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Bacteriophages (phages) are ubiquitous viruses that control the growth and diversity
of bacteria. Although they have no tropism to mammalian cells, accumulated evidence
suggests that phages are not neutral to the mammalian macro-host and can promote
immunomodulatory and anti-tumorigenic activities. Here we demonstrate that Ff
phages that do not display any proteins or peptides could inhibit the growth of
subcutaneous glioblastoma tumors in mice and that this activity is mediated in part
by lipopolysaccharide molecules attached to their virion. Using the intranasal route,
a non-invasive approach to deliver therapeutics directly to the CNS, we further
show that phages rapidly accumulate in the brains of mice and could attenuate
progression of orthotopic glioblastoma. Taken together, this study provides new insight
into phages non-bacterial activities and demonstrates the feasibility of delivering Ff
phages intranasally to treat brain malignancies.

Keywords: Ff bacteriophages, lipopolysaccharides, glioblastoma, intranasal delivery

Introduction

The family of Ff filamentous bacteriophages (phages) consists of three members (f1, M13, and
fd) that share 98.5% homology in their DNA and a similar morphology; a flexible filament, about
900 nm long and 6–10 nm in diameter. They infect Escherichia coli carrying the F-episome and
propagate without causing cell lysis (Rakonjac et al., 2011).

Since the introduction of phage display technique by Smith (1985), Ff phages have been
extensively utilized in various biotechnology applications, both in vitro and in vivo, including in
human patients (Pasqualini and Ruoslahti, 1996; Arap et al., 1998; Frenkel and Solomon, 2002;
Larocca et al., 2002; Krag et al., 2006; Yacoby et al., 2006; Rakover et al., 2010; Rakonjac et al., 2011;
Roehnisch et al., 2014). However, although the interaction between Ff phages and bacteria has been
well studied, knowledge of their impact on the mammalian macro-host is rather sparse.

The need to study such potential interactions is underscored by the fact that phages populate
different niche in the mammalian macro-host (Kutter, 2005; Letarov and Kulikov, 2009) as
well as a growing body of evidence suggesting that some phages, including Ff phages, have the
capacity to promote non-bacterial activities, even though they have no tropism to mammalian
cells. For example, Ff phages can elicit intense humoral and cellular immune responses and thus,
are utilized in vaccination as carriers of foreign motifs as well as adjuvants (Minenkova et al.,
1993; Willis et al., 1993; De Berardinis et al., 1999, 2000; Frenkel et al., 2000; Wan et al., 2001;
Wu et al., 2002; Prisco and De Berardinis, 2012). In addition, Ff phages have been reported
to possess anti-tumorigenic properties; Stimulation of cultured tumor associated macrophages
(TAM’s) with lipopolysaccharide (LPS) free, wild-type M13 phages skewed their polarization
toward the anti-tumorigenic M1 phenotype and promoted migration of cytotoxic neutrophils in
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response to factors secreted by stimulated TAM’s (Eriksson et al.,
2009). Accordingly, treatment of mice bearing subcutaneous
melanoma tumors with tumor specific phages (displaying B16-
F10 mouse melanoma specific peptide or HLA-A2 specific Fab)
led to an intense anti-tumorigenic response associated with
neutrophil infiltration into the tumor microenvironment and
prolonged survival (Eriksson et al., 2007).

Intranasal administration is a non-invasive approach which
facilitates to bypass the blood–brain barrier and deliver
therapeutics directly to the CNS. Drugs administered via
the intranasal route avoid hepatic first pass metabolism
and have limited effect on periphery organs compared with
systematically administered drugs (Thorne et al., 2004; da
Fonseca et al., 2011; Henkin, 2011; Lochhead and Thorne,
2012). Surprisingly, Ff phages (MW = 12 × 106 Da) were
previously reported to gain access to the CNS of mice when
given intranasally. This was demonstrated to depend on their
filament structure and was further utilized to deliver anti-
β amyloid antibody fragment into brains of APP transgenic
mice to facilitate in vivo targeting of β amyloid plaques
(Frenkel and Solomon, 2002).

Here, we aimed to evaluate the feasibility of treating brain
malignancies via intranasal administration of Ff phages using
an aggressive murine model of glioblastoma. Glioblastoma and
malignant gliomas account for the majority of the malignant
primary brain tumors in humans. Current treatment of
glioblastoma is based on tumor resection to the extent feasible
followed by radiotherapy and temozolomide chemotherapy,
yet, tumor recurrence occurs in virtually all cases and the
prognosis of glioblastoma patients remains dismal having
a median survival of 15 months from day of diagnosis
(Omuro and DeAngelis, 2013).

In our attempt to remove bacterial debris from our phage
preparations prior to their administration to mice we observed
that LPS, a major byproduct of coliphages preparations, could
not be completely eliminated. LPS is released to the media upon
lysis of Gram-negative bacteria and acts as a powerful activator
of innate immune responses (Bryant et al., 2010). In fact, LPS can
affect a wide range of biological processes including angiogenesis,
tumorigenesis, and metastasis (Mattsby-Baltzer et al., 1994;
Harmey et al., 2002; Reisser et al., 2002; Pollet et al., 2003).
Picogram concentrations of LPS are sufficient to promote cell
activation while high enough concentrations can lead to sepsis
and septic shock accompanied by disseminated intravascular
coagulation (DIC) and multiple organ failure (Gioannini et al.,
2004; Angus and van der Poll, 2013). As such, the removal of LPS
from phage preparations has been addressed by several studies
(Kutter and Sulakvelidze, 2004; Zakharova et al., 2005; Eriksson
et al., 2007; Oslizlo et al., 2011). The conventional technique
applied to eliminate LPS from recombinant proteins and phages,
follows the phase separation protocol using Triton X-114 (Aida
and Pabst, 1990).

In this study, phage purification with Triton X-114 alone or
in combination with caesium chloride yielded 1,000–10,000 fold
decrease in LPS concentration compared to non-purified (NP)
phages [Limulus amebocyte lysate (LAL) assay, results are not
shown] but failed to result in LPS-free preparations. We show

that Ff phages associate with LPS and that LPS contributes to their
anti-tumorigenic activity. Using the intranasal route, we further
demonstrate that Ff phages can affect progression of orthotopic
glioblastoma.

Results

Ff Phages are Carriers of LPS
To investigate whether LPS interacts with Ff phages, NP phages
were immobilized to microtiter plates by capture antibodies
and exposed to anti-LPS antibodies. LPS was detected on the
surface of phages in a dose dependent manner (Figure 1A).
This was also supported by direct and sandwich ELISA based
immunogold transmission electron microscopy (TEM) showing
co-localization of LPS with phages (Supplementary Material,
Figure 1C). Similar to the coat proteins of phages, LPS was
mostly detected adjacent to the virion rather than in phage-
clear regions (Supplementary Material). As expected, purification
of phages with caesium chloride alone or in combination with
Triton reduced signal intensity (Figure 1B). Yet, even when
both techniques were applied, antibodies still detected LPS
on immobilized phages. Furthermore, when denatured phages
(boiled phages) were used in the same ELISA, detection of LPS
was highly increased (Figure 1D) plausibly owing to exposure
of new phages and LPS epitopes. Interestingly, NP phages or
purified phages failed to react with supernatant containing LPS
of stationary-phase uninfected bacteria in direct ELISA (data
is not shown). Collectively these observations imply that LPS
molecules associate with the virion, some in sites that are not
surface exposed, yet Ff phages show no affinity to LPS in these
experimental conditions.

Whether LPS carried by phages is biologically active depends
on its chemical and biophysical structure (Mueller et al., 2004).
Using the chromogenic LAL assay we demonstrate that LPS
derived from immunopurified phages could exert biological
activity (Figure 1E). This may also indicate that Ff phages
carry LPS aggregates on their surface (Mueller et al., 2004).
Furthermore, phages could interact with LPS binding protein
(LBP; Figure 1F) which binds to LPS aggregates and catalyzes
their transfer to CD14 (Hailman et al., 1994; Gioannini et al.,
2004; Park and Lee, 2013).

Ff Phages and Purified LPS Inhibit
Subcutaneous Tumor Growth
We then assessed whether LPS contributes to the activity of
phages in vivo using an immunocompetent mouse model of
glioblastoma (Szatmári et al., 2006). Repeated administration
of 1.7E+12 phages from preparations containing different
endotoxin concentration to mice bearing subcutaneous GL261
tumors shows that phages could suppress tumor growth, yet
the intensity of their anti-tumorigenic activity was positively
correlated with the concentration of endotoxin found in the
preparation (Figure 2A). To better evaluate the involvement
of LPS in this activity, mice bearing subcutaneous GL261
stably expressing green fluorescent protein (GFP) were injected
peritumorally with phages or purified LPS extracted from naive
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FIGURE 1 | Detection of lipopolysaccharide (LPS) on the surface of Ff
phages. (A) ELISA plate was coated with anti-p3 antibodies (capture antibody)
in coating buffer or coating buffer alone. Different concentrations of non-purified
(NP) phages were applied to the plate and LPS was detected by anti-LPS
antibodies followed by alkaline phosphatase (AP) conjugated antibodies.
(B) Sandwich ELISA was performed as in (A), equal concentrations of NP
phages (following PEG precipitation), caesium purified phages or caesium, and
Triton purified phages were applied to the plate. (C) NP phages were
immobilized to a nickel grid by anti-p8 capture antibodies, LPS was detected by
anti-LPS antibodies followed by gold conjugated antibodies (arrow). Phages

were visualized by negative staining. (D) Sandwich ELISA was performed as in
(A), wells were supplemented with NP phages or equal concentration of NP
phages after 3 min incubation at 95◦C. The plate was read following short
exposure to AP substrate. (E) ELISA plate was coated with anti-p3 antibodies,
NP phages or bacteria supernatant were applied to the plate and the complex
was detached by incubation with NaOH. Endotoxin concentration in the
samples was quantified using the limulus amebocyte lysate (LAL) assay.
(F) ELISA plate was coated with rhLBP then E+13/well NP phages were applied
to the plate and were detected by anti-p8 HRP conjugated antibodies. Results
are depicted as mean ± SEM.
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FIGURE 2 | Ff phages and purified LPS (pLPS) inhibit tumor growth.
(A) C57BL/6 mice (n = 5) inoculated subcutaneously with GL261 cells were
peritumorally administered with 1.7E+12 phages from preparations containing
different endotoxin concentration every second day for approximately
10 days. Tumor dimensions were measured by a caliper and tumor volume
was calculated as follows: width2∗ length/2 (∗∗P < 0.01 as compared to
3.5E+1 EU/injection, Kruskal–Wallis test followed by Dunn–Bonferroni’s post
hoc analysis). Results were normalized to the vehicle group. (B) C57BL/6
mice (n = 5–6) were inoculated subcutaneously with 2E+6 GL261
glioblastoma cells stably expressing green fluorescent protein (GFP). Mice

received peritumoral injections every second day of vehicle (PBS), 1.7E+12
Triton purified phages (430 EU/injection), or pLPS (430 EU/injection). Tumor
dimensions were measured as in (A) (∗P < 0.05 phages compared to
vehicle, unpaired two-tail Student’s t-test). (C) Change in body weight of
mice during the experiment. (D) Intravital fluorescence imaging performed
9 days following treatment initiation, presented are representative images.
(E) GFP intensity (total GFP signal scaled counts/s) is depicted as relative
fluorescence units (RFU; ∗P < 0.05 phages and pLPS compared to vehicle,
one-way ANOVA followed by Tukey’s post hoc analysis). Results are depicted
as mean ± SEM.

bacteria (pLPS). Administration of phages or pLPS containing
equal endotoxin concentration (430 EU/injection) inhibited
tumor growth to a similar extent (54 and 45%, respectively,
vs. vehicle at day 14; Figure 2B) with no apparent systemic
toxicity or reduction in body weight (Figure 2C). Consistent
with these results, intravital fluorescence imaging performed
after 9 days of treatment revealed reduction of 63.7% in
total signal from tumors treated with phages compared to
administration of vehicle alone (P = 0.015; Figures 2D,E),
which was similar to the effect of treatment with pLPS
(68% vs. vehicle P = 0.01). This trend was also supported
by ex vivo fluorescence imaging of tumors at the end of

the experiment (data is not shown). Taken together, these
findings suggest that the activity of phages in this model
was promoted predominantly by the presence of LPS in the
preparation.

Ff Phages Administered Intranasally
Accumulate in the Brains of Mice and Inhibit
Brain Tumor Progression
We previously reported that Ff phages administered via the
intranasal route could be detected in sections of the olfactory bulb
and hippocampus regions of mice using immunohistochemistry
staining (Frenkel and Solomon, 2002). Consistent with these
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results, here we demonstrate that infective phages could be
isolated from both rostral and caudal regions of the brainminutes
following intranasal administration (Figure 3A), and that phages
predominantly accumulate in the olfactory bulb (Figure 3B).
These observations indicate that phages plausibly utilize the
olfactory system to penetrate the brain and that phages remain
intact following intranasal delivery.

We then investigated the effect of phages and pLPS
given intranasally to mice bearing orthotopic GL261 tumors.
Administration of purified phages extended median survival
of mice by 33% compared to mice treated with vehicle alone
albeit not statistically significant (median survival of mice treated
with phages was 16 vs. 12 days of mice treated with vehicle
alone P = 0.456; Figure 3C). Intranasal administration of
pLPS containing equal concentration of endotoxin units had
virtually no effect on the survival of mice. Computed tomography
(CT) scan performed on day 14 shows that mice treated with
purified phages had significantly smaller tumors compared to
mice treated with vehicle alone (73%, P = 0.006) or pLPS
(65% P = 0.016, Figures 3D,E). In contrast, pLPS had only
minor, non-significant effect on tumor progression (22%, vs.
vehicle, P = 1).

Interestingly, treatment of mice with NP phages inhibited
intracranial tumors by 75% (Figures 3D,E), however, these mice
had significantly lower survival rate compared to mice treated
with purified phages (P = 0.017) and tended to die earlier then
mice treated with vehicle alone (Figure 3C). These observations
suggest that LPS derived from DH12S cells or other factors
found in the preparation are toxic in high doses. In support of
this, treatment of mice bearing subcutaneous tumors with NP
phage preparations produced in DH12S cells was also associated
with toxicity and fatalities (data is not shown). This toxicity was
diminished following phage purification.

Collectively, these results show that phages exerted an intense
anti-tumorigenic activity in the CNS of mice following intranasal
administration and mediated superior effect over treatment
with pLPS.

Discussion

In this study, Ff phage processing with Triton X-114 highly
reduced LPS contamination but failed to result in LPS free
preparations. Similar results were obtained following phage
purification with caesium chloride. These observations,
supported by TEM and ELISA analysis demonstrating
localization of LPS molecules on the surface of NP as well
as purified phages, suggest that Ff phages naturally carry LPS on
their surface and at least some of these LPS molecules form a
stable complex with the virion that cannot be easily dissociated.
Of note, LPS was still detected on the virion even when phages
immobilized to ELISA plate were repetitively washed with PBS
containing tween detergent or when phages were heated to 95◦C.
Yet, as others have previously reported to obtain LPS free Ff
phages (Paschen et al., 2005; Sartorius et al., 2011; Roehnisch
et al., 2013), it is possible that optimization of the purification
technique used in this study (Mantile et al., 2011; Roehnisch

et al., 2014; Branston et al., 2015) could have resulted in further
depletion of LPS from our preparations.

Although some coliphages such as T4 and T5 can interact
with LPS (Rakhuba et al., 2010), to our knowledge, no such
interactions have been reported for Ff phages. Accordingly, we
were unable to show phage binding to purified (extracted from
the host) or NP LPS (sup containing endotoxin) in vitro. As such,
Ff phages might complex with LPS non-directly, for example,
via outer membrane proteins localized at LPS sites that can
link between phages and LPS. Such interactions were previously
proposed for the TuII∗ and TuIB coliphages with LPS complexes
of OmpA and OmpC, respectively (Datta et al., 1977; Yu et al.,
1981). Interestingly, TolA which interacts with the N1 domain of
p3 during infection has been implicated in the processing of the
O antigen and its function is required for surface expression of
O-specific LPS and to a lesser extent for the LPS core in E. coli
(Lubkowski et al., 1999; Gaspar et al., 2000; Vines et al., 2005).
However, to our knowledge, direct interaction between TolA and
LPS was not reported. Nonetheless, TolA can form complexes
with porin trimmers associated to LPS (Derouiche et al., 1996).

The capacity of phages to interact with LBP and the results
obtained in the LAL assay further support LPS localization on the
surface of phages. These findings also suggest that LPS molecules
attached to the virion may participate in immune response
in vivo and raise the possibility that they might contribute to
the immunogenicity attributed to Ff phages. Of note, picomolar
concentration of endotoxin (from Neisseria meningitidis or
E. coli) was sufficient to promote secretion of IL-8, a neutrophil
chemoattractant, from cultured human embryonic kidney 293
(HEK293) stably transfected with TLR4 (Gioannini et al., 2004;
Lin et al., 2004). Therefore, minute amount of LPS localized
on the virion can potentially promote immune responses and
induce non-bacterial activities in the macro-host. In support of
this, here we demonstrate that treatment of subcutaneous GL261-
GFP tumors with pLPS or phages containing the same amount
of endotoxin suppressed tumor progression to a similar extent.
Thus, we propose that in this model the activity of phages was
largely driven by LPS. This conclusion is further strengthen by the
observation that phage preparations depleted of LPS exhibited
diminished anti-tumorigenic activity in the subcutaneous tumor
model. Our data extend previous work performed with tumor
specific phages (Eriksson et al., 2007, 2009), suggesting that
in vivo, wild-type Ff phages carrying an effective amount of
LPS may also promote significant anti-tumorigenic activity.
Indeed, LPS has been reported to induce intense anti-tumorigenic
activities in both animal and human studies (Chicoine et al.,
2007; Lundin and Checkoway, 2009). Similar to the activities
attributed to LPS free Ff phages (Eriksson et al., 2009), LPS
was reported to tilt macrophages polarization toward the M1
phenotype (Mantovani et al., 2002; Rey-Giraud et al., 2012)
and induce a potent anti-tumorigenic activity associated with
neutrophil infiltration into the tumor milieu (Chicoine et al.,
2007). Interestingly, both LPS and LPS free Ff phages were
demonstrated to mediate their anti-tumorigenic activity, at least
in part, via TLR4 (Chicoine et al., 2007; Eriksson et al., 2009)
which might explain the similarities in their tumor inhibition
mechanism.
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FIGURE 3 | Ff phages delivered intranasally accumulate in the CNS of
mice and suppress progression of orthotopic glioblastoma. (A,B) Mice
were intranasally administered with 2E+12 phages and perfused at the
indicated time points. Phage concentration in brain homogenates was
evaluated by live counting. Data is presented as colony forming units (CFU)
per ml, normalized to tissue weight. (A) Phage concentration in different
brain regions 5 and 150 min following intranasal administration (n = 3).
(B) Phage concentration in the olfactory bulb and the rest of the brain
1 hour following intranasal administration (n = 3). (C–E) C57BL/6 male mice
bearing orthotopic GL261 GFP tumors were intranasally administered with
vehicle alone (PBS), 1.9E+12 Triton purified phages (975 EU/administration),

pLPS (975 EU/administration) or 1.9E+12 NP phages
(110,500 EU/administration). Treatment started three days following cell
inoculation. (C) Kaplan–Meier analysis of survival followed by a log-rank test.
Decrease of 10% in mice body weight from day of cell inoculation was set
as an endpoint, n = 8. (D,E) CT imaging was performed 2 weeks following
cell implantation. Depicted are axonal sections (one representative mouse per
group) displayed in 1 mm intervals from frontal (left) to rostral (right). Tumor
volume was extrapolated from CT images as described in material and
methods. (∗P < 0.05, ∗∗P < 0.01, one-way ANOVA was applied on
logarithmic transformed data followed by Bonferroni’s post hoc analysis),
n = 5. Results are expressed as untransformed mean values ± SEM.
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Although treatment of mice bearing subcutaneous
glioblastoma tumors with phages or pLPS led to similar
results, phages suppressed orthotopic glioblastoma significantly
better than pLPS. This discrepancy may suggest that following
intranasal administration, phages translocate to the brain more
efficiently than pLPS and thus, facilitate pLPS accumulation
in the brain. In support of this idea, soluble LPS tends to
aggregate in aqueous solutions and form micelles and vesicles
having diameters in sizes that possibly limit its transport
through perineural spaces in the fila olfactoria (10–15 nm;
Bergstrand et al., 2006; Mistry et al., 2009). Accordingly, Ff
phages that acquired a spheroid morphology (having a diameter
of 30–70 nm) were restricted from the brain when delivered
intranasally (Frenkel and Solomon, 2002).

As previously described, phages can be genetically modified
to display tumor homing motifs and chemically conjugated to
cytotoxic drugs (Wu et al., 2002; Eriksson et al., 2007; Bar et al.,
2008; McGuire et al., 2014). Such phages when administered
non-invasively via the intranasal route, might exhibit superior
anti-tumorigenic activities to the wild-type phage. Considering
that Ff phages are also easily and inexpensively produced and
that phages are natural habitants of the mammalian microflora
and thus are relatively safe, utilizing them intranasally might be
useful in treating brain malignancies.

Materials and Methods

Phage Production
Overnight culture of E. coli DH12S (kindly provided by Dr.
M. Mevarech, Tel-Aviv University, Israel) transformed with
M13KO7 Helper phage (NEB), was diluted 1:100 in fresh 2YT
media containing 50 μg/ml Kanamycin and incubated for two
nights at 37◦C while shaking at 250 RPM. The preparation
was centrifuged at 7000 RPM for 20 min and supernatant was
supplemented with polyethylene glycol NaCl 1:5 (v/v) to facilitate
phage precipitation. Following two nights incubation at 4◦C,
phages were centrifuged at 9000 RPM for 1 h at 4◦C, resuspended
in PBS and a second PEG precipitation was performed as
described. Phages were filtered through a 0.45 μm filter and titer
was measured spectrophotometrically according to the formula:
phage particles/ml = (O.D0.269nm−O.D0.320nm)∗6∗1016/vector
size (bp).

Phages Purification with Caesium Chloride
Phageswere mixed with 2.4M caesium chloride solution (in PBS)
and ultracentrifuged at 37,000 RPM for 65 h at 4◦C to obtain a
stable gradient. The fraction containing phages was drawn and
caesium traces were eliminated by ultracentrifugation at 50,000
RPM for 4 h at 4◦C twice. Phages were resuspended in PBS and
filtered.

Phages Purification with Triton
Non-purified or caesium purified phages supplemented with 1%
Triton X-114 in PBS (1 ml) were vortexed for 1 min followed by
5 min incubation in ice. Phages were vortexed again, incubated
for 10 min at 56◦C and centrifuged at 22,500g for 10 min at

37◦C. Supernatant was collected and the procedure was repeated
(×3). Triton traces were eliminated by gel filtration using a
sephacryl S-300 column equilibrated with PBS and connected
to an Akta chromatography system. Fractions containing phages
were concentrated with a 3 kDa cut-off centricon and filtered.
Endotoxin concentrations were measured by the LAL assay
(Loanza) according to the manufacturer’s instructions and were
in the range of 0.1 to 1 EU per 1E+9 phages following triton
purification.

LPS Extraction
Lipopolysaccharide was purified from DH12S bacteria using
the LPS extraction kit (Intron) according to the manufacturer’s
instructions with the following modification: washing step with
70% ethanol was performed three times to eliminate impurities.

Detection of LPS on Phages Surface by
Sandwich ELISA
Microtiter plates were coated with anti-p3 antibodies (Exalpha)
1:50 in coating buffer (0.1 M NaHCO3, pH 9.6) or coating buffer
alone overnight at 4◦C. Plates were washed three times with
PBST (0.05% Tween) followed by three washes with PBS, blocked
overnight and supplemented with phages in PBS 1% milk for
1 h at 37◦C (in triplicates). Plates were washed as described and
incubated with sheep anti-LPS antibodies (Pierce) 1:200 for 1 h
at 37◦C followed by incubation with rabbit anti-sheep alkaline
phosphatase (AP) conjugated antibodies (Zymax) 1:1000 for 1 h
at 37◦C. Plates were developed with 4-nitrophenyl phosphate
(Sigma) and signal intensity was quantified using an ELISA
reader at OD 405 nm.

Detection of LPS on Phages Surface by Direct
and Sandwich ELISA Based Immunogold TEM
Nickel grid was coated with mouse anti-p8 antibodies (GE) 1:50
in PBS overnight at 4◦C. The grid was rinsed 5 min in PBS (×3),
blocked with 3% skim milk for 1 h at RT and incubated with
2E+13 phages/ml in PBS 1% milk (blocking buffer) for 1 h at RT
followed by PBS wash as described.

For detection of LPS, the grid was incubated with sheep
anti-LPS antibodies 1:50 followed by incubation with rabbit
anti-sheep antibodies 1:50 and then goat anti-rabbit 1:20 gold
conjugated (12 nm, Jackson Immunoresearch Laboratories). For
direct ELISA immunogold TEM, the grid was coated with 2E+13
phages/ml in PBS overnight at 4◦C, then LPS was detected
as described. For detection of coat proteins, grids coated with
phages were exposed to serum from rabbits immunized with
NP phages (our laboratory preparation) followed by incubation
with goat anti-rabbit gold conjugated. All antibodies were
diluted in blocking buffer and incubation was performed at
RT for 1 h. For negative staining the grid was incubated for
30 s with 2% uranyl acetate solution at RT. Analysis was
performed using the Jeol JEM 1200EX transmission electron
microscope.

Phages Binding to LBP
Microtiter plates were coated with 4 μg/ml of recombinant
human LBP (R&D) in coating buffer or coating buffer alone
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overnight at 4◦C. Plates were washed three times with PBST
(0.05% Tween) followed by three washes with PBS, blocked
with 3% skim milk and supplemented with phages in PBS
1% milk (w/v) for 1 h at 25◦C (in triplicates). Plates were
washed as described, incubated with mouse anti-phage (p8)
HRP conjugated antibodies (GE) 1:5000 for 1 h at 37◦C and
developed with o-phenylenediamine (OPD, Sigma). The reaction
was terminated with 4NH2O2 and signal intensity was quantified
using an ELISA reader at OD 495 nm.

Reactivity of Immunopurified Phages in the
LAL Assay
Microtiter plates were coated with anti-p8 antibodies (GE) 1:50 in
coating buffer or coating buffer alone overnight at 4◦C. The plate
was washed three times with PBST (0.05% Tween) followed by
three washes with PBS, blocked with 3% skim milk overnight and
supplemented with phages (2E+12/well) or bacteria supernatant
(from an overnight culture of naïve cells, filtered through a
0.45 μm filter) in blocking buffer. The plate was incubated for
1 h at 37◦C and rinsed thoroughly as described. To detach
immobilized phages, the plate was incubated with 50 mM NaOH
for 24 h. Samples containing NaOH were serially diluted in
endotoxin free water (Biological Industries) and tested in the LAL
assay.

Cell Culture
GL261 cell line (kindly provided by Dr. G. Safrany department
of molecular and tumor radiobiology, Frederic Joliot-Curie
Institute, Hungary) was grown in Dulbecco’s modified
Eagle’s medium (DMEM, Biological Industries) containing
10% fetal calf serum, 0.3 mg/ml L-glutamine, 100 units/ml
penicillin and 0.1 mg/ml streptomycin. GL261-GFP cells
were cultured in the same medium supplemented with
0.5 mg/ml hygromycin (Sigma). Cells were grown at 37◦C
in 5% CO2.

Construction of GL261-GFP Stable Line
Supernatant of 293T cells containing MLV viruses carrying
the GFP gene was kindly provided to us by Dr. E. Bachrach
(department of cells research and immunology, Tel-Aviv
University, Israel). The supernatant was diluted 1:2 in DMEM
medium supplemented with Polybrene at a final concentration
of 8 μg/ml. The medium was added to GL261 cells at 60%
confluence in 24-well plates and infection was carried out for
2 h at 37◦C. The medium was replaced with fresh growing
medium and following 48–72 h the culture was supplemented
with 1mg/ml hygromycin. Three days later, cells were diluted and
reseeded to obtain single cell colonies. GFP positive colonies were
isolated and a single clone was chosen for the rest of the work.

GL261 Tumor Model
All animal studies were approved by the Institutional Animal
Care and Use Committee (approval number: L-10-029).

C57BL/6 (3 months old) female mice were subcutaneously
inoculated in their flank with 2E+6 GL261 or GL261-GFP
glioblastoma cells suspended in PBS.When tumors were palpable
mice were divided into treatment groups with an average tumor

volume of 100 mm3. Mice received peritumoral injections of
phages, pLPS or vehicle alone in a total volume of 0.1 ml every
second day. Tumor dimensions were measured by a caliper
and tumor volume was calculated as follows: width2*length/2.
For measurement of fluorescence signal, mice were anesthetized
by intraperitoneal injection of Ketamine/Xylazine (100 mg/kg
and 20 mg/kg body weight, respectively), treated with a
depilatory cream (Veet) and imaged using the Maestro in vivo
Imaging System (CRi, Inc.). A band-pass filter from 445 to
490 nm and a long-pass filter over 515 nm were used for
emission and excitation light, respectively. The tunable filter
was automatically stepped in 10-nm increments from 500 to
800 nm whereas the camera captured images at each wavelength
interval with constant exposure. Skin autofluorescence and
undesired background signals were eliminated by spectral
analysis and linear unmixing algorithm. Mice were weighted
every treatment day.

Biodistribution of Phages in Mice Following
Intranasal Administration
C57BL/6 mice were intranasally administered with NP 1E+12
phages suspended in 10μl PBS through each nostril. Immediately
before the indicated time points, mice were overdosed with
intraperitoneal injection of Ketamine/Xylazine and perfused
through the heart with saline. Organs were excised (surgical
tools were cleaned with soap, distilled water and ethanol between
dissections), supplemented with ice cold PBS (1 ml per 5 g)
containing protease inhibitors (Roche) and homogenized using
a mechanical homogenizer. Phages concentration was evaluated
by live counting as follows: E. coli TG1 cells at late log were
incubated with homogenate samples for 1 h at 37◦C. The
inoculum was serially diluted and samples were seeded on petri
dishes containing 50 μg/ml Kanamycin. Following overnight
incubation, number of colonies was manually counted.

Orthotopic Glioblastoma Model
Mice were anesthetized with intraperitoneal injection of
Ketamine/Xylazine and placed in a Kopf Stereotaxic Alignment
System. An approximately 1 cm-long cut was made in the scalp,
to expose the skull and a total of 105 GL261-GFP cells in 3 μL
PBS were injected 1 mm posterior and 1.5 mm lateral from
the bregma at a 3 mm depth from the skull surface. Cells were
injected using a Hamilton syringe at a rate of 1 μl/min. In order
to avoid backflow, the needle was left for an additional 1 min
before being gradually removed. The scalp tissue was glued
and the mice were allowed to recover in their cages. Intranasal
treatment was given every second day without anesthesia, in a
total volume of 10 μl in each nostril, starting 3 days following
cell injection. Mice that lost 15% of their initial body weight or
demonstrated severe clinical symptoms (epileptic seizures or
inability to move) were sacrificed by CO2 inhalation.

Survival Analysis
Following intracranial inoculation, mice were monitored and
weighted daily. Survival endpoint was set to 10% loss of body
weight from day of cell inoculation or when mice demonstrated
severe clinical symptoms as described.
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Computed Tomography (CT) Scan and Brain
Tumor Volume Analysis
Mice were anesthetized with an intraperitoneal injection of
Ketamine/Xylazine and CT images were acquired with a high-
resolution, low-dose x-ray scanner by a skilled technician.
Tumor volume was calculated as follows: in a particular
section x, the minor axis and the major axis of the tumor
were measured using the Radiant DICOM software and the
area (AE) was calculated as follows: AEx = π(major axisx)
(minor axisx)/4. Next, tumor volume was calculated using the
formula: V = I(AE1 + AE2 +. . . AEn), where I = section
increment (0.8 mm) and n = the number of sections containing
tumor (length of z axis = I n). Additional details of the
volume calculation method have been previously published
(Winer-Muram et al., 2002).

Statistics
The SPSS statistics software (version 21) was used for statistical
analysis. Normality distribution and homogeneity of variances
were assessed by the ShapiroWilk’s test and Levene’s test,
respectively. Significance was evaluated by an unpaired, two-
tail Student’s t-test. For multiple comparisons, one-way analysis

of variance (ANOVA) was performed followed by Tukey’s or
Dunn–Bonferroni’s post hoc analysis. Alternatively, the non-
parametric, Kruskal–Wallis test was performed, followed by
Dunn–Bonferroni’s post hoc analysis. Survival experiments were
analyzed by the Kaplan–Meier’s method followed by a log-rank
test. Results were considered significance at P < 0.05.
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