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Lactic acid bacteria (LAB) are Gram positive bacteria widely used in the production
of fermented food in particular cheese and yoghurts. Bacteriophage infections during
fermentation processes have been for many years a major industrial concern and have
stimulated numerous research efforts. Better understanding of the molecular mechanisms
of bacteriophage interactions with their host bacteria is required for the development
of efficient strategies to fight against infections. The bacterial cell wall plays key roles
in these interactions. First, bacteriophages must adsorb at the bacterial surface through
specific interactions with receptors that are cell wall components. At next step, phages
must overcome the barrier constituted by cell wall peptidoglycan (PG) to inject DNA inside
bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able
to hydrolyze PG and lyse bacterial cells to release phage progeny. In the last decade,
concomitant development of genomics and structural analysis of cell wall components
allowed considerable advances in the knowledge of their structure and function in several
model LAB. Here, we describe the present knowledge on the structure of the cell wall
glycopolymers of the best characterized LAB emphasizing their structural variations and
we present the available data regarding their role in bacteria-phage specific interactions at
the different steps of the infection cycle.
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INTRODUCTION
The cell wall of Gram-positive bacteria which surrounds the
cytoplasmic membrane is a complex arrangement of different
biopolymers: peptidoglycan (PG), polysaccharides, teichoic acids
and (glyco)proteins (Delcour et al., 1999) (Figure 1A). PG is the
major component of the Gram-positive cell wall and it is made of
glycan chains cross-linked through short peptide chains. It con-
stitutes a network around the bacterial cell on which are linked
covalently secondary polymers such as wall teichoic acids (WTA),
polysaccharides, or LPXTG-containing proteins. Proteins can also
be attached non-covalently by recognizing specific motifs of cell
wall polymers or they can be organized as a layer outside the cell
(S-layer). Lipoteichoic acids (LTA) anchored in the cytoplamic
membrane and inserted in the cell wall contribute also to its prop-
erties and functions. The major role of the cell wall is to maintain
bacterial shape and integrity. In addition, its components exposed
at the bacterial surface constitute the first line of molecules to
interact with abiotic or biotic environment, including eukaryotic
host cells and bacteriophages.

Lactic acid bacteria (LAB) are Gram-positive bacteria widely
used in food fermentations due to their ability to convert sug-
ars into lactic acid. Lactococci and lactobacilli are used as starters
in milk fermentations for the production of cheese and yogurts.
They acidify milk through lactic acid production which limits
food spoilage and in addition they contribute to the develop-
ment of organoleptic properties including texture and flavor
(Lortal and Chapot-Chartier, 2005). Bacteriophages infecting

LAB constitute a real threat for dairy fermentations. Lysis of
starter bacteria during their growth leads to slow or failed milk
acidification, to poor quality products and finally to economic
losses (Garneau and Moineau, 2011). It is expected that a bet-
ter understanding of the molecular mechanisms of bacteriophage
interactions with their host strain will provide new strategies to
control phage infections.

During the phage infection cycle, the bacterial cell-wall com-
ponents which possibly show considerable variations between
species and strains are key determinants of the specific interac-
tions of bacteriophages with their target bacteria (Samson and
Moineau, 2013) (Figure 1A). First, bacteriophage particles must
attach to bacteria and at this early step, cell-surface-exposed com-
ponents of the bacterial wall are the likely recognized receptors
(Forde and Fitzgerald, 1999). Then, phages must inject their
DNA inside the bacterial cell and this step may be facilitated
by PG-hydrolases (PGHs), able to locally degrade PG to make
small-size holes inside the wall and allow safe passage of DNA
injection device to the cytoplasmic membrane without lysing bac-
terial cells (Kenny et al., 2004). Finally, at the end of the infection
cycle, bacteriophages make the infected cells burst to release the
phage progeny; this step generally occurs by synthesis of phage-
encoded PGHs, named endolysins, which recognize specifically
and hydrolyze the bacterial cell wall PG (Oliveira et al., 2013).

A growing interest for the structure and function of the cell-
wall glycopolymers of LAB has emerged in the past years due
to their potential involvement in LAB functionality including
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FIGURE 1 | (A) Schematic representation of L. lactis cell wall and its
interactions with infecting bacteriophages. Outside the bacterial cell,
phages adsorb to bacteria through specific recognition of receptors
(polysaccharide on this scheme) located at the bacterial surface. Inside
the bacterial cell, at the end of the infection cycle, endolysin and holin
encoded by the phage genome are synthesized to lyse bacteria and
release phage progeny. Endolysins are PG-hydrolases that gain access to
their substrate by passing through pores made by oligomerization of
holins. (B) Schematic peptidoglycan structure. Structure with D-Asx
cross-bridge (A4α-chemotype) is found in L. lactis and in several
Lactobacillus species. Asx stands for Asp or Asn. The third amino acid of

the stem peptide (L-Lys) may be replaced by mDAP (in L. plantarum) and
the fifth D-Ala of the peptide stem by D-Lac in certain lactobacilli such
as L. casei. The cross-bridge is also variable between bacterial species.
The cleavage sites of the different types of PG-hydrolases are indicated
by arrows. Muramidase, N-acetyl-muramidase; glucosaminidase,
N-acetyl-glucosaminidase; amidase, N-acetyl-muramyl-L-Ala-amidase;
endopeptidases with γ-D-Glu-L-Lys-endopeptidase or
D-Ala-D-Asp-endopeptidase (specific of cross-bridge) specificity.
Carboxypeptidases including D,D-carboxypeptidases and
L,D-carboxypeptidases are involved in PG maturation; they were not
found among endolysins.

bacterial growth and fitness, interactions with their eukaryotic
host in the case of commensal and probiotic strains and sensitiv-
ity to bacteriophages. In this review, we summarize the current
knowledge on the different cell wall glycopolymers including
polysaccharides, teichoic acids and PG, studied mainly in four
model LAB species: Lactococcus lactis, Lactobacillus plantarum,
Lactobacillus casei, and Lactobacillus rhamnosus. For each com-
ponent type, we present the available data regarding their role in
bacteriophage infection cycle.

CELL-WALL GLYCOPOLYMERS AS RECEPTORS OF
BACTERIOPHAGES
The first step of bacteriophage infection is the adsorption of the
phage particles to the bacterial host. This event involves recog-
nition by phage receptor-binding proteins (RBPs) of receptors
located on the target bacterial cell surface. Regarding LAB phages,
until now previous studies have identified proteins as well as non-
proteinaceous compounds of the cell wall such as polysaccharides
or teichoic acids as phage receptors (Mahony and van Sinderen,
2012). The receptor for the C2-type group of phages infecting
L. lactis was previously identified to be the membrane protein
termed Pip (phage infection protein); adsorption of c2-phage
follows a two-step process with reversible saccharide binding
prior to irreversible binding to Pip protein (Geller et al., 1993;
Monteville et al., 1994). In the following text, we will focus on
non-proteinaceous cell wall glycopolymers identified as phage
receptors.

CELL-WALL POLYSACCHARIDES IN LAB
The polysaccharidic components of Gram-positive bacteria sur-
face may be divided into three groups: (i) capsular polysaccha-
rides (CPS) that are, in most cases, covalently bound to PG and
form a thick outer layer named capsule; (ii) wall polysaccha-
rides (WPS) that may be attached to the cell wall whether or not
covalently, but without forming a thick capsule; and (iii) extra-
cellular polysaccharides (EPS) which are released into the cell
environment and are not attached to the cell surface. Different
polysaccharides may be produced by the same bacterium (Caliot
et al., 2012), although at the experimental level it may be difficult
to differentiate unambiguously the different groups.

A WPS, which is not an EPS and capable of forming an outer
layer at the bacterial surface, was discovered in L. lactis MG1363
(Chapot-Chartier et al., 2010). The WPS chains are composed
of hexasaccharide-phosphate repeating units (Figure 2), which
are distinct from other bacterial polysaccharides. Also it differs
from previously characterized L. lactis EPS and is most proba-
bly covalently attached to the cell wall as regard the harsh acid
treatment used to detach it from the bacterial cells. Atomic force
microscopy (AFM) allows exploring bacterial surface architec-
ture at the nanoscale level and was recently used to probe the
surface of several LAB, including L. lactis, L. plantarum, and L.
rhamnosus (Tripathi et al., 2012). In L. lactis MG1363, AFM as
well as complementary transmission electron microscopy (TEM)
observations show that the characterized WPS forms a com-
pact outer layer surrounding the cell which was named pellicle
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FIGURE 2 | Structure of sugar-phosphate polysaccharide pellicle of L.

lactis MG1363.

(Chapot-Chartier et al., 2010). It was visualized as an electron
dense layer by TEM and as a smooth layer by AFM around the
cells. A derivative mutant lacking this WPS layer was obtained
and was found to have a rough surface by AFM. In addition,
by imaging the surface of this WPS-negative mutant with a tip
functionalized with the PG-binding LysM domain, PG could be
imaged as parallel cables around the bacterial cells (Andre et al.,
2010). It is worth noting that a similar outer layer can be observed
in a number of TEM micrographs of L. lactis strains of different
origins, although its existence was not reported (Chapot-Chartier
et al., 1994; Dabour et al., 2006). In L. lactis MG1363, a WPS-
negative mutant makes long chains of cells which appear to
have morphological defects. These observations suggest that WPS
is required for normal cell division and separation. Also the
WPS layer was shown to protect bacteria from phagocytosis by
macrophages (Chapot-Chartier et al., 2010).

The synthesis of this WPS is encoded by a large cluster of
genes in MG1363, which is conserved among L. lactis strains
but exhibits genetic diversity that was recently analyzed in details
(Mahony et al., 2013a).

Other polysaccharides associated to the cell surface were
described in lactobacilli. In L. plantarum WSF1, four gene clus-
ters associated with polysaccharide production are encoded in
the genome (Remus et al., 2012). All these four gene clusters
contribute to the overall surface polysaccharides produced by L.
plantarum. However, in this case, the structure of the different
polysaccharides has not been established until now. The surface
polysaccharides were shown to influence the immunomodulatory
properties of the wild-type strain probably by reducing the release
or the exposure of activating molecules of the bacterial surface.

In L. rhamnosus GG, a long galactose-rich polysaccharide was
found at the bacterial surface (Lebeer et al., 2009). This polysac-
charide named EPS was detected at the bacterial surface of LGG
by AFM and contributes to bacterial cell surface properties which
determine adhesion and biofilm formation (Francius et al., 2009).
The structure of this polysaccharide most probably corresponds
to the one described earlier (Landersjo et al., 2002). The gene
cluster specifying this polysaccharide in LGG exhibits differences
with the clusters identified in other strains of L. rhamnosus in
agreement with different composition of the synthesized polysac-
charides (Peant et al., 2005). When the cell surface of L. rhamnosus
was explored by AFM, it revealed a rough morphology decorated
with waves (Francius et al., 2009). In contrast, a WPS-negative
mutant showed a much smoother morphology suggesting that
these wave-like structures reflect the production of WPS. In addi-
tion single molecule force spectroscopy with lectin-modified tips,
revealed the existence of polysaccharide chains of different nature
at the cell surface, polysaccharide rich in mannose or glucose
having moderate extension and polysaccharide rich in galactose
with much longer extensions. Deprivation of bacteria of the long

galactose-rich polysaccharide results in an increased adherence
and ability to form biofilm suggesting that surface adhesins such
as pili structures were demasked at the bacterial surface (Lebeer
et al., 2009). In addition, this polysaccharide has a protective role
against host immune antimicrobial peptides (Lebeer et al., 2011).

In L. casei Shirota strain, two types of WPS were also described:
longer, high molecular mass PS-1 and shorter low molecular mass
PS-2. The gene cluster encoding PS-1 biosynthesis was identified
(Yasuda et al., 2008) and PS-1 structure was previously deter-
mined (Nagaoka et al., 1990). The glycome of L. casei strains was
compared with a lectin microarray and allowed to evidence dif-
ferent profiles between strains suggesting different WPS (Yasuda
et al., 2011). In L. casei Shirota, WPS was shown also to have an
immune suppressive function (Yasuda et al., 2008).

Finally, the diversity of WPS between strains of the same
species was also recently observed in Lactobacillus helveticus
strains and it was hypothesized that these different polysaccha-
ride structures could contribute explaining the different autolytic
properties observed between the studied strains (Vinogradov
et al., 2013).

As a conclusion, WPS appear as omnipresent components of
the cell surface of LAB and exhibit most probably high structural
diversity between strains the same species.

CELL-WALL POLYSACCHARIDES AS BACTERIOPHAGE RECEPTORS IN
LACTOCOCCI
L. lactis phages are the best characterized and numerous indi-
viduals were isolated because of the wide use of L. lactis in
dairy industrial fermentations (Garneau and Moineau, 2011).
They were previously classified in 10 groups on the basis of their
lytic activity on a range of L. lactis strains, morphology or more
recently DNA-DNA hybridization and multiplex PCR. The pre-
dominant L. lactis phages are found in three main groups: 936, c2,
and P335 species which belong to the Siphoviridae phage family,
the most problematic infecting L. lactis and certain Lactobacillus
species. The 936 phages are strictly lytic and thus received more
specific attention because they are threatening dairy fermenta-
tions involving L. lactis starters (Mahony et al., 2013b). However,
inside the wide 936 group, phages differ at the level of their RBPs
and thereby potentially at the level of their host range (Mahony
and van Sinderen, 2012).

Initial studies conducted to identify the phage receptor of 936-
phages indicated that a bacterial cell-wall component differing
from a protein and containing rhamnose was involved in adsorp-
tion of the phage at the bacterial surface (Valyasevi et al., 1990).
Further studies using transposon random mutagenesis allowed to
identify genes required for adsorption of two 936-type bacterio-
phages to their respective host strain. Mutations were mapped
inside a gene cluster potentially involved in WPS biosynthesis
(Dupont et al., 2004). Later on, the WPS of L. lactis MG1363
named pellicle was discovered, its structure determined and it
was shown to be encoded by the corresponding gene cluster in
MG1363 genome (Chapot-Chartier et al., 2010). In addition, a
pellicle-negative mutant was shown to be resistant to the 936-
bacteriophage sk1 strongly suggesting that this WPS consisting in
hexasaccharide subunits bound through phosphodiester bonds,
could be the sk1 phage receptor.
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In a recent study, the gene cluster encoding WPS biosynthe-
sis in various L. lactis strains was shown to contain both highly
conserved regions as well as regions of high diversity, suggesting
that WPS structure could be a variable character between strains
(Mahony et al., 2013a). Detailed analysis of the proteins encoded
in the gene cluster allowed the classification of L. lactis strains in
three subgroups (CWPS type A, B, and C) based on the diversity
regions. In parallel, a panel of 936-type phages infecting L. lac-
tis was classified in different groups according to their host range
and their encoded RBP sequence. Mahony et al. (2013a) revealed
a correlation between the pellicle genotype of a given host strain
and the host range of the tested 936-type phages. These results
support the proposed role of WPS pellicle as 936-phage receptor
and variations of its structure could explain the narrow host range
of this type of phages. This hypothesis was very recently con-
firmed by the structure determination of the WPS purified from
a second L. lactis strain with a different WPS-pellicle genotype.
WPS from L. lactis strain 3107 was shown to be composed of pen-
tasaccharide repeating units linked by phosphodiester bonds and
thus differs from the WPS characterized in L. lactis MG1363. In
addition, this WPS was shown to be the receptor used by several
936- phages infecting L. lactis 3107 (Ainsworth et al., 2014).

Remarkably, in parallel studies, the 3D-structure of the
receptor binding proteins (RBPs) (also sometimes named anti-
receptors) has been elucidated in several cases, including those
of 936-phages p2 and bIL170 as well as P335-like phage TP901-
1 (Ricagno et al., 2006; Spinelli et al., 2006a,b). These RBPs are
localized at the tip of the phage tail and allow the phage to rec-
ognize specifically its receptor at the bacterial surface. The crystal
structure of the protein complex connecting the RBP to the rest
of the phage tail was also solved for siderophages p2 and TP901-
1 (Sciara et al., 2010; Veesler et al., 2012). Recently the binding
of RBP to the WPS pellicle was demonstrated in the case of the
p2 RBP with the purified pellicle from its host strain MG1363
with the use of surface plasmon resonance (SPR) (Bebeacua et al.,
2013). The RBP from the P335-phage TP901 which does not
infect MG1363 exhibited a much lower affinity for the MG1363
pellicle. The specificity was shown to result mainly from a lower
koff value of the RBP/saccharide dissociation.

TEICHOIC ACIDS IN LAB
Teichoic acids are phosphate-rich glycopolymers that are classi-
fied into two groups: LTA anchored in the cytoplasmic membrane
through a glycolipid and WTA covalently bound to PG. In certain
Gram-positive bacteria such as Bacillus subtilis, WTA may repre-
sent up to 50% of the cell wall dry mass (D’Elia et al., 2006). WTA
are quite diverse in structure but the most common ones are poly-
mers of glycerol-phosphate (poly(Gro-P)) or ribitol-phosphate
(poly(Rbo-P)) (Figure 3). With respect to LTA, the most common
structure is also a poly(Gro-P) chain. It is worth noting that LTA
and WTA have different biosynthetic pathways, even if they are
made of similar repeating units such as Gro-P (Weidenmaier and
Peschel, 2008). The glycerol or ribitol chains may be substituted
with D-alanyl- or glycosyl-residues (e.g., Glc, Gal, GlcNAc) which
contribute to teichoic acid functionality. In particular, D-alanyl
residues provide their positive charges as counter ions of negative
phosphate groups and modify the physico-chemical environment

inside the cell wall and/or at the bacterial surface (Neuhaus and
Baddiley, 2003).

Due to their polyanionic nature and their abundance, both
WTA and LTA play multiple and varied roles in bacterial physi-
ology. They are involved in regulation of ion homeostasis inside
the cell wall, in modulating autolytic activity and in controlling
cell division and morphogenesis. Also they are crucial for bac-
teria host interactions since their D-alanylation protect bacteria
against cationic antimicrobial peptides. They also influences bac-
terial adhesion to abiotic surfaces and to host cells. Finally, they
are recognized by the host as molecular-associated microbial pat-
terns (MAMPS) (Brown et al., 2013; Schneewind and Missiakas,
2014).

In L. casei or L. rhamnosus, no WTA were detected in agree-
ment with the absence of tag or tar biosynthesis genes, whereas in
L. lactis, the presence of WTA remains to be further investigated.
WTA have been described in L. plantarum strains which appear
to produce either poly(Gro-P) or poly(Rbo-P) WTA. Moreover,
several L. plantarum strains contain the genes to synthesize the
two types of WTA (Bron et al., 2012).The cell surface of L. plan-
tarum was also investigated by AFM combined with fluorescence
microscopy with specific lectin probes (Andre et al., 2011). This
approach combined with the use of specific cell-wall mutants
devoid of WPS or WTA, allowed imaging the distribution of
WTA at the bacterial surface. In this way it was shown that
wild-type cells have a highly polarized surface morphology with
smooth poles and rough lateral regions. Together with fluores-
cence labeling with lectin probes, AFM showed that WTA are
heterogeneously distributed at the bacterial surface and absent
from the surface of the poles. In addition, the complexity of
L. plantarum surface is evidenced by the fact that PG is acces-
sible at the surface only in absence of WPS (Beaussart et al.,
2013).

The structures of both L. rhamnosus and L. plantarum LTA
were confirmed to be made of a poly(Gro-P) backbone with
an average of 30 and 22 repeating units of Gro-P, respectively,
(Grangette et al., 2005; Claes et al., 2012b). In both cases, D-Ala
was found to be the unique detectable substituent. The lipid moi-
ety of the L. rhamnosus LTA reveals an average fatty acid chain
of C14 (Claes et al., 2012b). In L. lactis, poly(Gro-P) chains con-
tained linked D-Ala and Gal (Giaouris et al., 2008; Kramer et al.,
2008).

LTA AS BACTERIOPHAGE RECEPTORS IN LACTOBACILLI
A second model system where the bacteriophage receptors have
been identified is the pair Lactobacillus delbruekii subsp. lac-
tis ATCC15808 and bacteriophage LL-H. In this case, LTA were
shown to be the phage receptor components (Raisanen et al.,
2004). In addition, it was shown that D-Ala and α-Glc sub-
stituents of LTA affect the adsorption of LL-H phages. A high
degree of D-alanylation decreased phage adsorption whereas
Glc substituents were required for efficient binding (Raisanen
et al., 2007). A model is proposed where the anti-receptor pro-
tein of the phage tail binds to the glucosyl- substituted glyc-
erol of LTA, providing reversible, specificity-determining binding
to the surface. Another domain of the antireceptor protein
would ensure irreversible binding to the negatively charged
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FIGURE 3 | Structure of teichoic acids. (A) WTA with poly-glycerol-phosphate chains; (B) WTA with poly-ribitol-phosphate chain; (C) LTA with
poly-glycerol-phosphate chains. R, R1, R2 indicate potential substituent groups of polyols chains (e.g., D-Ala, Glc, Gal, GlcNAc).

poly-glycerol-phosphate chains (with no or low local level of
D-Ala substituents) (Munsch-Alatossava and Alatossava, 2013).

PEPTIDOGLYCAN AS TARGET OF BACTERIOPHAGE
ENDOLYSINS
PEPTIDOGLYCAN STRUCTURE IN LAB
PG is the most abundant polymer of the Gram-positive cell
wall. It is composed of glycan strands, made of alternat-
ing N-acetylglucosamine (GlcNAc) and N-acetyl-muramic acid
(MurNAc), which are cross-linked by short peptide chains
(Figure 1B). Although the PG basic structure is characteristic for
a given bacterial species (Schleifer and Kandler, 1972), PG is in
a dynamic state throughout bacterial cell life, and its structure is
the result of complex biosynthetic, maturation, and degradation
reactions (Typas et al., 2012).

Structural analysis of the PG-constituting muropeptides of
several LAB, such as L. lactis (Courtin et al., 2006), L. casei
(Regulski et al., 2012), L. rhamnosus (Claes et al., 2012a), and L.
plantarum (Bernard et al., 2011a) confirmed that the first three
species have a D-Ala4-D-Asp/Asn-L-Lys3 cross-bridge whereas
the latter has a direct D-Ala4-mDAP3 cross-bridge. Also, PG
covalent modifications were revealed, including O-acetylation of
MurNAc in the four species, O-acetylation of GlcNAc in L. plan-
tarum, N-de acetylation of GlcNAc in L. lactis, amidation of
D-Asp cross-bridge in L. lactis, L. casei, and L. rhamnosus, and
amidation of mDAP in L. plantarum. O-acetylation of MurNAc
is known to inhibit lysozyme (Bera et al., 2005) and all the PG
modifications listed above were shown to control the activity of
specific endogenous bacterial PGHs (named autolysins) (Veiga
et al., 2009; Bernard et al., 2011a,b).

HYDROLYSIS OF PEPTIDOGLYCAN BY BACTERIOPHAGE ENDOLYSINS
Endolysins, encoded by phage DNA, are PGHs synthesized in
phage-infected cells at the end of the multiplication cycle, and

able to lyse bacteria and release phage progeny (Loessner, 2005).
Endolysins usually lack a signal peptide for their export and
therefore rely on the synthesis of holins which insert into the
cytoplasmic membrane and make pores (Figure 1A) (Wang et al.,
2000). Like bacterial PGHs, phage endolysins have a modular
structure including a catalytic domain and a cell-wall binding
domain (CWBD). Most often, their catalytic domain is located
at the N-terminus and their CWBD at the C-terminus (Fischetti,
2008).

Generally, the catalytic domains found in endolysins belong
to the same families as those encountered in bacterial PGHs
(Chapot-Chartier, 2010). The different endolysins found in
Siphoviridae phage genomes of L. lactis and different Lactobacillus
species have been recently searched in available genome sequences
(Oliveira et al., 2013) and are listed in Table 1. The catalytic
domains found in these endolysins belong to five Pfam domain
families which confer different hydrolytic specificities to the
enzymes (Figure 1B). These domains include Amidase_2 domain
(PF01510) conferring N-acetyl-muramyl-L-Ala-amidase activity,
Glyco_hydro_25 (PF01183) conferring N-acetyl-muramidase
activity, Phage_lysozyme domain (PF00959) conferring
N-acetyl-muramidase activity, Amidase_5 (PF05382) con-
ferring γ-D-Glu-L-Lys-endopeptidase activity (Regulski et al.,
2013) and CHAP domain (cysteine, histidine-dependant ami-
dohydrolase/peptidase domain) (PF05257) with both amidase
and/or peptidase specificity (Frankel et al., 2011).

Interestingly, tail-associated lysins were also found in cer-
tain bacteriophages such as Tuc2009 and TP901-1. The tail
fiber of these phages is composed of a trimer of Tal pro-
teins which contain a PG-hydrolase domain of the M23-
peptidase family (PF01551). This domain is protruding from
the large host-recognizing baseplate structure of each of these
phages (Kenny et al., 2004) and is most likely involved in
PG digestion required for phage DNA injection inside the
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Table 1 | Domain structure of the main endolysins of Siphoviridae phages infecting L. lactis and Lactobacillus speciesa.

Name of the phage Protein ID Length

(AA)

Catalytic domain Cell wall

binding domain
Domain Putative specificity

Lactococcus lactis

Phage SL4 ACU46783.1 234 Amidase_2
(PF01510)

Amidase No

Phage CB13 ACU46835.1 234

Phage P008 YP_762533.1 233

Phage Q54 YP_762603.1 256

Phage bIBB29 YP_002004009.1 233

Phage bIL170 NP_047135.1 233

Phage P087 YP_002875753.1 237

Phage jj50 YP_764334.1 253 Amidase_2 Amidase No

Phage 712 YP_764281.1 258

Phage sk1 NP_044966.1 246

Phage r1t NP_695077.1 270 Amidase_2 Amidase No

Phage 949 YP_004306215.1 343 Amidase_2 Amidase Lc-LysBDb

Prophage bIL285 NP_076634.1 259 Amidase_5
(PF05382)

γ-D-Glu-L-Lys-
Endopeptidase

PG_binding_3
(PF09374)

Prophage bIL286 NP_076695.1 259

Prophage bIL309 NP_076751.1 259

Phage BK5-T NP_116519.1 259

Phage bIL67 NP_042321.2 226 Phage_lysozyme
(PF00959)

Muramidase No

Phage c2 NP_043551.1 226

Phage 4268 NP_839940.1 305 Glyco_hydro_25
(PF01183)

Muramidase No

Phage phiLC3 NP_996722.1 429 Glyco_hydro_25 2 × LysM
(PF01476)Phage TP901-1 NP_112716.1 429

Phage Tuc2009 NP_108734.1 428

Phage ul36 NP_663692.1 429

Phage P335 ABI54253.1 432

Phage 1358 ADD25719.1 233 CHAP
(PF05257)

Amidase or
Endopeptidase

SH3_5
(PF08460)

Lactobacillus casei

Prophage Lc-Lys
Phage A2

YP_001987071.1
NP_680500.1

350 Amidase_2 Amidase Lc-LysBDb

Prophage Lc-Lys2 YP_001986946 324 Amidase_5 γ-D-Glu-L-Lys-
Endopeptidase

Lc-LysBDb

Phage phiAT3 YP_025045.1 393 Glyco_hydro_25 Muramidase SH3_5, LysM

Lactobacillus rhamnosus

Phage LC-Nu YP_358779.1 432 Glyco_hydro_25 Muramidase 2 × LysM

Phage Lrm1 YP_002117687.1

(Continued)
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Table 1 | Continued

Name of the phage Protein ID Length

(AA)

Catalytic domain Cell wall

binding domain
Domain Putative specificity

Lactobacillus gasseri

Prophage KC5a YP_529896.1 246 Glyco_hydro_25 Muramidase No

Phage phiadh NP_050170.1 317 Glyco_hydro_25 Muramidase SH3_5

Lactobacillus delbruekii subsp. lactis

Phage LL-H YP_001285906.1 298 Glyco_hydro_25 Muramidase No

Lactobacillus delbruekii subsp. bulgaricus

Phage c5 ACA63343.1 301 Glyco_hydro_25 Muramidase SH3_5

Lactobacillus plantarum

Phage LP65 YP_164723.1 464 Glyco_hydro_25 Muramidase No

Phage phiJL-1 YP_223905.1 398 Glyco_hydro_25 Muramidase SH3_5

Phage Sha1 ADW01314.1 390 Glyco_hydro_25 Muramidase SH3_5 LysM

Phage phig1e YP_003084340.1 442 Glyco_hydro_25 Muramidase SH3_5 LysM

Lactobacillus johnsonii

Prophage Lj928 NP_958555.1 315 Glyco_hydro_25 Muramidase SH3_5

aData extracted from Oliveira et al. (2013).
bLc-LysBD was characterized in Regulski et al. (2013).

cytoplasm thus facilitating infection especially when PG is
highly cross-linked. The hydrolytic specificity of the Tal PGH
was shown to be a D-Ala-D-Asp/Asn endopeptidase allow-
ing hydrolysis of PG peptide cross-bridges (Figure 1B), poten-
tially making holes in the PG network (Stockdale et al.,
2013).

PEPTIDOGLYCAN AS LIGAND OF BACTERIOPHAGE ENDOLYSIN CWBDs
The CWBD of bacteriophage endolysins is thought to main-
tain the proteins tethered to the cell wall after bacterial lysis.
This will allow preventing further attack and lysis of adja-
cent bacterial cells that represent potential hosts for the new
phage particles released upon lysis thus ensuring phage propa-
gation. Very often endolysin CWBDs bind cell wall with high
affinity and high specificity. Therefore, they were proposed for
biotechnological applications such as identification of bacteria
by specific staining (Schmelcher et al., 2010) or, after fusion
with a protein of interest, for displaying this protein at the
bacterial surface with potential applications such as vaccine or
biocatalyst development (Lee et al., 2003; Visweswaran et al.,
2014).

Lactococcus and Lactobacillus endolysins exhibit high diver-
sity in their CWBD (Oliveira et al., 2013) and a number of

them contain cell-wall binding modules commonly found in bac-
terial PGHs such as LysM or SH3b. However, a large number
of endolysins do not display any sequence similarity in their
C-terminal part with other known proteins and this C-terminal
part could contain uncharacterized cell-wall binding modules.

The LysM module (PF01476) consists of a sequence motif
of about 40 residues, which is widespread in eukaryotic and
prokaryotic proteins, and often present as several repeats consti-
tuting a LysM-domain. It was found in several LAB PGHs such as
the L. lactis major autolysin AcmA. LysM modules were shown to
bind glycan chains of PG, involving most probably GlcNAc (Steen
et al., 2003; Frankel and Schneewind, 2012).

The SH3 domain initially known in eukaryotes and virus was
later on identified in bacterial PGHs. SH3 bacterial domains
named SH3b (including different subfamilies SH3_3, SH3_4,
and SH3_5) were reported to bind PG; however contradictory
results were published regarding the exact recognized motif.
It was concluded that the SH3-containing domain of ALE-1,
an homolog of lysostaphin produced by Staphylococcus simu-
lans, binds PG and that the length of the interpeptide cross-
bridge and its amino acid composition have a major impact
on the binding (Lu et al., 2006). Another study revealed that
the C-terminal domain of lysostaphin which contain SH3_5
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domain direct the enzyme to cross-linked PG (Grundling and
Schneewind, 2006). In contrast, single molecule AFM experi-
ments with tips functionalized with Acm2, the L. plantarum
major autolyin containing five SH3_5 domains, concluded that
SH3b domains rather bind PG glycan chains and involved GlcNAc
(Beaussart et al., 2013).

Recently a CWBD, not described before, was characterized
in the C-terminal part of prophage endolysins (Lc-Lys and Lc-
Lys2) found in the complete genome sequence of L. casei BL23
(Regulski et al., 2013). This domain did not exhibit sequence
identity with any known CWBD. It was demonstrated to bind PG
and to be highly specific for amidated D-Asp cross-bridge present
in L. casei PG (Figure 1B). It does not bind PG with another type
of crossbridge such as L-Ala-L-Ala/L-Ser or even PG with non-
amidated D-Asp cross-bridge. This domain (named Lc-LysBD) is
also present in endolysins of other L. casei phages A2 and PL-1 as
well as in L. lactis phage 949 endolysin (Table 1).

Another PG-binding domain (PG_binding_3 (PF09374)) is
found in the C-terminal part of several endolysins listed in
Table 1. However, the exact motif recognized by this domain is
unknown.

CONCLUSIONS-PERSPECTIVES
The cell wall of LAB has received increased attention in the
recent past years. Advances in structural studies of the cell wall
and its components allow now the investigation of the molecu-
lar mechanisms of the interactions between bacteriophages and
their host bacteria at several steps of the infection cycle. Further
studies will aim at elucidating the inter-strain structural diver-
sity of cell-wall polymers that are phage receptors at the bacterial
surface, which could explain the narrow host range of certain
L. lactis phages. Furthermore, the 3D-structures of several RBPs
are available and the molecular determinants of the specificity
of the binding of RBPs to the polysaccharide receptors can now
be investigated. At the applied level, further knowledge will
allow rational selection of LAB strains taking into account their
WPS-types to design starters resistant to certain groups of bac-
teriophages with known RBPs or for strain rotation to prevent
phage attack. Also, as already proposed previously with the use
of camelid nanobodies raised against the purified baseplate com-
plex (Desmyter et al., 2013), strategies based on the inhibition
of the binding of RBP to their receptors may be considered at
the molecular level on the basis of the 3D-structures of RBPs.
In another field of applications, it is expected that new CWBDs
could be discovered in phage-encoded endolysins and their lig-
ands in the cell wall characterized. This improved knowledge
will open new perspectives to construct tools to display proteins
of interest at the bacterial surface of LAB for biotechnological
applications.
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