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Prior to the recent discovery of Ignavibacterium album (I. album), anaerobic photoau-
totrophic green sulfur bacteria (GSB) were the only members of the bacterial phylum
Chlorobi that had been grown axenically. In contrast to GSB, sequence analysis of the
3.7-Mbp genome of I. album shows that this recently described member of the phylum
Chlorobi is a chemoheterotroph with a versatile metabolism. I. album lacks genes for pho-
tosynthesis and sulfur oxidation but has a full set of genes for flagella and chemotaxis.
The occurrence of genes for multiple electron transfer complexes suggests that I. album
is capable of organoheterotrophy under both oxic and anoxic conditions.The occurrence of
genes encoding enzymes for CO2 fixation as well as other enzymes of the reductive TCA
cycle suggests that mixotrophy may be possible under certain growth conditions. How-
ever, known biosynthetic pathways for several amino acids are incomplete; this suggests
that I. album is dependent upon on exogenous sources of these metabolites or employs
novel biosynthetic pathways. Comparisons of I. album and other members of the phylum
Chlorobi suggest that the physiology of the ancestors of this phylum might have been quite
different from that of modern GSB.

Keywords: Chlorobi, Ignavibacterium album, genome sequence

INTRODUCTION
Ignavibacterium album (I. album), currently the earliest diverg-
ing, cultured member of the phylum Chlorobi (Iino et al., 2010),
was recently isolated from microbial mats associated with the
sulfide-rich waters of Yumata Hot Spring in Japan. Its discovery
has dramatically changed the current perceptions of this phylum.
Prior to the discovery of I. album, all well-characterized mem-
bers of the phylum Chlorobi were physiologically similar, and the
common name “green sulfur bacteria” (GSB) accurately portrayed
their shared physiological characteristics (Frigaard and Bryant,
2004; Bryant and Frigaard, 2006). GSB are strictly anaerobic, non-
flagellated, obligate photoautotrophs that produce chlorosomes as
their light harvesting complexes. Their photosynthetic apparatus
also includes the BChl a-binding Fenna–Matthews–Olson (FMO)
protein and homodimeric, type-1 reaction centers (Bryant and
Frigaard, 2006; Bryant et al., 2012). Other common metabolic fea-
tures of GSB include the ability to fix CO2 through the reactions
of the reverse TCA cycle (Buchanan and Arnon, 1990; Wahlund
and Tabita, 1997; Tang et al., 2011); the ability to fix N2 (Wahlund
and Madigan, 1993); and the ability to oxidize sulfide and other
reduced sulfur compounds. Chlorobium ferrooxidans is the only
known exception to the latter; it uses ferrous iron as the reductant
for CO2 fixation and can perform assimilatory sulfate reduction

(Heising et al., 1999; Overmann, 2008; Frigaard and Dahl, 2009;
Gregersen et al., 2011).

Ignavibacterium album cannot grow phototrophically, and it
was initially described as non-pigmented and unable to synthe-
size (bacterio)chlorophylls, chlorosomes, FMO, or photosynthetic
reaction centers. Several key photosynthesis genes could not be
detected in I. album by polymerase chain reaction (PCR; Iino et al.,
2010). Thus, I. album was the first, and currently remains the only,
non-phototrophic member of the phylum Chlorobi that has been
isolated and grown axenically in the laboratory. I. album is not a
GSB and is only distantly related to other members of the Chlorobi
that have been cultured; its 16S rRNA sequence is only 77–83%
identical to those of GSB. A phylum-wide 16S rRNA analysis
showed that I. album and some other uncultured organisms rep-
resent one of five early-diverging, class-level lineages outside the
class Chlorobea (Iino et al., 2010), which includes all other cul-
tured Chlorobi that can be described as GSB (see Figure 1). On
the basis of initial cultivation studies, I. album was suggested to
be strictly anaerobic and non-motile; it grew fermentatively on
d-glucose and yeast extract (Iino et al., 2010).

Shortly after the description of I. album and based on find-
ings from both metagenomics and metatranscriptomics, another
unconventional member of the phylum Chlorobi, “Candidatus
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FIGURE 1 | Phylogenetic tree of 16S rRNA sequences of I. album and

related species from the phylum Chlorobi. The tree was generated using
neighbor-joining algorithm with Jukes–Cantor correction. Sequences of three
Bacteroidetes species were used as the outgroup. Bootstrap support values

based on 1000 bootstrap samplings were shown for each node. Bar denotes
0.02 changes per nucleotide site. The classes Chlorobia and Ignavibacteria
only contain one order and brackets for those orders were omitted to simplify
the figure.

Thermochlorobacter aerophilum” (“Candidatus T. aerophilum”),
was described (Liu et al., 2012). This still uncultured organism
is predicted to be a photoheterotroph that cannot oxidize sulfur
compounds, cannot fix nitrogen, and lacks a complete reverse TCA
cycle. Unlike GSB, “Candidatus T. aerophilum” is predicted to be
capable of growth under oxic conditions.

In this study we present the complete genome sequence of I.
album and describe the physiological and metabolic capabilities of
this organism that were inferred from its genome. In contrast to
initial conclusions from cultivation studies with I. album, genome
analyses suggest that it is a metabolically versatile organism that is
capable of organoheterotrophy under both oxic and anoxic con-
ditions. The organism also has CO2-fixing enzymes and appears
to be capable of at least mixotrophic growth under certain condi-
tions. A surprising finding was a nearly complete set of genes for
the assembly of flagella and chemotaxis in the genome. Compar-
isons with other organisms belonging to the phylum Chlorobi are
presented, and the possible implications of these findings on the

evolution of photosynthesis and of the phylum Chlorobi are also
discussed.

METHODS AND MATERIALS
BACTERIAL STRAINS AND DNA PREPARATION
Ignavibacterium album JCM 16511T was grown at 45˚C for 10 days
in GS medium as described previously (Iino et al., 2010). Genomic
DNA was extracted from ∼7 g of cells collected from 5 L of
the culture according to the cetyltrimethylammonium bromide
(CTAB) protocol for bacterial DNA isolation of the Joint Genome
Institute1.

GENOME SEQUENCING, ASSEMBLY, AND ANNOTATION
Purified DNA was sequenced in a 454 pyrosequencer (GS FLX+,
Roche) at the Genomics Core Facility of the Huck Institutes of

1http://my.jgi.doe.gov/general/
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the Life Sciences at The Pennsylvania State University. A total of
554,976 paired-end reads were generated and assembled by New-
bler assembler (Roche) into one large scaffold comprising 88 con-
tigs and 34 stand-alone contigs of 500 bp or larger with an average
read depth of ∼40×. Further assembly and gap closing was man-
aged using the phred/phrap/consed package (Ewing et al., 1998;
Gordon et al., 1998). PCR products covering gaps between contigs
were obtained by following suggestions from paired-end reads or
by combinatorial PCR and were sequenced. Potential frame shifts
were predicted using GeneTack (Antonov and Borodovsky, 2010)
and either confirmed or corrected after resequencing or were mod-
ified after re-examining and editing the original assembly. The
genome was annotated using a pipeline based on FGENESB soft-
ware (Softberry, Inc., USA), Artemis (Sanger Institution, UK), and
custom-made Perl scripts (ActivePerl; ActiveState Inc., Vancouver,
BC, USA). The rRNA genes were annotated using RNAmmer 1.2
software2 (Lagesen et al., 2007). Naming of proteins was based
primarily on the KEGG database3 and on recommendations by
GenBank4. The genome sequence has been deposited in GenBank
and has been assigned the accession number CP003418.

PIGMENT ANALYSES
Pigments were extracted from cell pellets of I. album by sonication
in acetone:methanol (7:2 vol/vol), and the resulting extracts were

2http://www.cbs.dtu.dk/services/RNAmmer/
3http://www.genome.jp/kegg/
4http://www.ncbi.nlm.nih.gov/genbank/genomesubmit

analyzed by high-performance liquid chromatography (HPLC)
using the protocol described in Frigaard et al. (2004). The
HPLC system included a binary pump (model G1312A), vacuum
degasser (model G1379A), manual injector (model G1328A), and
a diode-array detector (model G1315B; 1100 series; Agilent Tech-
nologies, Palo Alto, CA, USA); Agilent ChemStation software was
used to control the system. The HPLC column was an analytical 5-
μm Discovery C18 column (25 cm by 4.6 mm; Supelco, Bellefonte,
PA, USA).

RESULTS
GENOME OVERVIEW
Ignavibacterium album has a single circular chromosome of
3,658,997 bp with a mol% G + C content of 34% (Figure 2). The
genome includes one rRNA operon, 45 tRNA genes, and 3,195
predicted protein coding sequences (open reading frames, ORFs),
and 2 ORFs with frameshift mutations encoding non-functional
proteins. The 3,195 ORFs were compared to the proteins of the
GenBank non-redundant protein database using BLASTP, and
Figure 3 shows the distribution by phylum of the best hits from this
analysis. Only ∼15% of the most similar homologs (top BLASTP
hits) in the GenBank database were proteins derived from other
members of the phylum Chlorobi, with these best hits often com-
ing from Chloroherpeton thalassium. Proteins from members of
the Bacteroidetes, which share a common ancestor with members
of the Chlorobi (Ludwig and Klenk, 2001; Ciccarelli et al., 2006),
accounted for ∼26% of the most similar homologs. The remaining
proteins, accounting for nearly 60% of the proteins in the genome,

FIGURE 2 | Circular map of I. album genome. Circles from outside in:
genes on the forward strand; genes on the reverse strand; G + C% plot; and

GC skew plot. Baseline on the G + C% plot represents the average value of
34%. Gene colors indicate the COG categories to which they belong.
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were either most similar to proteins of very distantly related
organisms, including members of the Proteobacteria (16.2%), Fir-
micutes (9.0%), or“Others”(21.4%), or had no hits in the database
(12.4%). The data in Figure 3 demonstrate the relative uniqueness
of I. album within the broader context of current knowledge of
the comparative genomics of other members of the Chlorobi. This
distribution of most similar homologs will probably change signif-
icantly when the genomes of additional, early-diverging members
of the Chlorobi are characterized, especially those belonging to
organisms other than GSB. It should be noted that the absence of
well-characterized close relatives of I. album inevitably increases
the uncertainty of inferences about its metabolism and physiology.

Consistent with the distant relationship between I. album and
GSB, 273 of the 813 orthologous core proteins shared by 12 GSB
(Bryant et al., 2012) were absent in the I. album genome. Among
the missing genes were all genes related to photosynthesis, such
as those encoding subunits of the photosynthetic reaction center
(pscA, pscB, pscC, pscD), fmoA, (bacterio)chlorophyll biosynthesis,
and genes encoding chlorosome envelope proteins. These obser-
vations confirmed results from cultivation studies, which showed
that I. album is non-phototrophic, as well as negative results from
attempts to amplify photosynthesis-related genes by PCR (Iino
et al., 2010).

CENTRAL CARBOHYDRATE METABOLISM
The I. album genome encodes a complete set of genes for glycol-
ysis, the TCA cycle, and gluconeogenesis, and these observations
are consistent with observation that it can grow with glucose or
other oligosaccharides as sole carbon source (Iino et al., 2010). The
genome also includes genes for glycogen synthase and glycogen
phosphorylase, which suggests that glycogen is its major stor-
age compound. Genes for polyhydroxyalkanoate synthesis and
degradation were not detected. I. album probably produces acetate
and l-lactate as the main products when growing fermentatively.
Common pathways for fermentative production of propionate
(via methylmalonyl-CoA carboxyltransferase), ethanol (via alco-
hol dehydrogenase), and formate (via pyruvate formate lyase) are
apparently incomplete or missing altogether.

Ignavibacterium album possesses genes encoding two CO2-
fixing enzymes pyruvate:ferredoxin oxidoreductase (PFOR;
IALB_2949) and 2-oxoglutarate:ferredoxin oxidoreductase (KFOR;
IALB_1501, IALB_1502), which are essential for autotrophic CO2

fixation in GSB (Feng et al., 2010). Because the glyoxylate cycle
is not present, PFOR is probably essential for the assimilation of
acetate by carboxylation of acetyl-CoA to pyruvate. Unlike its GSB
relatives, the I. album genome does not encode ATP-dependent
citrate lyase, which is a key enzyme required for autotrophic
CO2 fixation by the reverse TCA cycle in GSB (Wahlund and
Tabita, 1997). The genes for alternative enzymes found in other
organisms with reverse TCA cycle activity, namely citryl-CoA
synthetase and citryl-CoA lyase (Aoshima et al., 2004a,b), and
the postulated type II ATP-dependent citrate lyase (Hügler and
Sievert, 2011), were also absent. However, the I. album genome
does include genes (IALB_1146, IALB_1147) that encode an ATP-
independent citrate lyase (Bott and Dimroth, 1994). IALB_1146
encodes the α subunit, CitF, while IALB_1147 encodes a fusion of
the β and γ subunits, CitE and CitD. This enzyme catalyzes the
cleavage of citrate to acetate and oxaloacetate, and it is involved
in citrate fermentation in some organisms (Meyer et al., 2001).
It is possible that this enzyme performs the same function in
I. album. In support of this possibility, a putative citrate trans-
porter gene (IALB_1014) occurs in the genome. Although this
role has not yet been proposed for this enzyme, an interesting
possibility that must be considered is that the ATP-independent
citrate lyase could also function in the reverse TCA cycle in I.
album. If so, this organism would then possess a complete reverse
TCA cycle. The operation of the reverse TCA cycle for CO2

assimilation would also depend upon the availability of electron
sources to produce reduced ferredoxin. The genome of I. album
includes genes necessary to take advantage of some potential elec-
tron sources and for the production of reduced ferredoxin from
them (see below). In conclusion, the gene content of the I. album
genome shows that the organism can probably grow mixotroph-
ically. Additionally, it may have a complete but unconventional
reverse TCA cycle (Figure 4), but this hypothesis will have to be
tested experimentally.

FIGURE 3 | Phylogenetic distribution of BLASTP best hits of I. album proteins compared to proteins in the NCBI nr database. An e-value cut-off of 0.001
was used.
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FIGURE 4 | Proposed mixotrophy and a potential unconventional reverseTCA cycle in I. album. Fd, ferredoxin; red, reduced; ox, oxidized; Hyd,
hydrogenase; MKH2, menaquinol; Rnf, Na+-translocating ferredoxin:NAD+ oxidoreductase.

ELECTRON CARRIERS
Ignavibacterium album has a complete set of men genes for the
synthesis of menaquinone and HPLC analyses show that I. album
produces menaquinone-7 like GSB (Iino et al., 2010; Figure 5A).
Genes for enzymes of ubiquinone biosynthesis were not detected.
The I. album genome encodes at least nine ferredoxins, including
both 2Fe-2S and 4Fe-4S types, which have different sensitivities
to O2 (Jagannathan and Golbeck, 2008) and thus might func-
tion under different O2 conditions. Interestingly, genes encoding
rubredoxins were not detected.

ELECTRON TRANSFER COMPLEXES
The I. album genome encodes a variety of electron transfer com-
plexes, including the RNF (Na+-translocating ferredoxin:NAD+
oxidoreductase) complex (Biegel et al., 2011), two type-1 NADH
dehydrogenase complexes, and alternative complex III (ACIII).
Multiple terminal electron transfer complexes, including those for
growth under oxic and anoxic conditions, were also present in the
genome (see Figure 6 and below). The presence of such a wide
spectrum of electron transfer complexes likely reflects an ability
of I. album to utilize the different electron carriers used by various

redox enzymes as well as the various terminal electron acceptors
that might be available in situ.

An eight-gene cluster (IALB_0246 to 0253) includes the
rnfCDGEAB genes, which encode the RNF complex, as well as two
other genes whose functions are unclear. The RNF complex creates
a Na+ gradient across the cytoplasmic membrane that can be used
to produce ATP when reduced ferredoxins are oxidized by NAD+.
This complex could also operate in reverse to oxidize NADH and
produce reduced ferredoxins, which are the required reductants
for important anabolic reactions, such as the ones catalyzed by
KFOR and PFOR mentioned above. Unlike its GSB relatives, I.
album does not have a photosynthetic apparatus to produce the
reduced ferredoxins required for carbon fixation by the reverse
TCA cycle. Therefore, the RNF complex, which might provide a
major route for the production of such reductants, would proba-
bly play an important role in the energy metabolism of I. album.
Although all GSB produce reduced ferredoxins using their type-1
homodimeric reaction centers, several GSB genomes also possess
homologs of the rnf genes found in I. album. Other than KFOR and
PFOR, the I. album genome includes genes for two other 2-oxo-
acid:ferredoxin oxidoreductases: 2-oxo-isovalerate oxidoreductase
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FIGURE 5 | High-performance liquid chromatography elution profile of

pigments produced in I. album. The in-line absorption spectra of the peaks
are shown in the numbered boxes. (A) Elution profile monitoring absorbance

at 270 nm. Peaks 1–4, menaquinones. (B) Elution profile monitoring
absorbance at 491 nm. Peaks 1, 2, deoxyflexixanthin derivatives; peaks 3-10
1′-hydroxytorulene derivatives.

(VOR) and indole-pyruvate oxidoreductase (IOR). VOR and IOR
have been shown to function in amino acid fermentation and/or
synthesis (Tersteegen et al., 1997).

The I. album genome includes two sets of genes encoding type-
1 NADH dehydrogenase (NDH-1). One set forms an apparent
operon (IALB_1622 to 1632) that, compared to Escherichia coli
NDH-1, is missing three genes, nuoEFG (Figure 7A). This gene
cluster is also conserved in all sequenced GSB genomes. Only
C. thalassium, which has a full set of 14 nuo genes, and “Can-
didatus T. aerophilum,” which has 12 nuo genes, have additional
NDH-1 genes. Without the subunits for the diaphorase activity,
this complex should not function as an NADH:quinone oxidore-
ductase. It has been suggested that such NDH complexes may
couple with hydrogenase or ferredoxin:quinone oxidoreductase,
or receive electrons directly from reduced ferredoxin(s), to com-
plete their functionality in electron transport (Eisen et al., 2002;
Battchikova et al., 2011). The other genes for NDH-1 are divided
into three gene clusters, which include homologs for all 14 subunits

of the NDH-1 of E. coli (Figure 7A). Although the genes fall
into different gene neighborhood groupings, C. thalassium is the
only GSB that has a complete set as well as additional NDH-1
genes. The products of these genes are expected to form a complex
functioning as an NADH:quinone oxidoreductase. Phylogenetic
analyses of these two sets of genes indicate that they are relatively
distantly related, and that they did not arise from recent gene
duplication. The subunits of both NDH-1 complexes are similar
to proteins that occur in various members of the Bacteroidetes,
and thus these genes may have been present in the ancestors
of extant members of the Chlorobi (Figure 8A). It is interest-
ing that the three earliest diverging members among Chlorobi
whose genomes have been sequenced, I. album, “Candidatus T.
aerophilum,” and C. thalassium, each have two sets of NDH-1
genes. It seems likely that ancestral members of the Chlorobi
had both copies and that the genes for one of them (the 14-gene
set) was lost in the lineage leading to the ancestor of extant GSB
strains.
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FIGURE 6 | Cellular overview of I. album metabolism deduced from its

genome sequence. Only selected pathways and enzymes discussed in the
text are shown. Blue arrows indicate pathways of electron flow. NDH-1,

type-1 NADH dehydrogenase; Fd, ferredoxin; MK, menaquinone; cyt,
cytochrome; Mo complex, complexes containing a molybdopterin-guanine
dinucleotide cofactor; ACIII, alternative complex III.

FIGURE 7 | Gene clusters encoding type-1 NADH dehydrogenase (A) and alternative complex III and caa3-type cytochrome oxidase (B) of I. album.
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FIGURE 8 | Phylogenetic trees type-1 NADH dehydrogenase proteins

(A), cytochrome bd-quinol oxidases (B), and molybdopterin-guanine

dinucleotide cofactor-containing complexes (C) from I. album and

other organisms. Concatenated NuoABCDHIJKLMN protein sequences
were used for (A); concatenated CydAB protein sequences were used
for (B); molybdopterin-guanine dinucleotide-containing subunit

sequences were used for (C). Trees were created using the
neighbor-joining algorithm from 100 bootstrap samplings. Bootstrap
support values over 50% are shown. Scale bars denote X changes per
amino acid where X is the number above bars. SU, subunits. (C) was
adapted from Yanyushin et al. (2005) and was recreated by including I.
album proteins.
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Unlike its GSB relatives, all of which have cytochrome b-Rieske
type complexes, i.e., quinol:electron acceptor oxidoreductases, I.
album has ACIII, which is a phylogenetically unrelated electron
transfer complex that performs the same function (Pereira et al.,
2007; Gao et al., 2009). The gene cluster (IALB_1386, 1388, 1389,
1390, and 1391) encoding ACIII is very similar to the gene clus-
ters that have been characterized in Rhodothermus marinus and
Chloroflexus aurantiacus. An exception is that IALB_1390 codes
for a fusion protein of ActD and ActE (Figure 7B), which are nor-
mally produced as separate gene products in other organisms. The
genes for ACIII are often clustered with those for cytochrome c
oxidases (Refojo et al., 2010a), and functional coupling between
these two complexes has been demonstrated (Refojo et al., 2010b).
The clustering of these genes is also observed in I. album genome
(Figure 7B) and suggests that they are probably involved in res-
piration under oxic conditions. Together with some additional
evidence (see below), these observations strongly suggest that I.
album is not a strict anaerobe as previously reported on the basis
of cultivation studies (Iino et al., 2010). ACIII is much more widely
distributed than the cytochrome b-Rieske complex among mem-
bers of the Bacteroidetes (Refojo et al., 2010a). “Candidatus T.
aerophilum” has both ACIII as well as two different cytochrome b-
Rieske complexes (Liu et al., 2012). These data suggest that ACIII
was probably present in the ancestor of the Chlorobi and that
cytochrome b-Rieske type complexes were obtained and ACIII
was then lost during evolution of extant GSB.

Ignavibacterium album has four different oxygen-dependent
terminal oxidases, including caa3-type (IALB_1394 to 1397) and
cbb3-type (IALB_0721 and 0723) heme-copper cytochrome c oxi-
dases and two different cytochrome bd-quinol oxidases (Figure 6).
The quinol oxidase complexes are only distantly related; one
(IALB_0420 and 0421) is similar to homologs found in most
GSB, and the other (IALB_1098 and 1099) is similar to homologs
that occur in C. thalassium and members of the Bacteroidetes
(Figure 8B). The potential functional difference between these two
complexes is unclear from these sequence analyses alone. However,
the data seem to imply that ancestors of Chlorobi might have had
two quinol oxidases like I. album, and C. thalassium and other GSB
subsequently inherited different ones. All three types of terminal
oxidases could participate in aerobic respiration and/or protec-
tion against reactive oxygen species (Garica-Horsman et al., 1994;
Li et al., 2009; Hassani et al., 2010). The cbb3 cytochrome oxidase
and cytochrome bd-quinol oxidase typically have much higher
affinity for O2 than the caa3 cytochrome oxidase (van der Oost
et al., 1994; D’Mello et al., 1996; Preisig et al., 1996), and because
of this, they are frequently involved in protecting anaerobes from
reactive oxygen species. The distribution of these complexes in
members of the Chlorobi is consistent with this general trend.
Strictly anaerobic GSB only have one or both of the high-affinity
terminal oxidases (Li et al., 2009), while the aerobe, “Candidatus
T. aerophilum,” only has the cytochrome caa3 oxidase (Liu et al.,
2012). The presence of all three types of complexes in I. album
strongly suggests that I. album experiences varying O2 concentra-
tions in situ. The presence of these different terminal oxidases in
I. album would confer not only the ability to respire under oxic
conditions but also the ability to protect oxygen-sensitive enzymes
such as hydrogenase under microoxic conditions.

OXIC METABOLISM
Additional evidence in the genome supports the deduction that
I. album should grow under oxic conditions. I. album has genes
encoding both catalase (IALB_0054) and superoxide dismutase
(IALB_1637), which protect organisms exposed to O2 from reac-
tive oxygen species. I. album also has an oxygen-dependent pro-
toporphyrinogen oxidase (HemY, IALB_0230; Dailey and Dai-
ley, 1996) for heme biosynthesis, and it also has several puta-
tive dioxygenases that are not found in any GSB genome. In
its central metabolism, I. album has genes for the catabolic
enzymes pyruvate dehydrogenase and 2-oxoglutarate dehydroge-
nase, which are typically found in, but are not exclusively limited
to, aerobes. However, the presence of these genes implies that
I. album frequently is in contact with oxygen and even utilizes
oxygen as a substrate in some of its key metabolic pathways.
Although I. album was initially grown under strictly anoxic con-
ditions (Iino et al., 2010), more recent cultivation studies have
confirmed that I. album can grow in the presence of oxygen
concentrations ranging from 1 to 20% (v/v; data not shown).
In summary, I. album is at least a facultative anaerobe, but it
may be capable of growth under microoxic or even oxic con-
ditions, provided that other nutrients required for growth are
provided.

ANAEROBIC RESPIRATION
In addition to ACIII, I. album possesses genes encoding two
additional oxidoreductases predicted to contain molybdopterin-
guanine dinucleotide cofactors. A phylogenetic analysis of the
other two complexes and other related enzymes was conducted
to predict their substrate specificity. One of them (IALB_1661 to
1663) is related to polysulfide and thiosulfate reductases (Hinsley
and Berks, 2002), and the other (IALB_2813 to 2815) is most sim-
ilar to tetrathionate reductases (Hensel et al., 1999; Figure 8C).
Such predictions are obviously provisional and require further
experimental testing. Whatever the actual substrate specificity,
these membrane-bound complexes could potentially function in
respiration under anoxic conditions.

Ignavibacterium album also has genes encoding respiratory
nitrite reductase, nitric oxide reductase, and nitrous oxide reduc-
tase (Figure 6). The nitrite reductase is a membrane-bound com-
plex consisting of two proteins, NfrA (IALB_0860) and NfrH
(IALB_0861), which catalyze the ammonification of nitrite using
menaquinol as the electron donor (Simon, 2002). I. album does
not have any NO reductases belonging to the heme-copper oxidase
family, such as cNor, qNor, sNor, or gNor, but its genome encodes
a tetraheme cytochrome c-type NO reductase CytS (Upadhyay
et al., 2006; IALB_3191). It is also possible that one or both of the
two heme-copper cytochrome c oxidases might function as an NO
reductase under anoxic conditions (Giuffrè et al., 1999; Forte et al.,
2001). Nitrous oxide reductase is a soluble, periplasmic enzyme
that catalyzes the reduction of N2O to N2 using cytochrome c
as the electron donor (Zumft and Körner, 2007). Genes encod-
ing the enzyme (NosZ; IALB_0848) and its accessory proteins
(NosLDFY; IALB_0851 to 0854) are co-localized in an operon
and are nearby the nfr genes. I. album does not appear to have the
other denitrification/ammonification enzymes (i.e., nitrate reduc-
tase, NO-producing nitrite reductase). This observation suggests
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that there might be other denitrifying organisms in situ that live
together with I. album and produce NO−

2 and NO.

INORGANIC ELECTRON DONORS
Ignavibacterium album has two three gene clusters (IALB_0255 to
0257 and IALB_0529 to 0531) that encode two different [FeFe]-
hydrogenases. The hydEFG genes (IALB_0525, 0528, and 0526),
which encode the assembly proteins for such hydrogenases (Vig-
nais and Billoud, 2007; McGlynn et al., 2008; Mulder et al., 2011)
occur immediately upstream from one of the hydrogenase oper-
ons. The predicted heterotrimeric hydrogenases are similar in
sequence and subunit composition to the bifurcating hydroge-
nase, which is both NADH and ferredoxin-dependent, and which
has been characterized in Thermotoga maritima (T. maritima; Ver-
hagen et al., 1999; Schut and Adams, 2009). However, the HydA
subunits of both hydrogenases lack the extra C-terminal [2Fe-2S]
domain that occurs in T. maritima HydA. Instead, these HydA sub-
units are more similar to HydA subunit of the NADH-dependent,
tetrameric hydrogenase of Thermoanaerobacter tengcongensis (T.
tengcongensis; Soboh et al., 2004). Additionally, the HydB sub-
units of the two predicted hydrogenases are different; IALB_0530
has an N-terminal [2Fe-2S] and two C-terminal [4Fe-4S] clusters
other than the NuoF-like FMN and NAD(P)(H) binding domain
like HydB of T. maritima and T. tengcongensis hydrogenases, but
IALB_0256 does not have these extra Fe-S clusters (Figure 9). The
exact enzymatic activities of these two hydrogenases are unclear,
but it seems safe to assume they use NAD(P)(H) as one, if not the
only electron donor/acceptor. Fe-only hydrogenases are often asso-
ciated with H2 evolution (Vignais and Billoud, 2007), and this was
also the case in vivo when the related hydrogenases of T. maritima
and T. tengcongensis were characterized. Thus, it appears likely
that I. album could use these enzymes to establish redox balance
during fermentation (i.e., removal of excess electrons by proton
reduction). The production of H2 (E′

0 = −420 mV) using NADH
electrons (E′

0 = −320 mV) is energetically unfavorable, and the T.

tengcongensis hydrogenase catalyzes H2 oxidation at greater rates
than H2 production in vitro (Soboh et al., 2004). However, under
a high partial pressure of H2 and/or low NADH/NAD+ ratio, one
or both of these enzymes could oxidize H2 oxidation and allow I.
album to use H2 as an electron donor. Detailed sequence analy-
ses identified a cysteine to serine substitution in the L1 H cluster
binding motif of IALB_0257, similar to T. tengcongensis HydA (E.
Boyd, personal communication). This substitution is hypothesized
to bias the redox potential of this Fe-S cluster toward H2 oxida-
tion (Posewitz et al., 2008). The difference in the HydB subunits
of the two hydrogenases could also indicate possible differences in
substrate specificity, i.e., whether ferredoxin is involved, and the
favored directionality of the reaction. These differences must be
tested experimentally. However, if some of the postulated func-
tions can be experimentally verified, the predictions from the
genome suggest that I. album could exhibit considerable versa-
tility in its ability to utilize H2 and protons as electron donor and
acceptor, respectively.

The I. album genome encodes two sulfide-quinone oxidore-
ductases. Phylogenetic analyses indicated that IALB_1101 belongs
to the SqrD family and IALB_0172 belongs to the SqrE family
(Gregersen et al., 2011). However, the presence of these two genes
does not necessarily mean that I. album can use sulfide as an
electron donor, because C. ferrooxidans, which does not grow on
sulfide (Heising et al., 1999), also has two sulfide-quinone oxidore-
ductases, SqrD and SqrF (Gregersen et al., 2011). The two enzymes
could simply be used for sulfide detoxification by formation of sul-
fur/polysulfide. I. album does not have any other examples of the
dozens of other genes involved in sulfide/thiosulfate/sulfur/sulfite
oxidation that are characteristically and almost universally found
in GSB genomes. Although I. album was isolated in a medium
containing a high concentration of sulfide (Iino et al., 2010), its
sulfur oxidation activity has not yet been studied.

Although I. album has two genes (IALB_2573 and 2574) that
are very similar to the large and small subunits of an aerobic CO

FIGURE 9 | Schematic representation of the predicted Fe/S cluster

contents of two hydrogenases from I. album compared to two related

and experimentally characterized hydrogenases fromThermotoga

maritima andThermoanaerobacter tengcongensis. H, H cluster; 2Fe,
[2Fe-2S] cluster; 4Fe, [4Fe-4S] cluster; NuoF, FMN and NAD(P)(H) binding
domain.
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dehydrogenase, it lacks the conserved medium-sized subunit (King
and Weber, 2007). Therefore, the products of these two genes may
not encode a CO dehydrogenase but may be more closely similar
to other members of the molybdopterin hydroxylase family, such
as xanthine dehydrogenase and aldehyde oxidoreductase (Dobbek
et al., 1999). The I. album genome does not encode known enzymes
that use other inorganic electron donors such as Fe2+, NH+

4 , NO−
2 ,

or arsenite.

CAROTENOID BIOSYNTHESIS
Because I. album was originally reported to be non-pigmented
[albus (Latin) white], one unexpected finding was that the genome
included a gene cluster encoding enzymes of carotenogenesis.
Homologs of crtB, crtI, crtD, crtY, cruF, cruC, cruD, and crtW
(Maresca et al., 2008) were found in the genome. HPLC analy-
ses and absorption spectra of carotenoids extracted from I. album
suggested that two pigments are produced, 1-OH-torulene and
deoxyflexixanthin (Figure 5B), which is derived from γ-carotene.
These pigments are consistent with predictions based upon the
genes identified (Maresca et al., 2008; Garcia Costas et al., 2012b;
Tsukatani et al., 2012). The complexity of the elution profile for
the carotenoids probably arises from the attachment of different
glycosyl groups to the ψ-end of these molecules and to differ-
ences in the attached fatty acyl groups in the case of carotenoid
glycosyl-fatty acyl esters. Similar complexity has been observed for
the carotenoids produced by other members of hot spring micro-
bial mats, including Thermomicrobium roseum and “Candidatus
C. thermophilum” (Maresca et al., 2008; Wu et al., 2009; Garcia
Costas et al., 2012b; Tsukatani et al., 2012).

AMINO ACID BIOSYNTHESIS
The I. album genome is missing key genes involved in the biosyn-
thetic pathways for several amino acids (Figure 6). For example,
only the aminotransferases for the corresponding 2-oxo-acid pre-
cursors of valine, leucine, and isoleucine biosynthesis were found
in the I. album genome. Interestingly, these missing genes are simi-
larly absent in“Candidatus C. thermophilum”(Garcia Costas et al.,
2012a) and “Candidatus T. aerophilum” (Liu et al., 2012). Sim-
ilar to suggestions made for these two organisms, I. album must
either have a novel biosynthetic pathway for branched chain amino
acids, or it obtains them or some biosynthetic precursors, such as
the corresponding 2-oxo-acids, from its environment. Unlike the
other two organisms mentioned above, I. album has a putative 2-
oxo-isovalerate:ferredoxin oxidoreductase, which could produce
2-oxo-acids by carboxylation of simpler substrates. It seems highly
unlikely that three distantly related organisms, all found in hot
spring microbial mats, would have independently gained novel
enzymes to synthesize these amino acids. It seems more parsimo-
nious to suggest that these organisms obtain these amino acids, or
some biosynthetic precursor(s), from their environment through
other members of the microbial mat communities. Unfortunately,
information is currently very limited concerning the other organ-
isms that are present in the microbial mats from which I. album
was isolated.

Other unidentified genes for enzymes of amino acid biosyn-
thesis included thrA, lysC, asd, and dapABD of lysine biosynthesis;
argGH for arginine biosynthesis; and proC of proline biosynthesis,

all of which are highly conserved in all GSB. No known complete,
alternative pathways for the synthesis of these amino acids exist
in the I. album genome. Therefore, it is highly unlikely that I.
album can synthesize these amino acids de novo. The serB gene for
serine biosynthesis is also missing; however, other GSB also have
an incomplete serine biosynthesis pathway but are autotrophic,
which demonstrates that these organisms must have an alternative
pathway for serine biosynthesis (Eisen et al., 2002). It would be pre-
mature to conclude that I. album cannot synthesize serine, and the
related amino acids glycine and cysteine, from genome sequence
data alone. However, it appears that several biosynthetic pathways
for the synthesis of amino acids by I. album are incomplete. Con-
sistent with all of these deductions, I. album cannot grow without
yeast extract (Iino et al., 2010), which is rich in amino acids and
oligopeptides. Finally, the I. album genome includes an oligopep-
tide transporter, a putative amino acid transporter, and several
putative Na+/proline symporters.

NITROGEN AND SULFUR METABOLISM
The I. album genome does not encode any nif genes for nitroge-
nase or its assembly, which are highly conserved and universally
present among GSB, nor does the genome encode any assimilatory
enzymes that would enable it to use NO−

3 or urea as potential nitro-
gen sources. As noted above, I. album does possess a periplasmic-
facing NrfAH complex that can convert nitrite to ammonia during
ammonification. However, the NH+

4 transporter that is universally
conserved among sequenced GSB is absent, and no other NH+

4
transporter of the common Amt/MEP/Rh family (Winkler, 2006)
could be identified in the genome. Although it remains possible
that the genome encodes an unrecognized ammonia transporter, it
must presently be assumed that I. album depends on amino acids
or peptides as its primary nitrogen source(s).

Assimilatory sulfate reduction genes are also not present. Con-
sidering that I. album may be dependent on certain exogenous
amino acids, these compounds may satisfy a large portion of
the cellular needs for nitrogen and sulfur. Alternatively, sulfide
may be intracellularly assimilated via cysteine synthase. Sulfide
transport is poorly understood, and thus it is unclear whether
a sulfide transporter is present (or required) in I. album. If the
ORFs IALB_1661-1663 actually encode a polysulfide reductase
(see above), this enzyme could potentially allow sulfur assimila-
tion by reduction of sulfur/polysulfides under anoxic conditions.
Under oxic conditions, I. album appears to rely on reduced sul-
fur sources such as amino acids for sulfur assimilation. Another
possible route of sulfur assimilation could be via nitrite reduc-
tase. In Wolinella succinogenes, the pentaheme nitrite reductase also
exhibits sulfite reductase activity (Lukat et al., 2008). Future phys-
iological and biochemical analyses will be required to determine
the source(s) of sulfur for growth of I. album.

FLAGELLA AND CHEMOTAXIS
Chloroherpeton thalassium, which exhibits flexing and gliding
motility (Gibson et al., 1984), is currently the only member of
the phylum Chlorobi that has been shown to be motile. As iso-
lated, observations by light microscopy suggested that I. album was
not motile, and flagella were not observed by electron microscopy
(Iino et al., 2010). However, the I. album genome contains a nearly
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complete set of genes for flagella in a 71-gene cluster (IALB_2496
to 2566; Figure 2) along with genes for chemotaxis and signal
transduction. All known structural genes for the production of
flagella, as well as all genes of the flagellar basal body secretion sys-
tem, were identified. The only missing genes encode the chaperone
proteins FlgN, FliT, and FliS, and the regulatory proteins FlhC and
FlhD, which are not always essential for cell motility (Fraser et al.,
1999; Minamino et al., 2000). Considering the (near) complete-
ness of this gene cluster, I. album must have had flagella until very
recently, and it is possible that the capacity to produce flagella was
lost during efforts to grow this organism in the laboratory. Loss
of flagella is very common among bacterial strains when they are
grown under uniform conditions that have little or no selective
pressure for retention of flagellar genes (Sellek et al., 2002).

Genes encoding the proteins CheA, CheB, CheR, CheW, CheY,
CheZ, and a methyl-accepting chemotaxis protein (MCP), which
are responsible for methylation-dependent chemotaxis, are also
found in the 71-gene cluster for producing flagella. However, the
specificity of the MCP for attractant(s) or repellent(s) is uncertain
from sequence analysis, and this is the only MCP in the I. album
genome. Although the chemotactic properties of I. album remain
unclear, the presence of these genes suggests that I. album was
chemotactic until very recently. Interestingly, even though they
no longer have any genes for flagella, some of these chemotaxis
genes still occur in the C. thalassium genome (cheBRW and mcp)
and “Candidatus T. aerophilum” metagenome (cheW and mcp; Liu
et al., 2012). These genes appear to be relics reflecting the loss of
chemotaxis and possibly genes for flagellar biogenesis during evo-
lution. If this interpretation is correct, it implies that these genes
were present in the apparently motile ancestors of extant members
of the phylum Chlorobi.

GENE REGULATION
Ignavibacterium album genome has 31 pairs of sensor histidine
kinases and response regulators, some of which are fused into
single proteins. Sixteen genes encoding sigma factors for RNA
polymerase were also found. These numbers are significantly larger
than the eight (pairs of) two-component system proteins and five
genes for sigma factors found in a typical GSB, C. tepidum (Eisen
et al., 2002), even when the numbers are normalized to reflect the
difference in genome sizes (3.66 vs. 2.15 Mb). These observations
strongly suggest that I. album has a much greater capacity than GSB
to sense changes in its physicochemical environment, and regulate
its gene expression accordingly in response. GSB often live under
relatively constant conditions and have a uniform, strictly anaer-
obic, photolithoautotrophic lifestyle. These observations are also
generally consistent with the predicted ability of I. album to per-
form swimming motility and chemotaxis, to respire under oxic
and anoxic conditions, and to utilize various electron acceptors
and donors.

DISCUSSION
Genome analysis for I. album has revealed a versatile, motile, non-
phototrophic organism that is suggested to live under both oxic
and anoxic conditions by using a variety of electron donors and
acceptors. The metabolic capabilities of this organism are cer-
tainly more complex than was revealed in initial cultivation studies

(Iino et al., 2010), probably because of limitations imposed by the
culture medium and the unknown and unsuspected nutritional
deficiencies. I. album appears to be capable of mixotrophy by fix-
ing CO2 using PFOR and KFOR and by performing at least certain
steps of the reverse TCA cycle, possibly using H2 as electron donor.
However, the organism would still be a heterotroph because of its
apparent inability to synthesize several amino acids. Moreover, it
is dependent upon exogenous amino acids not only for protein
synthesis but also as sources of nitrogen (and possibly sulfur) as
well (Figure 6). These inferences will have to be tested further by
cultivation studies; in the case of O2 and motility, the initial obser-
vations have already been corrected by targeted cultivation studies
and additional microscopic observations.

This metabolic and physiological description of I. album is
strikingly different from that of GSB, and more generally for
the members of the phylum Chlorobi prior to the discovery of
I. album. However, this description shares a number of similari-
ties with the predicted properties of “Candidatus T. aerophilum,”
including O2 preference/tolerance, the inability to synthesize cer-
tain amino acids, and the inability to oxidize sulfur or fix nitrogen
(Liu et al., 2012). The genomic data suggest that these two organ-
isms are probably examples of previously unsuspected diversity of
physiological capabilities inherent among organisms belonging to
the phylum Chlorobi. The previous perception of the apparently
limited diversity for members of the Chlorobi was true because the
organisms that had been grown axenically and studied only repre-
sented a small, relatively closely related group of organisms within
the phylum, mostly obtained by applying a highly specific set of
enrichment conditions (Overmann, 2006). It is likely that those
culture conditions (anoxic conditions with high sulfide concen-
trations in the light) significantly favor the isolation of organisms
(i.e., GSB) with very similar physiological capabilities. Such con-
ditions were actually unfavorable for I. album, which apparently
cannot oxidize sulfide completely to sulfate and probably produces
more energy if at least some oxygen is present. Fortunately, in spite
of the unfavorable growth conditions, I. album still grew and was
isolated in axenic culture. However, other potential members of
the Chlorobi probably have not survived unfavorable cultivation
conditions in the past, which may have prevented their discovery,
or they may not have been selected for further testing because
the colonies were not pigmented. These observations indicate
why culture-independent approaches, which have become more
accessible due to advances in sequencing technology and reduc-
tion in costs, will continue to play an increasingly important role
in revealing the metabolic and physiological diversity that exists
among members of the phylum Chlorobi. In fact, “Candidatus T.
aerophilum” was also identified and characterized in this way (Liu
et al., 2012), and it is likely that additional interesting organisms
will be identified and studied in this way in future studies.

Comparisons of the genome sequences of I. album and other
members of the phylum Chlorobi, including the GSB, could
have important implications for the evolutionary trajectory that
extends from ancestral members to extant members of the phy-
lum. Table 1 summarizes some of the differences in genome size
and distribution of selected proteins among I. album, “Candidatus
T. aerophilum,” C. thalassium, and members of the family Chloro-
biaceae. The latter include members of three well-characterized
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Table 1 | Summary of distribution of major properties for organisms belonging to the phylum Chlorobi.

I. album “Ca.T. aerophilum”a C. thalassium Chlorobiaceae

Genome size (Mb) 3.66 3.18 3.29 1.97–3.13

Photosynthetic apparatus No Yes Yes Yes

Relationship with O2 Oxic and anoxic Oxic Anoxic Anoxic

Reverse TCA cycle Incompleteb Incomplete Yes Yes

PFOR and KFORc Yes Yes Yes Yes

RNF complex Yes No No Some

Type-1 NADH dehydrogenase Two copies (14 and 11 SU)d Two copies (12 and 11 SU)d Two copies (14 and 11 SU)d One copy (11 SU)d

Complex III ACIIIe Both ACIIIe and Cyt b-Rieske Cyt b-Rieske Cyt b-Rieske

Terminal oxidases Cyt caa3, cbb3, bd (1), bd (2)f Cyt caa3 Cyt bd (2) Cyt cbb3 and/or bd (1)

Flagella genes Yes No No No

Chemotaxis genes Yes Partial Partial No

Sulfide oxidation to polysulfide Yes No Yes Yes

Sulfur oxidation to sulfite No No Nog Mostg

Nitrogen fixation No No Yes Yes

aInferences made from metagenome and metatranscriptome data (Liu et al., 2012). Additional genes could be present in the organism.
bI. album lacks ATP citrate lyase to have a complete reverseTCA cycle. It is possible that (ATP-independent) citrate lyase enables an unconventional reverseTCA cycle

under certain growth conditions.
cPFOR, pyruvate:ferredoxin oxidoreductase; KFOR, 2-oxoglutarate:ferredoxin oxidoreductase
dSU, subunits.
eACIII, alternative complex III.
fTwo different cytochrome bd-quinol oxidases exist among Chlorobi. See Figures 6 and 8B for details.
gMost organisms belonging to the Chlorobiaceae have genes involved in oxidation of sulfide to sulfate, with a few exceptions (see Gregersen et al., 2011).

genera of GSB, and “Candidatus T. aerophilum” and C. thalas-
sium represent family-level lineages of the class Chlorobea (Bryant
et al., 2012; see Figure 1). These comparisons imply that many
genes that contribute to the ability to acclimate to various environ-
ments, including electron transfer complexes and motility genes,
were possibly lost during the evolutionary transition from ances-
tral members of the Chlorobi to the current GSB-type organisms,
as they settled into relatively constant, sulfide-rich anoxic envi-
ronments. This is consistent with a general trend toward genome
size reduction. Some functions apparently were acquired to allow
a better acclimation and eventually adaptation to specific envi-
ronments. For example, the acquisition of dsr genes (and a few
other genes) in some GSB allowed complete oxidation of sul-
fur to sulfite (and ultimately to sulfate), which provides better
energy conservation and more electrons for CO2 fixation per
sulfide consumed than the incomplete oxidation to elemental sul-
fur allowed by sqr genes alone. Thus, possession of dsr genes
is highly advantageous to GSB under sulfide-limiting conditions
(Holkenbrink et al., 2011). It is also important to remember that

the available genomes represent only a very small sampling of
the organismal history that represents a long and complex evo-
lutionary process experienced by the members of the phylum
Chlorobi. As more and more organisms will be discovered in
the future, the hypotheses proposed here will be confirmed, chal-
lenged, and modified, and will lead to a description of this phylum
that is likely to be far more diverse than imaginable just a few
years ago.
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