 1L).

In contrast to these results for early immigrants, prior evolu-
tionary history did not significantly affect the extent of diversifi-
cation of late immigrants (Figures 1E–H). Diversification of late
immigrants was consistently low regardless of prior evolutionary
history (Figures 1E–H). We hypothesize that any potential effect
of prior evolutionary history on diversification was overwhelmed
by strong niche pre-emption by the early-arriving competitor
genotype (Brockhurst et al., 2007; Fukami et al., 2007), which
fared better in both diversity (Figures 1E–H) and abundance
(Figures 3E–H) by virtue of early arrival. If niche pre-emption
was important, diversification should be deterministic when over-
all diversity of all genotypes descended from both immigrants is
considered. Our data are consistent with this expectation, with
no significant difference in total diversity between prior-history
treatments (Figure 4).

Taken together, our data, combined with previous evidence
(Buckling and Rainey, 2002; Buckling et al., 2003; Brockhurst et al.,
2004, 2007; Fukami et al., 2007), provide likely explanations for
why the importance of immigration history depended on prior
evolutionary history, which can be summarized as follows. The
focal genotype usually diversified more extensively when it arrived
early, due to niche pre-emption (Brockhurst et al., 2007; Fukami
et al., 2007). However, this priority effect did not occur if the focal
genotype previously had a long period of adaptation in the absence
of phage. Genotypes with this history had such a heavily compro-
mised ability to diversify that the extent of diversification after
early arrival was indistinguishable from the consistently low level
of diversification after late arrival of any immigrant (Figures 1D
vs. 1E–H).

FIGURE 2 | Comparison of diversification of focal genotypes

immigrating early and late. Data show the difference in the mean number
of morphotypes derived from the focal genotype ± SEM (n = 3) measured
at the end of the experiment (on days 8–10). Two-way ANOVA results are
indicated as in Figure 1 (seeTable 4).

Table 4 | ANOVA results on the number of morphotypes (time-averaged for days 8–10) for the difference between early and late arrival of focal

genotypes.

Factor df SS MS F p

Time 1 7.79 7.79 4.97 0.056

Phage 1 1.56 1.56 1.00 0.347

Time × phage 1 12.67 12.67 8.09 0.021

Error 8 12.53 1.57

Table 5 | ANOVA results on the total number of morphotypes from both the competitor genotype and the focal genotype (time-averaged for

days 0–10).

Factor df SS MS F p

Time 1 0.23 0.23 0.08 0.785

Phage 1 1.13 1.13 0.40 0.545

Time × phage 1 0.76 0.76 0.27 0.617

Error 8 22.38 2.80
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FIGURE 3 | Effects of prior evolutionary history and immigration history on bacterial abundance. Black lines indicate focal genotype and gray lines
indicate competitor genotype. Each panel (A–L) shows mean abundance [log10(cfu ml−1)] ± SEM (n = 3) for the corresponding treatment of immigration history
and prior evolutionary history.

FIGURE 4 |Temporal change in total number of morphotypes after

the competitor genotype was introduced on day 0 and the focal

genotype on day 1. Data show mean number of morphotypes (those
derived from focal and competitor genotypes combined) ± SEM
(n = 3). Two-way ANOVA results are indicated as in Figure 1 (see
Table 5).

The mechanisms indicated in our experiment may also explain
some of the variation in the extent of diversification in other
systems of micro- and macro-organisms, particularly those involv-
ing discrete, replicated habitats such as islands, lakes, and moun-
taintops. Some of the evolutionary mechanisms that influence
bacteria, including lateral gene transfer, uptake of foreign DNA
from the environment, mobile DNA elements, recombination
machinery, and high mutation rates, may make their diver-
sification different from that of macro-organisms. Neverthe-
less, evolutionary priority effects similar to those we found
in P. fluorescens may explain variation in diversification in
macro-organisms as well. Possible examples include Macarone-
sian plants (Silvertown, 2004), African lake cichlids (Seehausen,
2007), and Hawaiian Tetragnatha spiders (Gillespie, 2004). Fur-
ther, in some systems where the extent of diversification varies
considerably, e.g., Caribbean Anolis lizards (Calsbeek and Cox,
2010), mainland source populations appear to have evolved in
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the presence of exploiters (predators), whereas islands where
founders immigrated and diversified differ in the occurrence
of exploiters, indicating the potential for exploiters to affect
diversification.

CONCLUSION
Historical contingency undermines our ability to explain commu-
nity assembly because it is difficult to ascertain past events in detail
(Gould, 1989; Schluter, 2000; Gavrilets and Losos, 2009; Fukami,
2010). Not all aspects of history are equally complicated, how-
ever. In many communities of both micro- and macro-organisms,
immigration history is not possible to infer, but adaptation history
often is through the combined use of geological, biogeographi-
cal, and phylogenetic information (Emerson and Gillespie, 2008;
Losos and Ricklefs, 2009; Glor, 2010). Thus, if the hypothesis we
propose here is correct, it means that the evolutionary importance
of historical events that cannot be reconstructed (i.e., subtle differ-
ences in early immigration history) may nevertheless be possible

to predict by analyzing more tractable aspects of history (i.e.,
immigrants’ prior adaptation history). For this reason, we believe
it will be worthwhile to evaluate the generality and mechanis-
tic bases of our hypothesis in greater detail to gain an improved
understanding of immigration, diversification, and community
assembly.
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