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The elevational diversity pattern for microorganisms has received great attention recently
but is still understudied, and phylogenetic relatedness is rarely studied for microbial
elevational distributions. Using a bar-coded pyrosequencing technique, we examined
the biodiversity patterns for soil bacterial communities of tundra ecosystem along
2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness
displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity
and mean nearest taxon distance (MNTD) exhibited a unimodal pattern with elevation.
Bacterial communities were more phylogenetically clustered than expected by chance
at all elevations based on the standardized effect size of MNTD metric. The bacterial
communities differed dramatically among elevations, and the community composition
was significantly correlated with soil total carbon (TC), total nitrogen, C:N ratio, and
dissolved organic carbon. Multiple ordinary least squares regression analysis showed
that the observed biodiversity patterns strongly correlated with soil TC and C:N ratio.
Taken together, this is the first time that a significant bacterial diversity pattern has
been observed across a small-scale elevational gradient. Our results indicated that
soil carbon and nitrogen contents were the critical environmental factors affecting
bacterial elevational distribution in Changbai Mountain tundra. This suggested that
ecological niche-based environmental filtering processes related to soil carbon and
nitrogen contents could play a dominant role in structuring bacterial communities along
the elevational gradient.

Keywords: Changbai Mountain tundra, elevation, soil carbon and nitrogen contents, soil bacterial community,
phylogenetic relatedness, pyrosequencing

Introduction

Mountainsides often provide a natural laboratory for studies of biodiversity and biogeography
(Lomolino, 2001; Rahbek, 2005). The study of elevational diversity patterns is not only
indispensable to a comprehensive understanding of basic ecology, but can also provide evidence
for predicting the influence of climate change on ecosystems. The effect of elevational gradients
on plant and animal diversity has been extensively documented over the past century. Studies
on the microbial ecology of these environments are rare, and the state of knowledge is generally
rudimentary. It is so far unclear whether there is any consistent trend in soil bacterial diversity
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with elevation in mountainous regions, with a decreasing (Bryant
et al., 2008), unimodal (Singh et al., 2012), or inconsistent
pattern (Singh et al., 2014) found in previous studies. Other
studies found no apparent trend with elevation for bacteria or
ammonia-oxidizing bacteria (Zhang et al., 2009; Fierer et al.,
2011; Shen et al., 2013; Xu et al., 2014; Yuan et al., 2014).
Notably, all of these studies focused on a complete or large-scale
elevational gradient, with relatively large elevational intervals
and contrasting ecosystems. It is well documented that the scale
over which biodiversity is sampled will strongly influence the
patterns observed (Rahbek, 2005; Green and Bohannan, 2006).
Yet there has been no research addressing microbial diversity
and community composition of a consistent ecosystem within a
small-scale elevational gradient.

Since the development of community phylogenetics,
researchers are increasingly using phylogenetic framework
to study the forces underlying biodiversity and biogeography
patterns (Webb, 2000; Bryant et al., 2008; Vamosi et al., 2009;
Jones and Hallin, 2010). This framework mainly focuses on the
patterns of phylogenetic relatedness within communities to infer
the importance of different ecological and evolutionary processes
that organize these communities (Webb et al., 2002; Kembel and
Hubbell, 2006; Kembel, 2009). Recently, the study of community
phylogenetic structures has been addressed along elevational
gradients, but with limited organisms including plants (Bryant
et al., 2008; Kluge and Kessler, 2010), hummingbirds (Graham
et al., 2009), ants (Machac et al., 2011), and bees (Hoiss et al.,
2012). In one of these studies, Hoiss et al. (2012) found a linear
decline in species richness but increasing phylogenetic clustering
in communities with increasing elevation and concluded
that elevation acts as an environmental filter on phylogenetic
composition, traits, and diversity in bee communities. To our
knowledge, there are only two elevational studies that have
tested patterns of phylogenetic relatedness of microbes along
an elevation gradient, with one focused on soil Acidobacteria
and another on bacteria in a stony stream (Bryant et al., 2008;
Wang et al., 2012). Consistently, the studies both concluded that
environmental filtering processes were likely to be a prominent
force structuring bacterial communities along elevational
gradients.

Bacterial consortia display spatial patterns linked to
geographic distance (Cho and Tiedje, 2000; Green and
Bohannan, 2006; Martiny et al., 2006), soil characteristics
(Fierer and Jackson, 2006; Lauber et al., 2009; Chu et al., 2010;
Liu et al., 2014), and vegetation type (Knelman et al., 2012; Shen
et al., 2013; Zhang et al., 2014). Chu et al. (2010) found that
geographic distance was less important than soil pH in driving
bacterial latitudinal distribution in Arctic tundra. Other studies
have also documented the influence of soil depth and vegetation
type on bacterial communities in Arctic and subarctic tundra
(Männistö et al., 2007; Chu et al., 2011; Kim et al., 2014; Shi et al.,
2015). Since tundra soils are widely recognized as highly nutrient
limited, large bodies of studies concentrated on assessing the
importance of nutrient availability on microbial diversity and
community composition (Nemergut et al., 2008; Sistla et al.,
2013; Koyama et al., 2014; Stark et al., 2014). However, much
of our understanding of the role of carbon and nitrogen has

been limited to N-addition experiments. For example, Koyama
et al. (2014) found that soil bacterial community composition
altered significantly with increased nutrient availability in
Arctic tundra soils. Nemergut et al. (2008) also concluded that
chronic N fertilization induced significant shifts in soil carbon
dynamics that corresponded to shifts in microbial community
structure and function. Stark et al. (2014) found that nutrient
availability and pH jointly constrained microbial extracellular
enzyme activities in nutrient-poor alpine tundra soils. These
results yield useful insights, but given that N inputs might alter
soil pH and plant community composition, these experimental
results could lead to more confusion about whether shifts in
bacterial diversity and community composition were determined
directly or indirectly by nutrient availability (Ramirez et al.,
2010).

Changbai Mountain tundra marks the southernmost
boundary of alpine tundra on the eastern Eurasian continent.
This tundra ecosystem, which is representative of alpine tundra
in China, was shaped by Quaternary period glacial retreat
(Xu et al., 2004). In this study, we investigated soil bacterial
biodiversity along the elevation of 2000–2500 m in Changbai
Mountain tundra to address the following questions: (1) if there
is a significant trend in bacterial diversity along this small-scale
elevational gradient, (2) what environmental factors are closely
related to bacterial community composition in tundra soils with
similar pH. We further hypothesize that environment filtering
processes (abiotic factors) are critical in determining bacterial
community assembly. To answer above questions and test the
hypothesis, we used pyrosequencing and adopted a multifaceted
approach to quantify patterns of taxon richness, phylogenetic
diversity and phylogenetic relatedness for the communities, and
correlated these with measured environmental variables to reveal
potential underlying factors.

Materials and Methods

Site Selection and Soil Sampling
A detailed background of Changbai Mountain was previously
described by Shen et al. (2013, 2014). Changbai Mountain
tundra belt, which shaped by Quaternary period glacial retreat
and marks the southernmost occurrence of this ecosystem
type on the eastern Eurasian continent, distributes between
1950 and 2650 m on Changbai Mountain (Huang, 1999; Xu
et al., 2004; Wu et al., 2007). The landforms mainly include
three types: Volcanic landforms, Glacial landforms, Periglacial
landforms (Wei et al., 2004). The temperature is low and
the precipitation is abundant, which forms a tundra-periglacial
climate. Mean annual temperature is −4.8◦C and mean annual
precipitation is 1154 mm. Changbai Mountain tundra is covered
by snow from mid-October to mid-May the next year, about
6 months each year. From late May to mid-August is the
plant growth period and from late August to mid-October
is the plant mature decay period (Zhang et al., 2010). Many
of the plant species there are relicts from the Quaternary
glacial period. Based on the measurement of species biomass,
dominant species organ biomass and vegetation biomass, the
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first five species in biomass are Rhododendron chrysanthum
(Pall.), Vaccinium uliginosum var. alpinum (L.), Vaccinium
uliginosum (L.), Dryas octopetala (L.), and Salix rotundifolia
(L.), which are the dominant species in the alpine tundra
ecosystem of Changbai Mountain (Wei et al., 2004; Xu et al.,
2004).

A recent study on Changbai Mountain tundra divided
tundra vegetation into five vegetation types: felsenmeer alpine
tundra vegetation (FA), lithic alpine tundra vegetation (LA),
typical alpine tundra vegetation (TA), meadow alpine tundra
vegetation (MA), swamp alpine tundra vegetation (SA) (Wu
et al., 2007). TA generally contains many kinds of dwarf shrubs:
Dryas octopetala (L.), Vaccinium uliginosum (L.), Rhododendron
chrysanthum (Pall.), Rhododendron redowskianum (Maxim.), etc;
and some kinds of herbs: Carex atrata (Linn.), Polygonum
viviparum (L.), etc; as well as mosses: Racomitrium lanuginosum
(Hedw. Bird.), Racomitrium canescens (Hedw. Bird.), etc; lichens:
Cladonia rangiferina (L.), etc. MA mainly contains various
herbs: Carex laevissima (Nakai.), Carex atrata (Linn.), Bupleurum
euphorbioides (Nakai.), Oxytropis anertii (Nakai.), etc; and also
some kinds of dwarf shrubs: Salix rotundifolia (L.), Phyllodoce
caerulea (L.), etc. FA and LA distributing above 2500 m, was
excluded from this study as the thickness of soil organic layer
is less than 5 cm. SA was also excluded due to its high
soil moisture. Soil samples were collected from MA and TA
vegetation types from the northern slope of alpine tundra on
July 29, 2011. From 2000 to 2500 m, we chose six elevations
with an elevational interval of 100 m. At each elevation, soil
samples were collected from 4 plots (10 m × 10 m) as
four independent replicates. In each plot, samples of the soil
organic layer (∼10 cm × 10 cm in area) were collected at six
random points using a sterile blade and composited together
as a single sample. Since both MA and TA has a more than
5 cm thick organic layer, soil samples were sampled to a
depth of 0–5 cm directly below the litter layer. Visible roots
and residues were removed prior to homogenizing the soil
fraction of each sample. The fresh soil samples were sieved
through a 2 mm screen and divided into two subsamples. One
was stored at 4◦C to determine the physical and chemical
properties, and the other was stored at −40◦C prior to DNA
extraction.

Soil Physicochemical Analyses
Soil pH was measured using a pH meter (FE20-FiveEasyTM
pH, Mettler Toledo, Germany) after shaking a soil water (1:
5w/v) suspension for 30 min. Soil moisture was measured
gravimetrically. Total carbon (TC) and total nitrogen (TN)
contents were measured by elemental analyzer (Vario MAX,
Elementar, Germany). Ammonium (NH4

+-N), nitrate (NO3
−-

N), dissolved organic carbon (DOC) and dissolved total nitrogen
(DTN) were extracted at a ratio of 10 g fresh soil to 100 mL
2 M KCl. After shaking for 1 h, NH4

+-N, NO3
−-N, and DTN

contents in the filtered extracts were analyzed using a continuous
flow analytical system (San++ System, Skalar, Holland), and
DOC was determined using a TOC analyzer (Multi N/C 3000,
Analytik Jena, Germany). Dissolved organic nitrogen (DON) was
calculated as follows: DON = DTN – NH4

+–N – NO3
−–N.

DNA Extraction, Amplification, and
Pyrosequencing
Details of DNA extraction, bacterial 16S rRNA genes
amplification, and pyrosequencing methods have been described
previously (Shen et al., 2013). In brief, soil DNA was extracted
using a FastDNA� SPIN Kit for soil (MP Biomedicals, Santa
Ana, CA, USA) and an aliquot (50 ng) of purified DNA from
each sample was used as a template for amplification. Bacterial
16S rRNA genes were amplified using the primer 515F with
the Roche 454 ‘A’ pyrosequencing adapter and a unique 7-bp
barcode sequence, while primer 907R contained the Roche
454 ‘B’ sequencing adapter. Polymerase chain reaction (PCR)
products were pooled together and purified using an Agarose Gel
DNA purification kit (Takara, Otsu, Japan). An equal amount of
PCR products from each sample was combined in a single tube
to be sequenced on a Roche FLX 454 pyrosequencing machine
(454 Life Science, Branford, CT, USA).

Processing of Pyrosequencing Data
Sequences obtained by pyrosequencing were processed and
analyzed following the standard operating procedure described in
the website1 using Mothur program v.1.27.0 (Schloss et al., 2011).
The denoising process was implemented using the shhh.flows
command which is the Mothur implementation of the PyroNoise
component of the AmpliconNoise suite of programs. Barcode
and primer sequences were removed, and sequences shorter than
200 bp with homopolymers longer than 8 bp were removed at
the same time. Next, the sequences were aligned against the
SILVA-compatible alignment database and then trimmed, so that
subsequent analyses were constrained to the same portion of
the 16S rRNA gene. Chimeric sequences were detected using
the chimera.uchime command that use the sequences as their
own reference to run de novo detection and identified chimeras
were removed after that. The remaining reads were preclustered
using the pre-cluster command2 to remove erroneous sequences
derived from sequencing errors and then clustered using
Mothur’s average algorithm. Taxonomic assignment of each OTU
(clustered at 97% sequence similarity) was obtained by classifying
alignments against Silva reference bacterial taxonomy files using
the classify command at 80% Bayesian bootstrap cutoff with
1000 iterations. Sequences were deposited to the MG-RAST
metagenomics analysis server3 and are available to the public
(accession numbers from 4565119.3 to 4565142.3).

For community-level composition and each calculated metric,
we accounted for the difference in the sampling efforts among
the samples by randomly subsampling 4,900 sequences per
sample. The number of sequences for rarefaction was determined
according to the sample that yielded the lowest number of
sequences after quality filtering (Supplementary Table S3).

Statistical Analysis
The number of phylotypes (the number of OTUs) was used
to estimate the community richness. We chose Faith’s (1992)

1http://www.mothur.org/wiki/454SOP
2http://www.mothur.org/wiki/Pre.cluster
3http://metagenomics.anl.gov/
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phylogenetic diversity index values (calculated as the sum of
branch lengths between root and tips for a community) to
estimate the phylogenetic community diversity.

To determine if the different elevation samples formed unique
phylogenetically related clusters, principal co-ordinates analysis
(PCoA) of the UniFrac distance matrices were performed. The
UniFrac algorithm computes the overall phylogenetic distances
(across all taxonomically resolved levels) between all pairs of
sample communities in the dataset from neighbor-joining trees
using either unweighted (i.e., presence/absence) or weighted
(i.e., accounting for taxon relative abundance) data (Lozupone
and Knight, 2005). In addition, we tested for significant
differences in community composition among elevations using
analysis of similarities (ANOSIM) with R statistical software.
Canonical correspondence analysis (CCA) was performed to
show a visual relationship between environmental factors and
bacterial distributions. To further identify the environmental
and biogeochemical factors that significantly correlated with
community composition we used Mantel tests of Bray–
Curtis similarity distance values that were calculated on the
presence/absence of the OTUs within each sample using the
vegan package of R v.3.1.1 project (R Development Core Team,
2010).

For the phylogenetic community structure, we calculated
the mean nearest taxon distance (MNTD) of all of the
species pairs occurring in a community based on the observed
community dataset (Webb et al., 2002). MNTD is an estimate
of the mean phylogenetic relatedness between each OTU in
a bacterial community and its nearest relative (Wang et al.,
2012). To infer underlying ecological processes with MNTD,
the phylogenetic signal in habitat association was tested with
Mantel correlograms with 999 randomizations for significance
tests (Wang et al., 2013). An environmental-optimum for
each OTU was found for each environmental variable as in
Stegen et al. (2012). Between-OTU environmental-optimum
differences were calculated as Euclidean distances using optima
for all the environmental variables. We further calculated the
differences in the phylogenetic distances between the observed
and randomly generated null communities, and we standardized
them using the standardized deviation of phylogenetic distances
in 1000 null communities (Webb, 2000). These null communities
were generated with the assumption that all species that exist
along the elevation are equally able to colonize any elevation
without dispersal limitation at local spatial scales, and thus
each species has the same expected prevalence (Kembel and
Hubbell, 2006; Helmus et al., 2007). The total species richness
of each elevation was kept standard, and species at each
elevation were chosen randomly without replacement from
the pool of species present along the elevation. The obtained
standardized effect size measure (ses.MNTD) can be used
to test for phylogenetic clustering or overdispersion (Webb,
2000). Negative ses.MNTD values and low quantiles (P < 0.05)
indicate that co-occurring species are more closely related than
expected by chance (clustering), whereas positive values and
high quantiles (P > 0.95) indicate that the co-occurring species
are less closely related than expected by chance (overdispersion;
Webb, 2000). These analyses were implemented in the R

environment4 with the package Picante 1.6-2 (Kembel et al.,
2010).

To correlate the observed biodiversity patterns with the
environmental variables, we used multiple ordinary least squares
(OLS) regression. Before that, strong correlated variables were
dereplicated according to their correlation (i.e., one of the two
variables was selected if the Pearson correlation is higher than 0.7.
Usually we only select the most ecologically related factor from
the significant correlated variables). All of the environmental
variables and biodiversity metrics were standardized at a mean
of 0 and a SD of 1. Akaike’s information criterion was
used to identify the most parsimonious model (Fotheringham
et al., 2002). The regression analyses were performed in the R
environment with the package MASS 7.3–33.

Results

Bacterial Community Composition
In total, we obtained 257,229 quality sequences for all soil
samples, which ranged from 4931 to 20477 sequences per sample
with an average length of approximately 400 bp (Supplementary
Table S3). A total of 11961 unique OTUs were identified and
were assigned to more than 39 bacterial phyla. Among the
identified groups, Alphaproteobacteria (26%) were the most
abundant across the six elevation gradient soils andAcidobacteria
were the second most abundant phylum, accounting for 17%
of all sequences (Figure 2A, Supplementary Table S4). Testing
by ANOSIM revealed that OTU-based taxonomic community
composition differed significantly among elevations. However,
the difference in community composition between 2000 and
2100 m, 2100 and 2200 m, 2200 and 2300 m was not significant
(Table 1). PCoA of the pairwise UniFrac distances for the
bacterial communities in each sample indicated that bacterial
phylogenetic structure tended to be relatively similar among
samples within the same elevation and distinctly different among
the different elevations (Supplementary Figure S1).

Canonical correspondence analysis showed that elevation
had the strongest effect (longer arrow) on bacterial community
composition (Figure 2B). Of all the environmental variables
tested, elevation was the most highly correlated with community
composition (r = 0.64, P = 0.001, Table 2). These results
suggest that elevation could be a good predictor of variation in
bacterial community composition. Other factors such as TC,
TN, C:N ratio, and DOC, also showed a high correlation with
bacterial community composition based onMantel test (Table 2).
Specifically, significant relationships were found between the
relative abundance of each taxonomic group and soil carbon and
nitrogen contents (Supplementary Table S5). For example, the
relative abundance of Alphaproteobacteria, Actinobacteria
increased with TC, whereas the relative abundance of
Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes
showed the opposite pattern. Even Verrucomicrobia, which had
relatively low abundances, were significantly correlated with TC
(Figure 3). Surprisingly, the relative abundance of Acidobacteria

4http://www.r-project.org
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FIGURE 1 | Relationships between soil characteristics and elevation. Error bars denote SD; different letters represent significant differences from Duncan
comparisons (P < 0.05).

FIGURE 2 | (A) Relative abundances of the dominant bacterial phyla in soils
separated according to elevation categories. Relative abundances are based on
the proportional frequencies of those DNA sequences that could be classified at

the phylum level. (This figure is based on the information provided in
Supplementary Table S4.) (B) Canonical correspondence analysis (CCA) of the
bacterial communities with symbols coded by elevation category.
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TABLE 1 | Dissimilarities in bacterial OTU community composition
between elevations on Changbai Mountain as determined by analysis of
similarities (ANOSIM) R-values.

Elevation (m) 2100 2200 2300 2400 2500

2000 0.17 0.11 0.96 0.48 1

2100 0.23 0.95 0.63 1

2200 0.5 0.21 0.96

2300 0.28 0.93

2400 0.68

An R-value near +1 means that there is dissimilarity between the groups, while an
R-value near 0 indicates no significant dissimilarity between the groups. Values in
bold indicate significant dissimilarity (P < 0.05).

TABLE 2 | Mantel test results for the correlation between community
composition and environmental variables for bacteria along the
elevational gradient.

Variable r P

Elevation 0.63 0.001

TC 0.439 0.001

TN 0.423 0.001

C:N ratio 0.274 0.002

DOC 0.254 0.007

DON 0.206 0.068

NH4
+-N 0.16 0.063

NO3
−-N 0.133 0.124

pH 0.098 0.201

Moisture 0.066 0.291

TC, total carbon; TN, total nitrogen; DOC, dissolved organic carbon; DON,
dissolved organic nitrogen. Values in bold indicate significant correlation (P < 0.05).

was significantly correlated with soil pH, despite the narrow pH
ranges in these soils (Figure 1; Supplementary Table S5).

Phylotype Richness, Phylogenetic Diversity,
Phylogenetic Signals, and Phylogenetic
Relatedness for Bacterial Communities
Phylotype richness decreased with increased elevation (r2 = 0.26,
P = 0.012), whereas Faith’s (1992) phylogenetic diversity
exhibited a unimodal pattern with elevation (r2 = 0.48, P< 0.001;
Figure 4).

Mantel correlograms showed significant positive correlations
across short phylogenetic distances. Meanwhile, there were
significant negative correlations at intermediate phylogenetic
distances and non-significant relationships across longer
phylogenetic distances (Figure 5A). These results indicate that
at short phylogenetic distances closely related bacterial taxa are
phylogenetically conserved in their niches.

The MNTD showed that phylogenetic relatedness was closer
among samples in lower or higher elevations than that in mid-
elevation, which followed a unimodal pattern with elevation
(r2 = 0.53, P < 0.001; Figure 5B). All of the standardized
effect sizes of MNTD (ses.MNTD) that were obtained using
the null model were significantly negative, which indicated
that the bacterial communities had a tendency to be more
phylogenetically clustered than expected by chance. However,

the standardized metric did not show an apparent trend with
elevation that was different from that of MNTD, which indicated
that the generated random effects greatly impacted the elevational
pattern of the phylogenetic structure (Figure 5C).

The correlations between biodiversity and environmental
variables were examined by multiple OLS regression test. TC had
the highest correlations with phylogenetic diversity and MNTD,
and C:N ratio showed the highest correlation with OTU richness
(Table 3).

Discussion

Elevational Diversity Patterns
Our results showed that elevation strongly influenced the
diversity of soil bacterial communities. Taxonomic richness
linearly decreased with increased elevation and phylogenetic
diversity exhibited a unimodal pattern with elevation. This
observation was beyond our expectations, because a few studies
have found elevational trends in soil bacterial diversity (Bryant
et al., 2008; Singh et al., 2012, 2014), with most studies finding
non-significant elevational patterns (Zhang et al., 2009; Fierer
et al., 2011; Shen et al., 2013; Xu et al., 2014; Yuan et al.,
2014). The pattern of decreasing richness might be caused by
decreasing TC and DOC content with elevation (Supplementary
Table S2). Our multiple OLS regression analyses revealed that TC
and C:N ratio had strong correlations with taxonomic richness
and diversity. In addition, we found the relative abundance of
six dominant taxa had a significant correlation with elevation,
as well as Verrucomicrobia. The relationships between these
individual groups and elevation are likely contributing to the
overall bacterial elevational pattern. Furthermore, significant
correlations were also found between the relative abundance
of these phyla with soil TC, TN, DOC, and DON, except
for Deltaproteobacteria. These results suggest that soil carbon
and nitrogen contents could be prominent contributors to the
observed diversity patterns. Despite that, we cannot exclude
other factors influencing this decreasing richness pattern. For
example, soil moisture also has close correlations with bacterial
richness and diversity based on OLS regression analyses in our
study. Actually, several researches have revealed that moisture
could be a controlling variable influencing bacterial diversity
(Angel et al., 2010; Yuan et al., 2014; Zhang et al., 2014). It
should be noted that the richness in 2000 and 2100 m elevations
where the treeline formed by birch distributes was relatively
higher than that in higher elevations. Recently, Thébault et al.
(2014) studied microbial diversity at the treeline, which open
new avenues for novel research. While dispersal ability is often
claimed to be the main determinant of a species’ range (Brown
et al., 1996; Lester et al., 2007), we speculate that species
dispersal from forests to tundra soils might increase microbial
diversity at lower elevations within alpine tundra. Soil pH,
usually the best predictor of variation in microbial diversity, and
might also influence elevational diversity patterns (Bryant et al.,
2008). As expected, no significant correlation between pH and
diversity was found in our study, which is largely due to the
narrow pH range and low variance in pH among elevations.
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FIGURE 3 | The relative abundances of the dominant bacterial phyla at each elevation in relation to soil total carbon (TC). The strength of each
relationship given is based on the linear regression equation.

Although soil temperature was not measured here, given that air
temperature is relatively constant along this elevational gradient,
it is unlikely that the role of soil temperature would overwhelm
that of soil carbon and nitrogen contents. In addition, although
differences in sampling timing could lead to seasonal changes in
bacterial diversity (Lipson and Schmidt, 2004; Björk et al., 2008),
researchers have found that the spatial variations are stronger
than the seasonal variations in alpine tundra (Zinger et al., 2009).
Although taxonomic and phylogenetic diversity are typically
related (as is the case in our study), the pattern with elevation
showed that they might be slightly different (Morlon et al., 2011;
Singh et al., 2012). For phylogenetic diversity, the unimodal
pattern mainly resulted from the higher richness at 2300 m. To
our knowledge, this is the first observation of significant elevation
trend across such a small-scale elevational gradient. Clearly, the
generality of these observations for microbes still needs to be
addressed by more extensive studies for specific habitats, as well
as across habitats.

Phylogenetic Relatedness with Elevation
The influence of evolutionary history and ecological processes
on community assembly can be assessed by analyzing the
phylogenetic structures of communities. However, inferring
ecological processes using phylogenetic information requires
quantification of phylogenetic signal (Losos, 2008) in ecological
niches (Cavender-Bares et al., 2009). Many studies on bacteria
have found a positive relationship between phylogenetic
distances and ecological differences among close relatives, which
indicated that closely related bacterial taxa are ecologically
coherent (Newton et al., 2007; Stegen et al., 2012; Wang et al.,
2013). Our Mantel correlogram analyses showed that there
were significant phylogenetic signals across short phylogenetic
distances, consistent with the results of Stegen et al. (2012)
and Wang et al. (2013). Our results combined with previous
studies, indicate that at short phylogenetic distances closely
related bacterial taxa are phylogenetically conserved in their
niches. Since metrics of nearest taxon distances (for example,
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FIGURE 4 | Relationships between elevation and bacterial phylotype
richness and phylogenetic diversity. Linear or quadratic models were
selected to describe the relationship. The communities were randomly
sampled to obtain 4900 sequences.

MNTD) focus on relatively short phylogenetic distance, the
strong phylogenetic signal across short phylogenetic distances
also suggests that these metrics are particularly suitable for
ecological inferences.

In our study, the bacterial communities were more likely
to show phylogenetic clustering than expected by chance at
all elevations based on the standardized MNTD metric. This
observation is consistent with reports for bacterial phylogenetic
structures in the Chinese Laojun Mountain and Colorado Rocky
Mountains (Bryant et al., 2008; Wang et al., 2012). However,
the ses.MNTD did not show a significant trend with elevation,
in contrast with Wang et al. (2012) who observed increasing
phylogenetic clustering with elevation for biofilm bacteria in a
stony stream. The contradictory results might caused by the
differences between soil and aquatic environments. Similar to
our results, Bryant et al. (2008) found a weak, non-significant
increase in phylogenetic structure toward higher elevation for
the relative abundance of soil Acidobacteria. One possible reason
could be that the elevational gradient considered here (2000–
2500 m) and in Bryant (2460–3380 m) might not have been

large enough to delineate clear patterns. Interestingly, there
is also not a consistent trend in phylogenetic structure with
elevation for plants and animals based on previous studies.
For example, an increasing phylogenetic over-dispersion for
angiosperms with increased elevation has been shown in the
Colorado Rocky Mountains, whereas Hoiss et al. (2012) found
increasing phylogenetic clustering in bee communities with
increased elevation.

The net relatedness index (NRI) and the nearest taxon
index (NTI) were considered classical measures of phylogenetic
relatedness and extensively used by researchers (ses.MNTD is
equivalent to -1 times the NTI,Webb, 2000; Kembel and Hubbell,
2006; Bryant et al., 2008; Kembel, 2009). It should be noted that
the elevation trend shown by ses.MNTD is different from the
MNTD (non-significant trend vs. unimodal trend) in this study.
Actually, the choice of an appropriate null model to use when
measuring the structure of ecological communities has been very
contentious (Gotelli, 2001; Kembel and Hubbell, 2006), and the
debate has mainly focused on the relative merits of null models
that maintain or do not maintain species frequencies (Gotelli
and Graves, 1996). Importantly, the observed phylogenetic
clustering here is based on the view that bacterial niches
(the particular set of resources and environmental conditions
that an individual species exploits, Prosser et al., 2007) are
phylogenetically conserved, which has been demonstrated by
our phylogenetic signal result. For the unimodal trend shown
by MNTD with elevation, this result was similar to the trend
of phylogenetic diversity with elevation. We interpret the lower
phylogenetic relatedness in mid-elevation communities as a
possible reason that the environmental filtering effect of abiotic
factors is replaced here by an increased competition between
species that was generated through evolutionary processes.

Despite the bias of different null models, we found the pattern
that bacterial communities are more phylogenetically clustered
at higher elevations, and this pattern has been observed in a
number of studies not only for plants and animals (Graham
et al., 2009; Kluge and Kessler, 2010; Machac et al., 2011) but
also for microbes (Bryant et al., 2008; Wang et al., 2012). Helmus
et al. (2010) suggests that ecosystem disturbances can result in
assemblages that share many closely related species. There is
also an evidence to show that environmental instability facilitates
phylogenetic clustering for bacterial communities (Amaral-
Zettler et al., 2011). Here, since TC (significantly correlated
with TN, R2 = 0.88) was the strongest environmental filter
for phylogenetic structure (MNTD) based on OLS regression
analyses, we infer that the phylogenetic clustering at 2500 m
elevation might be closely related to sharply low soil carbon and
nitrogen contents. Taken together, despite the effect of species
interactions and evolutionary processes, the results support our
hypothesis, suggesting that environmental filtering process tend
to be more prominent forces in structuring communities along
elevation.

Factors Influencing Bacterial Community
Composition
Understanding the factors controlling bacterial community
composition is a fundamental goal in microbial ecology (Martiny
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FIGURE 5 | Pearson correlation resulting from Mantel correlogram
between the pairwise matrix of OTU niche distances and phylogenetic
distances (with Jukes–Cantor model) for each sample group with 999
permutations (A). Significant correlations (P < 0.05, solid circles) indicate
phylogenetic signal in species ecological niches (A). Variation in community

phylogenetic relatedness along the elevation gradient as measured with
observed mean nearest taxon distance (MNTD; B) and the standardized effect
sizes of MNTD (C). MNTD followed a unimodal pattern with elevation (r2 = 0.53,
P < 0.001). Significant ses.MNTD values were indicated as solid circles
(P < 0.001, 1000 null model runs).

TABLE 3 | Relationships between bacterial diversity and potential explanatory variables that were modeled using multiple ordinary least squares
regression.

r2 AIC Explanatory variables and β-weights

OTU richness 0.461 −7.85 C:N ratio∗∗ Moisture∗∗ pH

0.557a −0.685 −0.297

Phylogenetic diversity 0.361 −3.78 TC∗∗ Moisture∗∗ DON

1.121 −0.759 −0.469

MNTD 0.481 −4.76 TC∗∗ Moisture∗ NH4
+-N∗ DON∗ pH

1.503 −0.866 0.753 0.795 0.389

The best models were identified using Akaike’s information criterion (AIC). All of the variables were displayed with increasing P-values. TC, total carbon; DON, dissolved
organic nitrogen. ∗P < 0.05, ∗∗P < 0.01.
aStandardized partial regression coefficients.

et al., 2006; Hanson et al., 2012). In this study, we found
clear and significant differences in soil bacterial community
composition among elevations (PCoA, CCA,ANOSIM analyses).
Multivariate analyses also demonstrated that elevation had
the highest correlation with bacterial community composition.
This is surprising considering the small-scale elevational
gradient studied here. Many studies of elevational gradient
have documented strong differences in taxonomic community
composition among elevations for bacteria (Singh et al.,
2012, 2014; Wang et al., 2012; Shen et al., 2013) as well
as for eukaryotic groups (Shen et al., 2014). Even for

functional community composition, Yang et al. (2014) observed
that the functional structure of the microbial community
significantly differed among elevations. These results suggest
that elevation could be a good predictor of variation in
microbial community composition. Yet elevation is a complex
and indirect gradient along which many environmental variables
are changing. Soil pH has been widely recognized as a primary
driver for soil bacterial horizontal distribution (Fierer and
Jackson, 2006; Lauber et al., 2009; Chu et al., 2010; Griffiths
et al., 2011). Recently, the importance of pH in structuring
bacterial and eukaryotic microbial community composition
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was also found in elevational distributions (Yuan et al., 2014;
Zhang et al., 2013; Shen et al., 2014). A significant pH effect
was not detectable here, mainly because of the narrow pH
range and limited variation among sampling sites. In contrast,
our results showed that the composition of the whole bacterial
community and the relative abundance of dominant phyla
was closely correlated with soil TC, TN, DOC, DON, and
C:N ratio. Such significant correlation between soil carbon and
nitrogen contents and bacterial community structure has rarely
been reported in studies of elevational gradient. For instance,
Yuan et al. (2014) observed that precipitation and soil NH4

+
were dominant environmental factors that influenced bacterial
communities at 0–5 cm depth along the elevational gradients
on the Tibetan Plateau. Other studies have found a significant
relationship between soil C:N ratio and microbial community
structure, but the effect was overwhelmed by pH (Shen et al.,
2013; Zhang et al., 2013). It is well known that plants interact
with soil microbial community through litter inputs and root
exudates (Knelman et al., 2012). Recent advances in plant–
microbe interactions research revealed that different plant species
host specific microbial communities, suggesting a potential role
of plant species shaping rhizosphere microbiome (Berendsen
et al., 2012; Oh et al., 2012). Vegetation type has been often
observed to significantly influence the microbial communities
in forest or tundra soils (Wallenstein et al., 2007; Nielsen et al.,
2010; Chu et al., 2011; Shen et al., 2013). However and indeed,
soil bacteria are more sensitive to soil factors such as pH,
moisture, organic matter content, and C:N ratio (Fierer and
Jackson, 2006; Brockett et al., 2012; Liu et al., 2014). Given
that plants can determine carbon and nitrogen source and alter
soil physical and chemical environment (Wallenstein et al.,
2007; Prescott and Grayston, 2013), plants indirectly affect soil
microbial communities (Landesman et al., 2014). Nielsen et al.
(2010) also observed that at a landscape scale the composition
of bacterial communities was not directly associated with plants,
but selected by soil pH and C:N ratio. Furthermore, Shi et al.
(2015) recently observed that bacterial community composition
was strongly correlated with soil pH and moisture content
among four vegetation types in Arctic tundra, while in soils
with similar pH and moisture content, variables associated
with nitrogen transformations were important determinants of
bacterial community structure. Vegetation heterogeneities may
have potential effects on soil microbial communities, however,
due to our lack of vegetation data, we cannot test the correlations
between plant communities and soil bacterial communities.
Although this study was not designed to directly examine
the effect of tundra vegetation type on bacterial communities,
we cannot exclude the possibility that plant communities
indirectly influence bacterial community composition through

alteration of soil carbon and nitrogen contents. Nevertheless,
our results indicate that soil carbon and nitrogen contents
were the dominant environmental factors determining bacterial
community composition, and further suggest that niche-based
environmental filtering processes strongly structured bacterial
communities along this elevational gradient.

Conclusion

In summary, we showed that soil bacterial communities in
Changbai Mountain tundra differed with elevation and bacterial
taxonomic richness significantly decreased with increasing
elevation. Soil carbon and nitrogen contents were significantly
correlated with bacterial diversity and community composition,
as well as specific phyla. To the best of our knowledge, this
is the first study to reveal significant diversity patterns across
a small-scale elevational gradient and a significant effect of
soil carbon and nitrogen contents but not pH in predicting
the elevational distribution of soil bacterial communities.
Analyses of phylogenetic relatedness revealed that niche-based
environmental filtering processes (soil carbon and nitrogen here)
played a critical role in structuring bacterial communities and
shaping biodiversity patterns. Further work is needed to link
biodiversity patterns with community phylogenetic structures to
more fully understand the underlying mechanisms and relative
importance of evolutionary and ecological processes.
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