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Symbioses between chemoautotrophic sulfur-oxidizing (thiotrophic) bacteria and protists
or animals are among the most diverse and prevalent in the ocean. They are extremely
difficult to maintain in aquaria and no thiotrophic symbiosis involving an animal host has ever
been successfully cultivated. In contrast, we have cultivated the giant ciliate Zoothamnium
niveum and its obligate ectosymbiont Candidatus Thiobios zoothamnicoli in small flow-
through aquaria. This review provides an overview of the host and the symbiont and their
phylogenetic relationships. We summarize our knowledge on the ecology, geographic
distribution and life cycle of the host, on the vertical transmission of the symbiont, and
on the cultivation of this symbiosis. We then discuss the benefits and costs involved in
this cooperation compared with other thiotrophic symbioses and outline our view on the
evolution and persistence of this byproduct mutualism.
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INTRODUCTION
The first illustration of a colonial ciliate from the Red Sea was pub-
lished more than 180 years ago (Hemprich and Ehrenberg, 1829).
Two years later, based on the small drawing of a single specimen,
Zoocladium niveum was formally described and was named “small
Abyssinian double bell” (Hemprich and Ehrenberg, 1831; trans-
lated by the first author; Figure 1). It was found on a rock at the
coast of the Red Sea, probably close to the former kingdom of
Abyssinia. Shortly thereafter, this species was placed in the ear-
lier described genus Zoothamnium (Bory de Saint-Vincent, 1824).
Ehrenberg (1838) observed in this specimen that “the whole stem
suddenly contracted to a white knot” (p. 290; translated by the first
author). Over the following decades, Z. niveum was discovered in
other localities and with similar or slightly different morphology
(see Bauer-Nebelsick et al., 1996a for further literature). Nonethe-
less, the typical white color, for which the species was named
“niveum,” was not mentioned again until it was discovered by Jörg
Ott in mangrove islands of Belize. Only then was it redescribed and
its association with white, sulfide-oxidizing bacteria characterized
(Bauer-Nebelsick et al., 1996a,b).

The white color in many sulfur-oxidizing (thiotrophic) bacteria
is due to elemental sulfur inclusions, which are an intermedi-
ate product in the oxidation process of reduced sulfur species
(Pflugfelder et al., 2005; Himmel et al., 2009; Maurin et al., 2010;
Gruber-Vodicka et al., 2011). When involving animal or protist
hosts, this type of association is termed thiotrophic symbiosis.
Thiotrophic bacteria use hydrogen sulfide or other reduced sul-
fur species (see Childress and Girguis, 2011), which are typically
produced biologically by anaerobic sulfate-reducing bacteria or
geothermally at hydrothermal vents, to gain energy for carbon
fixation (see Dubilier et al., 2008). Such bacteria, both free-
living and host-associated, are extremely widespread at marine

oxic–anoxic interfaces from shallow waters to the deep sea,
including suboxic sediment layers, decaying plant matter, such
as in sea grass meadows, mangrove peat, and wood, in whale
bones, hydrocarbon seeps, and hydrothermal vents (Dubilier
et al., 2008). Most symbioses are marine, but recently the first
thiotrophic symbiosis was described from a freshwater limestone
cave (Dattagupta et al., 2009). Thiotrophic symbionts belong to
various clades of Gamma-, Epsilon- and, as recently discovered,
also Alphaproteobacteria (Dubilier et al., 2008; Gruber-Vodicka
et al., 2011).

The host taxa are even more diverse, although hydrogen sulfide
is highly toxic (National Research Council, 1979) and eukary-
otic hosts need to somehow cope with this poison. Extra- and
intracellular endosymbioses as well as ectosymbioses are reported
within six animal phyla (Nematoda, Platyhelminthes, Annelida,
Arthropoda, Mollusca, Echinodermata) and one protist phylum
(Ciliophora; see Ott et al., 2004; Stewart et al., 2005; Cavanaugh
et al., 2006; Dubilier et al., 2008). All types of transmission modes
– vertical from parents to offspring, horizontal from the environ-
ment, or mixed modes – are known within these prevalent bacterial
symbioses in the sea (see Bright and Bulgheresi, 2010; Vrijenhoek,
2010).

Despite this dominance, research has been somewhat limited
because many thiotrophic symbioses occur in poorly accessible,
deep-sea environments. They are extremely difficult to maintain
in the laboratory or even to culture. To our knowledge, only a
few bivalves (for example, the lucinid Codakia orbicularis; Gros
et al., 1997) were reared to maturity. This colonial ciliate, how-
ever, was successfully cultivated including the entire life cycle with
the production of offsprings (Rinke et al., 2007). While bivalves
exhibit intrinsically slower growth, and reproduction, the colonial
ciliate has a much faster growth and reproduction, and a short
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FIGURE 1 | Zoothamnium niveum. (A,B) Original illustrations modified
from Hemprich and Ehrenberg (1829) showing the same colony expanded
(A) and contracted (B). (C) Drawing of a colony from the redescription of Z.
niveum showing the different cell types: the macrozooid (ma), the microzooid
(mi), the terminal branch zooids (tbz), and the terminal top zooid (ttz; modified

from Bauer-Nebelsick et al., 1996a). (D) Microscopic observation of a
longitudinal section of a Z. niveum colony. The stalk (st) of the contracted
colony is visible as well as the numerous microzooids. (E) Detail of a single
microzooid with macronucleus (nu) and digestive vacuole (dv), covered by its
ectosymbionts (s).

life span. These characteristics along with easy access in shallow
waters make this thiotrophic symbiosis of Z. niveum and its single
bacterial partner, Candidatus Thiobios zoothamnicoli, a promis-
ing candidate for future studies. The present review summarizes
our knowledge on this symbiosis and outlines our view on its
evolution.

THE HOST Zoothamnium niveum
Zoothamnium niveum belongs to a morphologically well-defined
colonial ciliate genus of Peritrichida (Oligohymenophora) char-
acterized by zooids that are connected by a common stalk.
The contractile spasmoneme runs uninterrupted through the
whole colony and bends in a “zigzag” pattern upon contraction
(see Clamp and Williams, 2006). Z. niveum shares an alternate
branching pattern with several other species such as Z. alternans
Claparède and Lachmann 1858, but is much larger and has typical
bell-shaped microzooids (Bauer-Nebelsick et al., 1996a; Figure 1).
With a length of up to 1.5 cm it is by far the largest representative
of this genus (Vopel et al., 2005).

The 18S rRNA sequence from a population found on decay-
ing mangrove leaves close to Fort Pierce, FL, USA and from a
population collected from a whale bone in Tokyo Bay was almost
identical, indicating an extremely wide geographic distribution
(Clamp and Williams, 2006; Kawato et al., 2010). A sister taxa
relationship of Z. niveum with Z. alternans + Z. pelagicum Du
Plessis, 1891 was reported (Clamp and Williams, 2006; Figure 2).
Both closely related species have been described with epibiotic
bacteria (Dragesco, 1948; Fauré-Fremiet et al., 1963; Laval, 1968,
1970; Laval-Peuto and Rassoulzadegan, 1988). Epibionts of one

morphotype consistently cover the pelagic Z. pelagicum. They were
suggested to be cyanobacteria (Laval-Peuto and Rassoulzadegan,
1988). In Z. alternans it remains unclear whether the association
is obligate for the host and involves a specific symbiont or merely
represents unspecific microbial fouling.

The colonial host exhibits a central stalk with alternate branches
and three cell morphotypes: terminal zooids on the tip of the
stalk and each branch, feeding microzooids, and macrozooids
(Figure 1). The latter develop on the base of the branches and
leave the colony as swarmers to disperse and found new colonies
(Bauer-Nebelsick et al., 1996a,b; Figure 3). Microzooids exhibit
typical digestive structures with an oral ciliature and a cytopharynx
(Bauer-Nebelsick et al., 1996b). Food vacuoles containing bacteria
of similar size and microanatomical features as the symbionts are
frequently found. The macrozooids, however, lack a cytopharynx,
but their oral ciliature is fully developed. No food vacuoles were
observed in macrozooids, leading to the conclusion that they are
nourished by the microzooids (Bauer-Nebelsick et al., 1996b).

Sexual reproduction through conjugation has been described
in some representatives of Zoothamnium (Furssenko, 1929; Sum-
mers, 1938), but never in Z. niveum (Bright M., personal
observation). Asexual reproduction is through swarmers (Bauer-
Nebelsick et al., 1996a,b). Macrozooid size varies considerably
(20–150 μm). As soon as the somatic girdle (circular rows of
cilia) is developed, macrozooids can leave the mother colony as
swarmers. Somatic girdle development, however, is not correlated
with macrozooid size (Bauer-Nebelsick et al., 1996a). The circum-
stances under which the somatic girdle develops prior to dispersal
in the water column have not been studied.
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FIGURE 2 | Consensus tree formed from the four trees generated by

phylogenetic analyses (Clamp and Williams, 2006). Neighbor-joining (NJ)
bootstrap value, maximum parsimony (MP) bootstrap value, maximum
likelihood (ML) consensus value, and Bayesian consensus value are given as

numbers on branches; missing values reflect minor differences in topology
that could not be represented on the consensus tree. Solid bracket indicates
species of Zoothamnium; dashed bracket indicates species of peritrichs.
Species sequenced in Clamp and Williams (2006) are shown in bold type.

Using bromodeoxyuridine, a thymidine analog, and
immunocytochemistry to study proliferation kinetics, Kloiber
et al. (2009) corroborated that DNA synthesis is restricted to ter-
minal zooids and macrozooids (Figure 4). The terminal zooid on
the tip of the stalk produced the terminal zooids of each branch.
Thus the number of branches is equivalent to the divisions of this

top terminal zooid, and the youngest parts are on the tip of the
colony, the oldest on the bottom. The division rate of the top
terminal zooid decreased as the colony grew, but never ceased
(Kloiber et al., 2009). The terminal zooids of the branches pro-
duced the microzooids. They had limited proliferation capacity,
increasing the branch length with maximally 20 microzooids. At
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FIGURE 3 | Life cycle of Zoothamnium niveum. Scanning electron
microscopy of the different stages of development. The dispersive stage,
the swarmer, is released from the colony and settles to grow a new colony.
The new colony initially consists of a single cell, the terminal zooid, which
divides to grow a whole colony. After a growing phase the adult colony
enter a senescence stage. Not in scale.

the base of the branches, macrozooids are produced. The num-
ber of macrozooids in large colonies with more than 50 branches
was greater (about 15) than in small colonies with less then 50
branches (about 6). In macrozooids, DNA synthesis occurred on
branches, but the cell cycle was arrested until swarmers left the
colony. They probably resume mitosis and cell division upon set-
tlement, when they in fact become the top terminal zooid (Kloiber
et al., 2009).

THE SYMBIONT Candidatus Thiobios zoothamnicoli
A single 16S rRNA phylotype covers the host in a strict mono-
layer, except for the most basal part of the colony (Rinke et al.,
2006; Figure 5). Depending on the location of the host, this
phylotype grows either as rod or as cocci. They are rods on the
stalk, branches, terminal zooids, macrozooids, and on the aboral
parts of microzooids. The oral part of the microzooids, is cov-
ered with cocci, with a gradual change from cocci to rods from
the oral to aboral side. The most basal, senescent parts of the
colony are overgrown with all kinds of microbes and the sym-
biont is partly lost (Bauer-Nebelsick et al., 1996a,b; Rinke et al.,
2006).

The symbionts have a cytoplasmic and an outer cell mem-
brane, typical of Gram-negative bacteria (Bauer-Nebelsick et al.,
1996b). Raman microspectroscopy revealed vesicles filled with
S8 sulfur (Maurin et al., 2010). Experiments in Cartesian divers
showed a rapid decrease of oxygen consumption within 4 h,
which remained at a low level for 24 h under normoxic condi-
tions. This suggests that elemental sulfur is used with oxygen as
an electron acceptor for about 4 h, during which the colonies
are depleted of this intermediate storage product and turn pale.
The baseline of oxygen consumption represents the respiration of

FIGURE 4 | General view of a Zoothamnium niveum colony showing

the immunolocalization of BrdU incorporated into proliferating cells.

Labeled nucleus are observed in the terminal top zooid, some of the
terminal branch zooids and in the macrozooids located along the stalk.
Modified from Kloiber et al. (2009).

host and symbiont. After injecting 100 μmol L−1�H2S (sum of
H2S, HS−, S2−), oxygen consumption was increased and rapidly
decreased again. This suggests that the sulfide pulse enables the
symbionts to briefly resume their chemoautotrophic activity (Ott
et al., 1998).

Each host population associates with a single specific symbiont
(based on 16S rRNA). The symbiont from Twin Cays, Belize,
was tentatively named Cand. Thiobios zoothamnicoli (Rinke
et al., 2006). The similarity between this and another population
from Calvi, Corsica, was 99.7% (Rinke et al., 2009) and 99.2%
to a Pacific population, termed “ectosymbiont of Zoothamnium
niveum” (Kawato et al., 2010). The internal transcribed spacer
(ITS) was also highly similar between the Twin Cays and Calvi
population (Rinke et al., 2009). Genes for the key enzyme in the
Calvin Benson cycle for carbon fixation (ribulose 1,5-bisphosphate
carboxylase/oxygenase) and for sulfur metabolism (APS reduc-
tase, dissimilatory sulfite reductase) were discovered (Rinke et al.,
2009).

Besides other strains of Cand. Thiobios zoothamnicoli recov-
ered from different Z. niveum isolates, the closest relatives, as
revealed by 16S rRNA gene phylogenetic analysis, of Cand. Thio-
bios zoothamnicoli all belong to a well separated group of uncul-
tivated sulfur oxidizing bacteria related to gamma proteobacteria
(Rinke et al., 2006, 2009; Kawato et al., 2010).
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FIGURE 5 |The monospecific ectosymbiont monolayer. (A) SEM
observation of a microzooid showing the monolayer of bacteria covering the
host cell. The two morphotypes are visible, rod-shaped symbionts at the
aboral part and coccioid symbionts at the oral part. (B–D) FISH micrographs of

a single microzooid after hybridization with a general bacterial probe in green
(B), a gammaproteobacteria specific probe in blue (C), and a Cand. Thiobios
zoothamnicoli specific probe in red (D). (E) Overlay of the three previous
micrographs (Rinke et al., 2006).

The updated phylogenetic analysis reveals a group currently
19 16S rRNA sequences (all current close relatives in public
databases; Figure 6). Overall this Thiobios group is dominated
by free-living bacteria of shallow-water environments of all tem-
perate to tropical oceans. Analyses restricted to the 16S rRNA
gene provides insufficient resolution to fully clarify the evolu-
tionary relations among the available representatives populating
this branch of the tree, a problem that can only be resolved with
genomic sequencing of targeted members. Nevertheless, symbiosis
apparently evolved twice in the shallow waters as ectosymbioses
in the Thiobios group: in Z. niveum and in the archaea Gigan-
thauma karukerense (Muller et al., 2010). The available fragment
of 16S rRNA from this archaea has a similarity of 93% to
Cand. Thiobios zoothamnicoli (note that this sequence frag-
ment is not included in Figure 6). In addition another clade
of the Thiobios group colonized shallow-water and deep-sea
vents, whereby endosymbiosis with two different gastropod hosts
evolved.

HABITAT AND ECOLOGY
The data increasingly point to a widespread occurrence of the
giant ciliate symbiosis on or near decaying organic material in
shallow tropical to temperate waters. So far, this symbiosis has
been detected in the biogeographic provinces of the Caribbean Sea
(Bauer-Nebelsick et al., 1996a; Clamp and Williams, 2006; Laurent
et al., 2009), the Atlantic Ocean (Clamp and Williams, 2006; Wirtz,
2008), the Mediterranean Sea (Rinke et al., 2007; Wirtz, 2008), the
Red Sea (Ehrenberg, 1838), and the Pacific Ocean (Kawato et al.,
2010; Figure 7).

In tropical and subtropical regions, the giant ciliate colonizes
mangrove peat (mainly composed of wood; Lovelock et al., 2011)
and sunken wood and leaves of the mangrove Rhizophora mangle
(Bauer-Nebelsick et al., 1996a; Clamp and Williams, 2006; Laurent
et al., 2009). In temperate waters, this ciliate inhabits whale falls
(Kawato et al., 2010), wood (Bright M., personal observation), and

sea grass debris of Posidonia oceanica (Rinke et al., 2007; Wirtz,
2008; Figure 8).

The current findings are all restricted to shallow subtidal waters,
but the depth limits remain to be investigated. Mangrove trees
occur in the intertidal, and sea grasses are limited to the euphotic
zone. Wood may be transported into the deep sea and poten-
tially could be colonized by this symbiosis. A sperm whale bone,
recovered from about 1000 m depth in Sagami Bay without this
symbiosis, was colonized by Z. niveum after the bone was deployed
in 5 m depth in Tokyo Bay for 1 year (Kawato et al., 2010).

Detailed studies on colony distribution on peat walls were
conducted at the mangrove island Twin Cays, Belize (Ott et al.,
1998). On average, 1200 giant ciliate colonies m−2 were found
between 30 cm below low water level down to the lower end of
the peat wall at about 2 m depth. They were patchily distributed
in groups of 26 ± 17 colonies, with maxima of more than 100
colonies per patch. Interestingly, many colonies thrive in areas
where the microbial mat of the peat surface was disturbed, e.g.,
after decomposed rootlets fall out. Such conduits were suggested
to be analogous to hydrothermal vents, where vent fluid emerges
from the basalt and mixes with the oxygenated overlain seawater
(Ott et al., 1998).

Colonization and succession of artificially disturbed surfaces on
mangrove peat led to the distinction of initial patches with small
colonies, followed by mature patches with colonies of all sizes, and
senescent patches with large colonies. The latter were characterized
by loss of zooids on the lower branches and were often overgrown
by other microbes on the lower colony. A life expectancy of about
3 weeks was estimated based on the disappearance of such colony
groups (Ott et al., 1998; Figure 9).

The microhabitat of Z. niveum is temporarily highly dynamic
in terms of sulfide and oxygen concentrations. Measurements of
oxygen and sulfide on peat surfaces from Twin Cays (Belize) were
conducted in the lab (Ott et al., 1998; Vopel et al., 2001, 2002)
and in situ (Vopel et al., 2005). Further in situ measurements
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FIGURE 6 | Phylogenetic diversification of the Cand. Thiobios
zoothamnicoli neighborhood. (A) Maximum likelihood phylogenetic tree
(GTR model, 1000 bootstraps) of all long (>1300 nt), with good
pintail value (>60) and non-redundant 16 rRNA sequences similar to
Cand. Thiobios zoothamnicoli available in the SILVA database (Quast
et al., 2013). The tree with the highest log likelihood is shown and is
drawn to scale, with branch lengths measured in number of

substitutions per site. Evolutionary analyses were conducted in
MEGA5 (Tamura et al., 2011). (B) Similarity matrix of the 16S rRNA
sequences belonging to the Cand. Thiobios zoothamnicoli group. The
similarity was calculated as the percentage of identical positions over
all shared positions (not considering gaps) for each pair of sequences
in the multiple sequence alignment and visualized using JColorGrid
(Joachimiak et al., 2006).

of wood surfaces colonized by ciliates from Guadeloupe were
carried out (Laurent et al., 2009). Adjoining areas of peat or wood
devoid of ciliates always exhibited different oxygen and sulfide
concentrations (Ott et al., 1998; Vopel et al., 2001, 2002; Maurin
et al., 2010), suggesting a highly specific chemical environment Z.
niveum inhabits.

Large-scale sulfide fluctuations were associated with the tidal
cycle. The highest maxima were recorded at high tide, the lowest at

low tide (Laurent et al., 2009). Small-scale fluctuations of sulfide
and oxygen at the opening of conduits on peat walls were caused
by pulse exchange between deoxygenated, sulfidic seawater in con-
duits and oxygenated seawater adjacent to peat surface (Vopel et al.,
2005). Peak values occurred in periods of 10–100 s. Depending on
flow speed, sulfide was high or low (Vopel et al., 2005). Ciliates
preferentially settled in areas of about 250–300 μmol L−1�H2S
and oxygen values of about 20 μmol L−1 (Ott et al., 1998; Vopel
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FIGURE 7 | World map showing the known occurrences of

Zoothamnium niveum. So far, colonies of the ciliate have been found in
the Caribbean on mangrove peat wall, sunken wood and leaf debris (1, Twin
Cays Island, Belize; 2, Guadeloupe, French West Indies; Rinke et al., 2006;
Laurent et al., 2009, 2013). In the Gulf of Mexico, the symbiosis was found
in the Florida Keys (3) (Bauer-Nebelsick et al., 1996a). In the Atlantic Ocean,
it was found in Lanzarote in the Canary Islands (4) (Wirtz and Debelius,
2003). It was also collected from rocks near sea grass debris accumulation
in the Mediterranean Sea (5, Corsica, France) and in the Adriatic Sea from
sunken wood (6) (Bright M., personal observation). The original description
reported Z. niveum from the Red Sea (7), and recently it has been
described growing on bones of a whale fall deployed in the Tokyo Bay,
Japan (8) (Kawato et al., 2010).

et al., 2005). In contrast, the wood surface colonized by the ciliates
had only about 100 μmol L−1�H2S. Fluctuations between these
maxima and almost fully oxygenated seawater occurred in less than
one hour (Laurent et al., 2009).

In addition, the host’s peculiar behavior of contracting and
expanding, along with currents generated by the feeding micro-
zooids, change the chemical environment (Figure 10). Colony
contractions are extremely fast (520 mm s−1) and occur on aver-
age every 1.7 min. The zooids bunch together and the colony
whips downward toward the peat surface followed by slow expan-
sions, which are about 700–1000 times slower than contraction
(Vopel et al., 2002). During slow expansion, sulfidic water sticks
to the colony and is dragged along upward (Vopel et al., 2001).
After fully expanded, the microzooids resume filter feeding by
beating their oral cilia (Vopel et al., 2002). The Reynolds numbers
change from about 102 during contraction to 10−1 during expan-
sion (Vopel et al., 2002), and the symbionts may overcome the
diffusion-limited substrate supply by beating of host cilia (Vopel
et al., 2005).

TRANSMISSION
Transmission is vertical: the macrozooids that leave the mother
colony to build new colonies are also covered with the symbionts
(Bauer-Nebelsick et al., 1996a,b). This has been confirmed with
two symbiont-specific 16S rRNA probes (ZNS 196, ZNS 1439;
Rinke et al., 2006) for both the population in Twin Cays (Belize)
and in Calvi (Mediterranean Sea; Rinke et al., 2006, 2009). For the
whale fall populations, one of the specific probes (ZNS 196) was
tested and proved positive (Kawato et al., 2010).

This model system might be especially interesting from an
evolutionary point of view. In general, horizontal transmission,
in which the symbiont is picked up from the environment each

FIGURE 8 | The different habitats of Zoothamnium niveum (A).

The giant ciliate can colonize hard substrate close to sea grass
debris accumulation where sulfide (pink arrows) is produced or grow
directly on the sea grass debris itself (B). They have also been

reported from a whale bone recovered from the deep sea and
experimentally deployed in shallow waters (C), from sunken wood
(D), and mangrove peat walls where degrading vegetal debris
including rootlets (E).
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FIGURE 9 | Evolution of a patch of Zoothamnium niveum colony. The
swarmers colonize a disturbed area (A). The settled colonies grow and start
releasing new swarmers during a maturation phase (B). Finally, the colonies

enter a senescent phase (C). Mature colonies are losing microzooids at the
bottom part of the stalk, which starts to be overgrown by a variety of bacteria
(Ott et al., 1998).

generation anew, is considered to be the ancestral mode of sym-
biont transfer between generations. Mixed modes or strict vertical
transmissions are assumed to have evolved later (Bright and
Bulgheresi, 2010). In contrast, in the Z. niveum symbiosis, we
suggest that vertical transmission is the ancestral mode of trans-
mission. This interpretation is based on the simple design of
an ectosymbiotic partner covering also the asexually produced
propagules.

Vertical transmission, however, may not be the only option.
The symbiont’s location on the host surface potentially allows
for symbiont replacement by other bacteria from the surround-
ing environment. Moreover, release of symbionts due to sloppy
feeding by the host and/or upon host death may support a free-
living population from which the symbiont population could
be re-inoculated. In contrast, strictly vertically transmitted sym-
bionts no longer occur in the free-living environment and have
co-evolved with their hosts (Bright and Bulgheresi, 2010). Thus,
the potential of additional horizontal transmission in this model
system should be explored in the future: it would influence
the dynamics and demography of the symbiont population
dramatically (see Vrijenhoek, 2010).

CULTIVATION OF SYMBIOSIS
Instead of experimentally creating a sulfide and oxygen gradient
as found in nature, the symbiosis was successfully cultivated with
populations from Calvi in a flow-through respirometer system
with stable conditions (Rinke et al., 2007). The continuous flow of
all chemicals enables breaking the host’s control over the access to
these chemicals and therefore also manipulating the environmen-
tal conditions for both partners. Optimal conditions (24–25◦C,
salinity 40, pH 8.2, ∼ 200 μmol L−1 O2, 3–33 μmol L−1�H2S,

flow rate 100 ml h−1) yielded a 10-fold increase in host colonies
in 1 week. The mean life span of each colony was 11 days and host
division rates of the top terminal zooid ranged from 4.1 to 8.2
day−1 during the first 8 days of growth phase; this was followed by
a senescence phase during which more microzooids on branches
were dying than being produced (Figure 3). In contrast, with no
external sulfide source under normoxic conditions, growth was
slower and the life span was considerably reduced to about 4 days
(Rinke et al., 2007).

As expected due to uniform environmental conditions in this
steady flow system, also uniform, rod-shaped symbionts covered
the entire host. This finding supports the hypothesis that the ciliary
beating in microzooids highly influences symbiont performance
(Vopel et al., 2005). Furthermore, the frequency of dividing sym-
bionts was taken as a measure of fitness. On the upper parts of
microzooids, fitness was higher under optimal cultivation condi-
tions compared to the in situ population. Fitness on the lower part
of the microzooids was similar between the two populations.

Comparing the cultures of the Mediterranean and Caribbean
populations, the latter reached maximal size within 4 days and
had a mean life span of 7 days (Ott and Bright, 2004; Ott et al.,
2004). The average water temperature of the former culture was
24–25◦C,of the latter about 28◦C (Vopel et al., 2001). The observed
differences might reflect elevated metabolic rates under warmer
conditions, leading to faster growth and shorter life span compared
to colder conditions (Rinke et al., 2007).

BENEFITS AND COSTS
The question of benefits for both partners, which should exceed
the costs in mutualism, is difficult to answer. It requires compar-
isons between host and symbiont fitness of free-living cultures as
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FIGURE 10 | Schematic drawing of the contraction pattern of

Zoothamnium niveum. The fast contraction (520 mm s−1) brings the
colony in the sulfidic boundary layer (pink), then a slow extension movement
bring it back to the oxygenated water (blue) dragging along sulfide from the
boundary layer. Once extended, the cilia from the microzooids (insert) start
beating again creating a toroidal vortex around the upper part of the cell

(curved arrows). This current allows the cell to filter the surrounding water to
gain food and, as a side effect, it also mixes the sulfide and the oxygen
allowing the ectosymbionts to access both the electron donor and the
electron acceptor. The beating of the cilia from all the cells of the colony also
creates a general current perpendicular to the long axis of the colony (long
arrows). Modified from Vopel et al. (2002).

well as of cultures in which the partners cooperate or defect (Bus-
ton and Balshine, 2007). Appropriate experiments have proven
extremely difficult to carry out. In thiotrophic symbioses, sev-
eral lines of thought have been pursued, but direct evidence is
scarce. Several potential benefits have been investigated for the
host, including direct nourishment by the symbiont as well as
detoxification of sulfide, and for the symbiont, including the
provision of substrates for sulfur oxidation and carbon fixa-
tion and a competition-free habitat (see Fisher and Childress,
1992; Ott et al., 2004; Stewart et al., 2005; Cavanaugh et al., 2006;
Dubilier et al., 2008).

In several systems, nourishment of the host at some costs to
the symbiont has been shown. Fast release of fixed organic carbon
and digestion of symbionts are the two means of translocation
from the symbiont to the host, for example, in the vestimentiferan
tubeworm Riftia pachyptila (Felbeck, 1985; Felbeck and Jarchow,
1998; Bright et al., 2000) and the bivalves Loripes lucinalis, Luci-
noma aequizonata, and Solemya reidi (Felbeck, 1983; Fisher and
Childress, 1986; Distel and Felbeck, 1988; Herry et al., 1989). Also,
preliminary studies on Z. niveum and Cand. Thiobios zootham-
nicoli point to both translocation processes using 14C bicarbonate
pulse chase incubations and tissue autoradiography (Rinke, 2002).
After short pulses of 15 min label was present over host tissue
indicating release, and after long pulses of 3 h and chases of 12
and 24 h, respectively, this label increased indicating digestion
(Rinke, 2002). In addition, food vacuoles contained bacteria with
the same size and shape as the symbiont with its typical sulfur
vesicles (Bauer-Nebelsick et al., 1996b).

In some thiotrophic symbioses the digestive system is com-
pletely reduced, for example, in siboglinid tubeworms and gutless
oligochaetes (see Dubilier et al., 2008). Here, the entire food
should come from the symbiont. In other systems the diges-
tive system still functions, additionally allowing for “normal”
feeding. The microzooids in Z. niveum also have a func-
tioning digestive system (Bauer-Nebelsick et al., 1996a,b). The
degree to which host nourishment depends on symbionts or
ingested prey has not been studied in any system yet. How-
ever, cultivation experiments in Z. niveum show that host
fitness (measured as host growth and life span) was consider-
ably decreased when symbionts were forced to defect. Cand.
Thiobios zoothamnicoli could not fix carbon under normoxic
culture conditions without sulfide (Rinke et al., 2007). The only
means of nourishment left for the host were symbiont diges-
tion and food uptake from the surrounding seawater. This
indicates that a considerable portion of food comes from the
symbionts.

Sulfide is highly toxic to aerobic eukaryotes (National Research
Council, 1979). It inhibits cytochrome c oxidase, the eukary-
ote terminal enzyme of the mitochondrial electron transport
chain (Dorman et al., 2002). Accordingly, the hosts of thiotrophic
symbionts are challenged in providing their symbionts with
sulfide while at the same time avoiding poisoning. Detoxifi-
cation of sulfide through uptake and oxidation by symbionts
has been proposed several times (Somero et al., 1989). Short
incubations with Na2

35S and autoradiographic analysis in the
stilbonematid Eubostrichus dianae showed that most uptake
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was in the thiotrophic ectosymbionts (Powell et al., 1979).
Future studies are urgently needed using aposymbiotic hosts
exposed to sulfide in order to determine whether symbiont
presence (with their sulfide oxidation capabilities) affects host
fitness.

Access to oxygen and sulfide for thiotrophic ectosymbionts
is generally facilitated by the host’s behavior (Ott et al., 2004).
Migrations through the chemocline in sediments have been
reported in the ciliate Kentrophoros ssp. (Fenchel and Finlay, 1989),
the stilbonematin nematodes (Ott et al., 1991) and the gutless
oligochaetes (Giere, 1992). Polz et al. (1999, 2000) observed the
shrimp Rimicaris exoculata swimming in and out of hydrother-
mal vent fluid as well as ventilation of the chamber in which
its symbionts reside. In Z. niveum, the host contracts and
expands continuously, facilitating switches between sulfidic and
oxygenated seawater (Ott et al., 1998). The symbionts on the host’s
surface were suggested to overcome the diffusion limitations of
their substrate supply by two processes: feeding currents gener-
ated by the host, and the pulsed advection of sulfidic seawater
from the peat caused by interactions of the boundary layer flow
with groups of ciliates (Vopel et al., 2005). Interestingly, all the
symbionts exposed to the feeding currents are larger and coc-
coid in shape, while the symbionts on the other host part are
less favored and thus remain smaller and rod-shaped (Rinke et al.,
2007). This emphasizes the importance of host-generated ciliary
currents.

Although Cand. Thiobios zoothamnicoli is tightly associated
with its ciliate host, the ectosymbiotic location does not pro-
vide shelter from competing microbes. Nevertheless, most parts
of the host are exclusively covered by the symbiont, pointing to
mechanisms developed against unspecific colonization. Microbial
fouling on more basal, older host parts suggests that the host con-
trols colonizers until it become senescent. Only then do other
microbes appear on top of the symbionts, sometimes replacing
them (Bauer-Nebelsick et al., 1996b).

Detailed analyses elucidated the importance of the host surface
for colonization and of host behavior for the symbiont population
density (Røy et al., 2009). Sulfide transport and estimated oxygen
consumption were incorporated in a model of sulfide require-
ments sustaining chemoautotrophic growth by analyzing the flow
field around individual zooids. Fluxes of 6.61 μmol O2 m−2 s−1

and 3.19 μmol �H2S m−2 s−1 were calculated. This model
suggests that sulfide uptake rates are 100 times larger for host-
associated symbionts than for free-living bacteria on flat surfaces
(Røy et al., 2009).

Some evidence points to mutualism in this ciliate symbio-
sis. While the host benefits from the symbiont’s organic carbon,
translocated to the host (Rinke, 2002), the host’s costs to carry an
ectosymbiotic coat during all life stages have not been explored.
Especially the costs involved in transporting the symbiont dur-
ing dispersal in the water column are unknown (Genkai-Kato
and Yamamura, 1999). Swarmers might move in the boundary
layer close to the peat surface, enabling uninterrupted thiotrophic
symbiont functioning. Alternatively, they might migrate through
the oxygenated water column and, depending on dispersal time,
must deal with a non-functioning symbiont; this would poten-
tially incur some costs to the host. Overall, the host is by

far the largest representative in the genus Zoothamnium (see
Bauer-Nebelsick et al., 1996a), indicating that benefits exceed
costs.

The symbiont benefits from the host, which provides large sur-
faces or colonization and therefore supports enhanced symbiont
population density with optimal conditions for sulfide oxidation
and carbon fixation compared to flat surfaces (Røy et al., 2009).
This colonization appears to be host controlled: space is allocated
exclusively to the symbiont, enhancing symbiont fitness. The sym-
biont’s costs involve population reduction through digestion and
possible host controlled enhanced leaking of fixed carbon to the
host as has been shown for the photoautotrophic Symbiodinium
in corals (see Trench, 1979). Such leaking processes occur to a cer-
tain degree in free-living microalgae and autotrophic bacteria, but
are enhanced when the microalgae are host associated (see Trench,
1979). Also the thiotrophic endosymbiont of the giant tubeworm
Riftia pachyptila leaks organic carbon when artificially separated
from its host (Felbeck and Jarchow, 1998). Whether the ciliate
host enhances this naturally occurring leaking process remains to
be studied.

EVOLUTION AND PERSISTENCE
A longstanding paradigm in cooperation theory depicts the evo-
lution of mutualism from parasitism (Roughgarden, 1975; Ewald,
1987; Lipsitch et al., 1996; Yamamura, 1996). It has been argued
that through vertical transmission lower virulence is selected and
thus shifts the relationship toward a beneficial one. More recently,
this general hypothesis has been rejected because in many sys-
tems phylogenetic information suggests mutualism can also evolve
de novo from previously free-living partners or from previous
mutualistic associations (Douglas, 2010; Sachs et al., 2011). De
novo evolution of the Cand. Thiobios zoothamnicoli – Z. niveum
mutualism is also the most likely scenario. Based on 16S rRNA,
Cand. Thiobios zoothamnicoli is most closely related to a variety of
free-living bacteria (Figure 6). Furthermore, no pathogens or par-
asites are known with sulfur-oxidizing, autotrophic metabolism
(Dubilier et al., 2008).

A mathematical model predicts that vertical transmission can
evolve when the costs for vertical transmission are low, the avail-
ability of free-living symbiont is poor, and byproduct usage is
high on both sides (Yamamura, 1993, 1996; Genkai-Kato and
Yamamura, 1999). While we cannot comment on the first two
parameters in the giant ciliate symbiosis, there are some indica-
tions that byproduct usage is present and played an important role
for the evolution of this vertically transmitted symbiosis.

Byproduct benefits involve one partner providing goods to the
other at no costs, but rather as an automatic, coincident conse-
quence of selfish traits (West-Eberhard, 1975; Connor, 1986, 1995;
Hauert et al., 2006). Such byproduct benefits are considered to
be important in the initiation of mutualism (Sachs et al., 2011).
This self-interest action benefits both the actor and the associated
recipient. Byproduct benefits, however, do not challenge evolu-
tionary theory because both partners cooperating is favored over
one partner cooperating and the other one defecting (Hauert et al.,
2006) and have been largely neglected (Douglas, 2010).

Several characteristics of the present symbiosis may point to
byproduct benefits, one provided by the symbiont to the host, the
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FIGURE 11 | Diagram of the putative byproduct mutualism. The host’s
behaviors to contract and expand and the ciliary movement are self-serving
acts to gain access to oxygen for respiration and for feeding, respectively.
As a byproduct, sulfide and oxygen is provided to the symbiont. On the
other hand, the symbiont fixes carbon as a self-serving act to grow and as a
byproduct nourishes the host.

other provided by the host to the symbiont – at no costs. The
leaking of fixed carbon from the symbiont cell initially appears
costly. Nonetheless, these costs are not associated with symbiosis
per se but with the inability of autotrophs to keep all the fixed car-
bon inside the cell, independent of a free-living or host-associated
life style. Such costs can be allocated to the symbiosis only if
they are enhanced and controlled by the host. Finally, we con-
sider the provision of sulfide and oxygen for chemosynthesis as
a byproduct benefit provided by the host through its contract-
ing and expanding behavior as well as by its ciliary movement
(Figure 11).

Several mechanisms identified in evolutionary theory are cru-
cial for the maintenance of mutualism: (1) partner choice, (2)
partner sanctions, (3) and partner fidelity feedback (Bull and
Rice, 1991; Noë and Hammerstein, 1994; Johnstone and Bshary,
2002; West et al., 2002a,b; Sachs et al., 2004; Weyl et al., 2010;
Archetti et al., 2011). Their importance differs according to the
mode of transmission (Ewald, 1987; Douglas, 2010; Sachs et al.,
2011). In horizontal transmission, partner choice is crucial for the
establishment, during which a cooperative symbiont is selected
from the environment in advance of any possible exploitation
(Bull and Rice, 1991). In contrast, during vertical transmission,
the partner has already been chosen and is transferred to the
next generation with high fidelity. Based on our current state
of knowledge, this appears to be the case in the Z. niveum
symbiosis.

Consensus exists on the crucial role of partner fidelity feedback
in mutualism with vertical transmission that ensures maintenance
after establishment (Douglas, 2010; Sachs et al., 2011). In the
Z. niveum symbiosis, some of the interactions might be based
on partner fidelity feedback (Figure 11). The host’s behavior,
which supplies the symbionts with chemicals for chemosynthe-
sis (a byproduct benefit), boosts symbiont fitness while increasing
host fitness through nourishment. Cessation or decrease of host
contraction-expansion behavior and ciliary movement directly

negatively affect host fitness. This would also decrease the oxy-
gen supply for the host’s respiration and restrict food uptake by
impacting the ciliary movement of microzooids. In addition, the
oxygen and sulfide supply fueling chemosynthesis by the sym-
biont would be diminished, impeding the translocation of organic
carbon from the symbiont to the host.

If the symbiont defects by reducing the amount of fixed car-
bon translocated to the host, then host growth would be reduced,
decreasing the host surface available for symbiont colonization.
Host growth and symbiont population density are finely tuned,
sustaining a monolayer. Accordingly, a defecting and therefore
fitter symbiont would overgrow the host unless the latter can sanc-
tion the cheater. If, however, the provision of goods to the host is
a byproduct of carbon fixation, then the symbiont cannot defect,
and partner fidelity feedback would regulate the provision (see
Weyl et al., 2010; Archetti et al., 2011).

CONCLUSION
This review illustrates our current state of knowledge on the Z.
niveum – Cand. Thiobios zoothamnicoli symbiosis. Its extremely
wide geographical distribution points to a cosmopolitan sym-
biosis in tropical to temperate shallow-water environments in
which oxic–anoxic interfaces develop on decaying plants or ani-
mals. This association is specific for both partners, and the
symbiont is permanently associated with the host and trans-
ferred vertically to the next host generation. It is obligate
for the host, but whether or not it is obligate for the sym-
biont remains to be determined. Of all thiotrophic symbiosis,
this mutualistic association has the highest potential of becom-
ing a model system to study interspecies cooperation and the
molecular mechanisms by which host and symbiont initiate the
association and interact to persist. It can be cultivated and
manipulated, and we recently successfully separated the part-
ners and cultivated the aposymbiotic host (Bright M., Espada-
Hinojosa S., Volland J. -M., personal observations). This opens
the door to experimentally study the pre- and postinfection
mechanisms.
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