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The gut ecosystem with myriads of microorganisms and the high concentration of

immune system cells can be considered as a separate organ on its own. The balanced

interaction between the host and microbial cells has been shaped during the long

co-evolutionary process. In dysbiotic conditions, however, this balance is compromised

and results in abnormal interaction between the host and microbiota. It is hypothesize

here that the changed spectrum of microbial enzymes involved in post-translational

modification of proteins (PTMP) may contribute to the aberrant modification of host

proteins thus generating autoimmune responses by the host, resulting in autoimmune

diseases.
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INTRODUCTION

Intricate host–microbe symbiotic relationships in the human gut have evolved during the
long-term coevolution between the two. It resulted in fine-tuned inter kingdom molecular
adaptations that benefit both sides (Donia and Fischbach, 2015). In particular, the commensal
microbiota benefits from the continuous food supply, exogenous and endogenous, and constant
physico-chemical conditions. Advantages for the host organism include metabolic, structural,
protective, and other beneficial functions exerted by the commensal microbiota. The importance
of commensal microbiota for the proper development and functioning of the host immune system
is also well-recognized (Paun and Danska, 2015).

Our knowledge on the topic expands continuously. The complex microbiota of our
gastrointestinal tract consists of at least 1000 bacterial species, the majority of which belong to the
Firmicutes and Bacteroidetes phyla (Qin et al., 2010). The microbiota composition and function
is very dynamic and multiple environmental factors affect its quantity, quality and functionality.
Age, mode of delivery, infant feeding practices, the use of drugs (antibiotics), diet, industrial food
additives, epidemiology, climate, eco-catastrophes, migrations, and many more are the influential
factors (Lerner, 2011; Chassaing et al., 2015; Lerner and Matthias, 2015a,b,c).

It is not our intention to cover all the aforementioned factors that may affect host-microbe
interaction. Here, we will provide an update on the dysbiotic situations, where the normal
composition of the commensal is compromised, which may result in pathologies such as
autoimmune diseases. More specifically, we will be focusing on the microbial enzymatic machinery
that is involved in post-translational modification of proteins (PTMP). We hypothesize that the
enzymes produced by the dysbiotic microbial community may process luminal proteins differently
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than that of the normal community. The abnormal PTMP
may produce neo-epitopes that are autoimmunogenic and may
induce systemic autoimmune responses resulting in autoimmune
diseases.

THE ROLE OF INTESTINAL DYSBIOSIS IN
HUMAN AUTOIMMUNE DISEASES

Presently, it is apparent that the microbiota and its products
have a profound effect on the development and maintenance
of the immune system. Germ-free animals, for example, have
an impaired immune system that can be functionally restored
after the inoculation of commensal bacteria (MacPherson
et al., 2001, 2002; Mazmanian et al., 2005). The extent of
dependency of the immune system on commensals may even
suggest the commensalocentric view. At the same time, not
all commensals are alike. The dysbiotic populations, with
no identifiable pathogens, can still confer the susceptibility
to immune-mediated diseases (Paun and Danska, 2015). Our
focus here on autoimmune diseases and several mechanisms of
the microbial involvement in the promotion of autoimmunity
have been suggested (Chervonsky, 2013). The first one is the
molecular mimicry, where microbial peptides are identical, or
similar enough to self-peptides. Second, it could be bystander
activation during infection, with the induction of costimulation
and cytokine production by APCs, which, at the same time,
may presents self-antigens. The third suggested mechanism
is the “amplification of autoimmunity by cytokines” elicited
by microbial activation of professional APCs and the innate
lymphoid cells to produce proinflammatory cytokines by T
cells. And the fourth suggestion is the involvement of the
whole human intestinal system, including dysbiotic community,
exogenous enzymes produced by the dysbiotic populations, and
the corresponding PTMP activity that generates neo-epitopes.

The multiple animal models of human autoimmune diseases
(AD) suggest the direct involvement of commensal microbiota in
disease development. Under the germ-free conditions no disease
is developing in the animal models of IBD, rheumatoid arthritis
and multiple sclerosis, supporting the notion of “no bugs, no
disease,” while in some others they are only attenuated (Wu
and Wu, 2012). In some models of the human ADs, causality
is strengthened by the reintroduction of specific microorganisms
restoring the disease severity.

Somemembers of the gut microbiota have been linked to ADs.
Changing a single bacterial species and/or the entire commensal
community can alter the outcome of a specific AD due to the
imbalance of pathological/protective immune responses (Wu
and Wu, 2012). The summary of specific microbial species in
relation to defined animal models of ADs and their functions, in
relation to disease progression, is shown in Table 1.

ENZYMES FROM DYSBIOTIC
POPULATIONS CAPABLE OF PTMP

Endogenous and microbial enzymes have the capacity of
intestinal enzymatic neo-antigen generation by PTMP. The

corresponding modifications taking place in the intestine
include peptides crosslinking, de/amination/deamidation,
de/phosphorylation, a/deacetylation, de/tyrosination,
de/glutamylation, de/glycylation, ubiquitination, palmitoylation,
glycosylation, galactosylation, arginylation, methylation,
citrullination, sumoylation, and carbamylation. For example,
human endogenous intestinal enzymes and microbial
transglutaminases (tTg, mTg) induce multiple neo-epitopes
on the Tg-peptide docked complex or citrullination by
peptidylarginine deiminase resulting in the formation of
autoantibodies in celiac disease and rheumatoid arthritis,
respectively. A similar phenomenon is observed in other ADs.
Bacterial species, their corresponding enzymes capable of PTM
of host proteins and potential involvement in disease are listed
in Table 2.

THE ROLE OF POST-TRANSLATIONAL
MODIFICATION IN AUTOIMMUNITY
INDUCTION

Bacteria possess an amazing capacity for adaptation and survival
strategies, including differential expression of transcriptome and
proteome, variations in growth physiology, and in developmental
behavior. PTMP contribute substantially to this adaptability and
bacterial cell cycle regulation (Grageasse et al., 2015). On the
other hand, the microbial PTMP has a paramount significance
to the host. Their enzymatic apparatus is capable to transform
naïve/self or non-self-peptides to autoimmunogenic ones. Several
examples are worth mentioning.

Awell-described PTMP is the citrullination, where an arginine
residue in a protein is converted to a citrulline residue. The
host enzyme is activated during apoptosis, autophagy, and
NETosis processes, which are well-known as being implicated
in autoimmunity (Valesini et al., 2015). In fact, some anti-
citrullinated protein antibodies may serve as good diagnostic
markers for autoimmune diseases such as rheumatoid arthritis
(RA), systemic lupus erythematosus (SLE), and Felty’s syndrome
(Muller and Radic, 2015). The citrullinated proteins have
also been detected in polymyositis and IBD. Some bacteria
such as Porphyromonas gingivalis possess the corresponding
enzymes, peptidylarginine deiminases, which may citrullinate
human proteins (Wegner et al., 2010). The authors suggested
that P. gingivalis-mediated citrullination of bacterial and host
proteins may lead to the generation of antigens driving the
autoimmune response in RA. Experimental verification of the
specificity and activity of peptidylarginine deiminase from P.
gingivalis revealed that it is primarily cell surface associated, heat
stable, and display the optimal activity under alkaline conditions
characteristic for the inflamed environment (Abdullah et al.,
2013). Moreover, the enzyme has very broad substrate specificity
and modifies arginine residues in all positions of all proteins
tested. Thus, its presence in inflamed tissue may foster
autoimmune reactions by altering host epitopes. In experimental
models of periodontal disease and arthritis it has been found
that peptidylarginine deiminase from P. gingivalis is a key
contributor to the pathogenesis of these diseases (Gully et al.,
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TABLE 1 | Autoimmune disease and associated dysbiotic characteristics*.

Autoimmune

disease

Dybiosic characteristics Microbial species Action

Inflammatory bowel

disease

Reduction of Firmicutes+Bacteroides,

overgrowth of Proteobacteria

Proteus mirabilis, Klebsiella pneumoniae Induce

Segmented filamentous bacteria Induce

B. fragilis Attenuate

B. thetaiotaomicron Attenuate

Rheumatoid

arthritis

Increased diversity, Increase in

Porphyromonas, Prevotella, Leptotricha,

and Lactobacillus species

Porphyromonas gingivalis, Prevotella

nigrescens,

Induce

Segmented filamentous bacteria Induce

Lactobacillus bifidus, Induce

Clostridium Induce

Type 1 diabetes Decreased diversity, Increased

Bacteroidetes, Decreased Bifidobacteria,

and butyrate-producing bacteria

Bacteroides

Segmented filamentous bacteria

Attenuate

Attenuate

Celiac disease Increased diversity Lachnoanaerobaculum, Prevotella,

Actinomycetes

Induce

Lachnoanaerobaculum umeaense Induce

Multiple sclerosis Decreased Clostridia clusters XIVa and IV

and Bacteroidetes

Segmented filamentous bacteria Induce

Bacteroides fragilis, Lactobacillus paracasei,

Lactobacillus plantarum

Attenuate

*Adapted from references (Wu and Wu, 2012; Lerner and Matthias, 2015b; Paun and Danska, 2015).

TABLE 2 | Bacterial enzymes capable of post-translational modification of host proteins and potential involvement in disease.

Bacterium PTMP Relation to disease

Porphyromonas gingivalis Peptidylarginine deiminase RA, SLE, Felty’s syndrome, periodontal disease

(Muller and Radic, 2015)

Bacteroides fragilis Ubiquitination Inflammatory bowel and autoimmune diseases

(Patrick et al., 2011)

Shigella flexneri Demyristoylation Affects cellular growth, signal transduction,

autophagasome maturation, and organelle function

(Burnaevskiy et al., 2013)

Shigella flexneri Deamidation Inhibits acute inflammatory responses (Sanada

et al., 2012)

Shigella flexneri Protein kinase Prevents phospho-IκBα degradation and NF-κB

activation to establish infection (Kim et al., 2005)

Gram-negative bacteria Kinases, phosphatases, phospholyases,

and serine/threonine acetylases

Host phosphoproteome modulation to establish

infection (Grishin et al., 2015)

Escherichia coli, Salmonella, Shigella, Chlamydia, and

Legionella

Ligases and deubiquitinases Modulation of host ubiquitin pathways to establish

infection (Zhou and Zhu, 2015)

Streptococcus pyogenes, Enterococcus faecalis, Listeria

monocytogenes, Streptococcus pneumoniae, Pseudomonas

aeruginosa, Capnocytophaga canimorsus, Treponema

denticola,

Glycosidases Alteration of host glycobiome for

immunomodulation, adherence, and nutrition to

establish infection (Sjögren and Collin, 2014)

Legionella, Chlamydia, Bacillus Histone methylases Remodeling the host epigenetic machinery (Rolando

et al., 2015)

Short chain fatty acids-producing commensals Inhibition of histone deacetylases Anti-proliferative and anti-inflammatory effects

(Schilderink et al., 2013)

Bacteria at mucosal surfaces Proteases Generation of host damage-associated molecular

patterns (Sofat et al., 2015)

2014). In human subjects, there is a strong association between
the presence of P. gingivalis peptidylarginine deiminase and
diseases such as RA and periodontitis (Laugisch et al., 2015;

Shimada et al., 2015). In both diseases, the microbial enzyme
convert arginine to a citrulline residue, thus creating a neo-
antigen.
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More recently, an additional PTMP activity, lysine acetylation,
has been detected in P. gingivalis in addition to its citrullination
capacity (Butler et al., 2015). A unique homolog of the eukaryotic
ubiquitin has been found in the predominant bacterium of
the human gut, Bacteroides fragilis (Patrick et al., 2011). In
eukaryotes post-translational regulation by ubiquitination plays
an important role in regulation of intracellular proteolysis and
modification of protein function. The ubiquitination process is
also central for immune surveillance and response to invading
pathogens. Its presence in a predominant human gut bacterium
may have important implications for our understanding of AD
development.

One of the factors contributing to autoimmune progression
is the cellular environment that may change PTMP (Cañas
et al., 2015). PTMP of histones alter the chromatin architecture
thus generating “open” and “closed” states, and these structural
changes can modulate gene expression under specific conditions.
While methylation and acetylation are the best-characterized
histone PTMP, citrullination by the protein arginine deiminases
represents another important player in this process (Slade et al.,
2014). Juxtaposition of citrullinated histones with infectious
pathogens and complement and immune complexes may
compromise the tolerance to nuclear autoantigens and promote
autoimmunity (Muller and Radic, 2015). Like a double-edged
sword, histones can be post-translationally modified also by
Tg cross-linking, a well-described PTMP (Lerner and Matthias,
2015c). Likewise, microbial transglutaminase, a member of the
Tg family, is known for its pivotal function in bacterial survival
(Lerner and Matthias, 2015c). Bacterial glyosidases are involved
in PTMP and many key proteins of the immune system are
glycosylated (Sjögren and Collin, 2014). The glycosylation sites
of IgE, IgM, IgD, IgE, IgA, and IgG are functionally important,
and they are responsible for the well-documented association
between alterations of the serum glycome and autoimmunity.
The altered glycan theory of autoimmunity has been recently
suggested (Maverakis et al., 2015). It implies that each AD has a
unique glycan signature characterized by the site-specific relative
abundances of individual glycan structures on immune cells and
extracellular proteins. This especially concerns the site-specific
glycosylation patterns of different immunoglobulin classes and
subclasses (Maverakis et al., 2015).

A well-characterized example of PTMP is the tTg in celiac
disease that will be discussed in the next section.

WHERE PTMP DOES TAKES PLACE IN
THE GUT?

This topic still needs to be revealed in greater details, but there are
some hints for at least two ADs. In celiac disease, the autoantigen
is tTg, capable of deamidating, or transamidating gliadin (Reif
and Lerner, 2004; Lerner et al., 2015a). This PTMP occurs below
the epithelium, resulting in neo-epitopes of gliadin docked on the
tTg, inducing anti-tTg, or anti neo-epitope tTg autoantibodies.
These are the well-known serological markers of celiac disease
(Lerner, 2014; Lerner et al., 2015b). More recently, a family
member of tTg, the microbial Tg that is heavily used in the

food industry, has been shown as a potent inducer of specific
antibodies in celiac disease patients (Lerner andMatthias, 2015d).
Interestingly, the same food additive has been suggested as a
new environmental trigger and potential inducer of celiac disease
(Lerner and Matthias, 2015a,c).

A number of PTMPs are relevant to IBD. These pathways
include phosphorylation, neddylation hydroxylation, and
cleavage of cytokine precursor forms by the inflammasome.
The interplay of these rapid response mechanisms enables rapid
adaptation to incoming inflammatory signals. Cytokine induced
barrier breakdown allows for bacterial translocation to the
basal aspect of intestinal epithelial cells. Bacterial antigens and
endogenous danger signals are recognized by the adaptive and
innate immune system, triggering a variety of reactions including
apoptosis, increased cytokine release, loss of tight junctional
proteins, and barrier breakdown (Ehrentraut and Colgan, 2012).

In rheumatoid arthritis, citrullination is a major post-
translational modification of arginine, which converts naïve
peptides into the immunogenic neo-epitopes. This PTMP
constitutes the basis for the specific prediction of disease activity
due to the production of anti-citrullinated protein antibodies
(Lerner and Matthias, 2015b). It has been suggested that
infectious agents that release toxins such as lipopolysaccharides
at mucosal surfaces may trigger the inflammatory response with
a potential to cause citrullination of various proteins such as
fibronectin, fibrinogen, and collagen (Sofat et al., 2015).

Theoretically, it can be assumed that PTMP may take place in
the lumen, on the intestinal, or buccal mucosal surfaces, in the
interepithelial spaces, or below the epithelium. There are more
questions, however, than definitive answers.

THE HYPOTHESIS

We hypothesize here that the PTM enzymes of dysbiotic
gut microbiota behave like a Trojan horse. They are
essential for the microbial growth and survival in the gut,
but are detrimental to the human host. This enzymatic
machinery is capable of PTMP, turning naïve peptides to
immunogenic ones by generating, or exposing neo-epitopes, thus
compromising tolerance and inducing autoimmunity. Peptides
crosslinking, de/amination/deamidation, de/phosphorylation,
a/deacetylation, de/tyrosination, de/glutamylation,
de/glycylation, ubiquitination, palmitoylation, glycosylation,
galactosylation, arginylation, methylation, citrullination,
sumoylation and carbamylation are some examples for PTMP
taking place in the intestine. The corresponding microbial
enzymes that encounter the closely related host substrates
under the optimal local conditions, act as post-translational
modifiers of the host’s peptides in the initiation, progression and
maintenance of human systemic ADs.

SUMMARY

There are a number of factors, genetic and environmental, that
have been identified as conducive to dysbiotic conditions in
humans. We hypothesize here that the spectrum and activities
of enzymes, which are normally involved in PTMP, become
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biased in the dysbiotic microbial community. The examples
are given demonstrating how these activities may affect post-
translational modification of host proteins thus generating
new aberrant epitopes. These epitopes may generate host
autoimmune responses and trigger autoimmune diseases. Much
less is known, however, how to convert the “pathobiota” back
to the “normobiota” to restore the balanced host-microbe
interaction with a normal PTMP pattern. Answering this

question will be the basis for the development of efficient
therapeutic strategies to prevent autoimmune diseases.
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