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Modern epidemiology of foodborne bacterial pathogens in industrialized countries

relies increasingly on whole genome sequencing (WGS) techniques. As opposed to

profiling techniques such as pulsed-field gel electrophoresis, WGS requires a variety

of computational methods. Since 2013, United States agencies responsible for food

safety including the CDC, FDA, and USDA, have been performing whole-genome

sequencing (WGS) on all Listeria monocytogenes found in clinical, food, and

environmental samples. Each year, more genomes of other foodborne pathogens such

as Escherichia coli, Campylobacter jejuni, and Salmonella enterica are being sequenced.

Comparing thousands of genomes across an entire species requires a fast method

with coarse resolution; however, capturing the fine details of highly related isolates

requires a computationally heavy and sophisticated algorithm. Most L. monocytogenes

investigations employing WGS depend on being able to identify an outbreak clade

whose inter-genomic distances are less than an empirically determined threshold.

When the difference between a few single nucleotide polymorphisms (SNPs) can help

distinguish between genomes that are likely outbreak-associated and those that are

less likely to be associated, we require a fine-resolution method. To achieve this level

of resolution, we have developed Lyve-SET, a high-quality SNP pipeline. We evaluated

Lyve-SET by retrospectively investigating 12 outbreak data sets along with four other

SNP pipelines that have been used in outbreak investigation or similar scenarios. To

compare these pipelines, several distance and phylogeny-based comparison methods

were applied, which collectively showed that multiple pipelines were able to identify

most outbreak clusters and strains. Currently in the US PulseNet system, whole genome

multi-locus sequence typing (wgMLST) is the preferred primary method for foodborne

WGS cluster detection and outbreak investigation due to its ability to name standardized

genomic profiles, its central database, and its ability to be run in a graphical user
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interface. However, creating a functional wgMLST scheme requires extended up-front

development and subject-matter expertise. When a scheme does not exist or when the

highest resolution is needed, SNP analysis is used. Using three Listeria outbreak data

sets, we demonstrated the concordance between Lyve-SET SNP typing and wgMLST.

Availability: Lyve-SET can be found at https://github.com/lskatz/Lyve-SET.

Keywords: SNP pipeline, wgMLST, genomic epidemiology, foodborne, outbreak, bacterial pathogen

INTRODUCTION

Modern outbreak investigation is enhanced with molecular
subtyping evidence. These lines of evidence have been, but
are not limited to: pulsed-field gel electrophoresis (PFGE),
multiple-locus variable number tandem repeat analysis (MLVA),
and multi-locus sequence typing (MLST; MacCannell, 2013).
Each of these methods yields specific targets to measure
genetic relatedness among pathogens isolated from human cases,
animals, foods, or the environment, resulting in evidence for
or against their inclusion in a cluster, which in turn aids in
epidemiological investigations. In the age of whole genome
sequencing (WGS), outbreak investigation is being increasingly
supported by phylogenomic methods that are more robust
and discriminatory than any aforementioned subtyping method
(Jackson et al., 2016). Whether infectious disease outbreaks
are caused by single pathogenic clones or by multiple clones,
a basic assumption can be made that the epidemiological
association between cases can be inferred from the phylogenetic
relationships between the case-defining microorganisms. In an
outbreak scenario as phylogenetic relatedness increases, the
likelihood of epidemiological concordance increases. In other
words, phylogeny approximates epidemiology.

There are two dominant methods to create phylogenies
for WGS-enhanced outbreak investigations: whole-genome
multi-locus sequence typing (wgMLST) and single nucleotide
polymorphisms (SNPs). In the wgMLST method for a single
genome, as in conventional MLST (Maiden et al., 1998), loci are
compared against a database of known alleles and either labeled
with a known allele identifier or given a new allele identifier.
In MLST and wgMLST, alleles are either the same or different,
meaning that any single nucleotide substitution, insertion, or
deletion equates to an allele change. With wgMLST, thousands
of loci are compared and their distances are used to generate
a phylogeny usually with either the unweighted-pair-group-
method-with-arithmetic-mean (UPGMA) or neighbor-joining
(NJ) algorithm. One implementation of wgMLST is through
the BioNumerics software (Applied Maths, Sint-Martens-Latem,
Belgium).

In the SNP-based method, single nucleotide changes are used
to infer phylogenetic relatedness. This method is implemented
in many software packages. Snp-Pipeline has been used for
regulatory evidence of Salmonella enterica at the Center for
Food Safety and Applied Nutrition (CFSAN; Pettengill et al.,
2014; Davis et al., 2015). RealPhy has been used to characterize
Clostridium botulinum outbreaks (Bertels et al., 2014; Shirey
et al., 2016). SNVPhyl is used by the National Microbiology
Laboratory (NML) of the Public Health Agency of Canada

(PHAC) for, among other organisms, S. enterica (Bekal et al.,
2016). Most SNP-based methods have a common workflow: (1)
mapping raw reads onto a reference genome, (2) identifying
SNPs, (3) removing lower-quality SNPs, (4) creating a multiple
sequence alignment (MSA) from selected SNPs, and (5) inferring
a phylogeny from the MSA. When these SNP-based methods
remove SNPs with less support, they can be called high-quality
SNP-based methods (hqSNP). SNPs with less support can be
identified by having few raw reads, by having conflicting allele
calls in the raw reads (i.e., low consensus), by occurring in
mutation hotspot regions such as phage regions, or for many
other reasons. A modification of this typical SNP workflow is
implemented in kSNPwhere nucleotides of odd length k (k-mers)
are extracted from raw reads supplied for the genomes being
analyzed (Gardner et al., 2015). Instead of aligning to a reference,
the k-mers from one genome are compared against the other
genome’s, where the middle nucleotide can be variable. These
variable bases can be extracted into a pseudo-multiple sequence
alignment such that a phylogeny can be built. kSNP has been
used in describing the population structure of certain foodborne
pathogens, e.g., L. monocytogenes in cured ham in Italy (Morganti
et al., 2015), and in outbreak investigations of other bacterial
pathogens, e.g., retrospective analysis of Legionella pneumophila
(Mercante et al., 2016). These hqSNP pipelines increase the
signal-to-noise ratio in favor of a high-quality phylogeny at the
risk of removing true but low-quality SNPs.

In 2013, the NML and the Enteric Diseases Laboratory Branch
(EDLB) of The Centers for Disease Control and Prevention
(CDC) briefly described an initial SNP-based workflow called
the SNP Extraction Tool (SET). The initial version of SET
was used for the Haiti cholera outbreak of 2010 (Katz et al.,
2013). The common code base of SET has since been forked,
with the NML branch rebranded as SNVPhyl (Petkau et al.,
2016) and the CDC version as Lyve-SET, named after the
organisms with which it was first used: Listeria, Yersinia, Vibrio,
and Enterobacteriaceae. Since 2013, the Centers of Disease
Control and Prevention (CDC) has participated in an interagency
collaboration to routinely sequence and analyze all clinical and
food-related Listeria monocytogenes isolates in the US with the
eventual goal to replace PFGE (Carleton and Gerner-Smidt,
2016). As WGS data of these isolates are being continuously
generated, a phylogenetic framework needs to be constructed and
constantly updated to support epidemiological surveillance and
outbreak investigation of L. monocytogenes. Therefore, upon the
onset of the interagency collaboration, we revised and formalized
Lyve-SET into a packaged pipeline that suits the needs of bacterial
foodborne outbreak investigations. Lyve-SET was refined in
the context of L. monocytogenes outbreak investigations and
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continues to be a strong reference tool for L. monocytogenes and
many other foodborne pathogens such as S. enterica, Escherichia
coli, Yersinia enterocolitica, Cronobacter, and Vibrio cholerae.

Historically, it has been difficult to evaluate and compare
SNP pipelines, and an even bigger challenge to compare them to
workflows based on other algorithms (e.g., wgMLST). Each of the
aforementioned pipelines produces output that can be used for
interpreting the relationship between genomes in various forms
such as distance matrices, MSAs, and dendrograms; however,
they have different underlying algorithms and output formats.
For example, each SNP pipeline uses a different read mapper and
SNP caller and might produce a different format to describe their
SNP calls. In comparing wgMLST and SNP workflows which
are wholly different algorithms, one SNP might be located in an
intergenic region, yielding zero allelic differences by wgMLST;
on the other hand many SNPs might be located on a single
gene, yielding the collapse of multiple SNPs into a single allelic
difference.

A reasonable approach to pipeline comparison, therefore,
might be at the phylogenetic level. A classic comparison method
is the Robinson-Foulds metric, sometimes called the symmetric
difference metric, where the number of internal branches that
exist in one tree but not the other are counted (Robinson and
Foulds, 1981). Another metric is Kuhner-Felsenstein, sometimes
called “branch score” which is similar to Robinson-Foulds
but calculates the Euclidean distance between each branch’s
length (Kuhner and Felsenstein, 1994). Both Robinson-Foulds
and Kuhner-Felsenstein metrics are implemented in the Phylip
package in the program treedist (Felsenstein, 1989) and in some
programming language libraries such as Bio::Phylo (Vos et al.,
2011). Both of these classical metrics rely on unrooted trees,
and small differences between two trees can artificially magnify
the distance between two trees. A more robust tree metric—
the Kendall-Colijn—accounts for both tree topology and branch
length (Kendall and Colijn, 2015). The Kendall-Colijn metric
compares two rooted trees using Euclidean distances from tip to
root with a coefficient λ to give more weight to either topology
(λ = 0) or branch length (λ = 1). One more reasonable approach
to pipeline comparison is assessing the distance matrices between
two workflows. The Mantel test uses a generalized regression
approach to identify correlations between two distance matrices
(Smouse et al., 1986). Therefore, if the genome distances from
one workflow vs. another workflow are consistently higher but
correlate well, the Mantel test will yield a high correlation
coefficient.

In this article, we describe the Lyve-SET workflow,
demonstrate how it can aid in bacterial foodborne outbreak
investigations, and propose methods of comparison with other
phylogenetic workflows.

MATERIALS AND METHODS

Implementation
Lyve-SET is a high quality SNP (hqSNP) pipeline, designed
to remove lower-quality SNPs from its analysis and increase
phylogenetic signal. Lyve-SET has its origins in the original
SET algorithm described in Katz et al. (2013). Major changes

in Lyve-SET compared to SET include integrated read cleaning
and phage masking, the use of VarScan instead of FreeBayes
for SNP calling, improved production of intermediate files in
standard formats, and the use of RAxML v8 to infer trees
instead of PhyML (Guindon et al., 2010; Garrison and Marth,
2012; Koboldt et al., 2012; Stamatakis, 2014). The source code is
available at https://github.com/lskatz/Lyve-SET (v1.1.4f, doi: 10.
5281/zenodo.163647).

With the default workflow, there is a well-defined audit trail
such that it is clear how Lyve-SET was initialized (Table 1) and
from where each analysis was derived (i.e., intermediate files
are saved). Lyve-SET requires as input a set of raw reads and
a phylogenetically related reference genome assembly. Lyve-SET
has only been tested with Illumina reads and default settings are
optimized for Illumina data, but it can accept FASTQ files from
any platform. These steps are depicted in Figure 1.

Although optional, the first recommended step when running
Lyve-SET is pre-processing raw sequencing reads. When using
the – –read_cleaner option, reads are cleaned with CG-
Pipeline (Kislyuk et al., 2010). The default Lyve-SET options
for the CG-Pipeline read cleaner are – –min_quality 15

--min_avg_quality 20 --bases_to_trim 100

which signifies that each read will be trimmed from the 5′ and 3′

ends up to 100 bp, until a nucleotide has at least a Phred quality
of 15. Then, any read with less than an average quality of 20
will be removed. Accordingly, lower-quality reads are removed,
trimmed, and/or corrected. Next, phage genes are discovered in
the reference genome using BLASTx against the PHAST database
with a custom script set_findPhages.pl (Camacho et al.,
2009; Zhou et al., 2011). A single transduction within an outbreak
can introduce changes in thousands of sites when in reality, it is
only a single evolutionary change. For example, this event has
been observed in L. monocytogenes recovered from Italian cheese
products in 2012 (Bergholz et al., 2015). Therefore, phage genes
on the reference genome are masked in an optimal Lyve-SET
analysis. The masked regions are recorded in a BED-formatted
file, and a user can also manually edit this file to exclude any
other troublesome regions.

The second step is mapping reads of each genome against the
reference assembly by SMALT using the launch_smalt.pl
script (Ponstingl and Ning, 2010). To achieve high-quality
mapping, each read’s match to the reference must be 95%
identity or above. The expectation in a single-source outbreak
is that there will be very few hqSNPs in a dataset; therefore,
this identity threshold should help maintain a high accuracy
of read-mappings while removing unrelated and error-prone
reads. Additionally, the match must be unambiguous within
the reference genome—i.e., it cannot match elsewhere equally
well—so that repeat regions are masked. One more filter can
be optionally applied to avoid calling SNPs in “cliffs.” A cliff is
when the read coverage rises or falls dramatically, possibly due
to repeat regions, sequencing anomalies, or other factors. To
detect these cliffs, a stand-alone script set_findCliffs.pl
was developed. This script creates a linear trend line in window
sizes of 10 base pairs (bp). If the slope of coverage is >3 reads per
bp or<−3 reads per bp, then the region is masked, and SNPs will
not be called at the particular locus in the particular genome.
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TABLE 1 | Features of Lyve-SET.

Description Lyve-SET kSNP RealPhy SNP-Pipeline SNVPhyl

Repeat detection Detection of repeat elements that could confound SNP

results

0a 0 0 0 1a

Auto-choose reference or reference-free Independence of a reference genome or a user-defined

reference genome to find SNPs

0 1 1 0 0

Removal of distant genomes Removal of genomes from analysis when they are

greater than a certain threshold of SNPs

0 0 0 1 0

Phage detection Detection and masking of phages 1 0 0 0 0

Cliff detection Detection and masking of cliffs 1 0 0 0 0

SNP cluster detection Detection and masking of clustered SNPs 1 0b 0 1 1

Read cleaning Cleaning and trimming of raw reads 1 0 0 0 0

BAM file for each individual genome Standardized BAM files that describe the locations of

mapped reads

1 0 1 1 1

VCF file for each individual genome Standardized VCF files that describe the locations of

SNPs and evidence supporting them

1 1 1 1 1

Pooled VCF file Standardized VCF file that describes the locations of all

SNPs for all genomes in a single file. This file is created

with the bcftools merge command

1 0 0 1 0

Fasta alignment of all sites Standardized fasta file of all sites across the reference

genome, whether they are invariant or SNP sites

1 0 1 0 1

Fasta alignment of SNPs Standardized fasta file of SNP sites 1 1 1 1 1

Standardized tree file File representing the phylogeny in a standardized

format, e.g., Newick

1 1 1 0 1

Settings for different species Does the pipeline have customizable settings for

different species? Lyve-SET has customized settings

using the– –presets flag (Table 2)

1 0 0 0 0

Audit trail: repeatability Displays the path to the SNP pipeline installation and

the exact command to repeat the analysis. Lyve-SET

provides the command and all explicit and implicit

options

1 0 0 1 1

Automated quality control Reviews the analysis results and describes low-quality

results. This quality control can be a review of the

length of the multiple sequence alignment, the number

of positions masked in each genome, or simply

reviewing something minor like the insert length of

each genome. Lyve-SET encompasses this quality

control step in set_diagnose.pl

1 0 0 1 1

aAlthough Lyve-SET does not have repeat detection, it does not allow the short-read mapper to place reads where they map equally well in two locations, i.e., repeat regions. SNVPhyl

can perform the same function but also straightforwardly identifies repeat regions in the reference genome.
bAlthough kSNP does not have SNP cluster detection directly, its fundamental algorithm prohibits any SNP from occurring within k-1 bp from each other, where k is the length of the

kmer. For example on a kmer value of 5, two SNPs must occur at least 4 bp from each other.

Features of Lyve-SET are shown with a comparison of the other SNP pipelines compared in this study. “1” indicates the feature is present; “0” indicates that the feature is absent. A

comparison of software-level features, e.g., command-line vs. web interface, has already been performed in Petkau et al. (2016).

The third step is SNP-calling from the read alignments
of each genome. Lyve-SET employs the mpileup2cns

method of VarScan v2.3.7 to find and detect SNPs using the
launch_varscan.pl script (Koboldt et al., 2012). In this
way, VarScan identifies the nucleotide of the query genome at
each position of the reference assembly. Any site that has <75%
consensus, fewer than 10 reads, or does not have at least two
forward and two reverse reads is masked. In the resulting MSA,
these masked sites are identified as “N.” Foodborne bacterial
pathogens are haploid and so any SNP should be supported by
much more than a 50% consensus. Enforcing at least 10 reads
at a site helps ensure that a variant is not a random error on a
single or few raw reads. Together, these three thresholds increase

support at the SNP-calling stage. However, these values are user-
customizable and not hard-coded. In our own investigations, we
have modified the settings for many species including S. enterica,
E. coli, and L. monocytogenes (Table 2). These presets were
empirically determined with ongoing outbreaks. Over time, they
helped the Lyve-SET results agree with known epidemiology,
and so we recorded them. These settings are documented in a
configuration file and can be invoked with the Lyve-SET – –
presets option.

The fourth step in Lyve-SET is the creation of a SNP matrix
with the mergeVcf.sh and set_processPooledVcf.pl
scripts. Files are merged with the command bcftools merge

which creates a pooled VCF file. Next, the pooled VCF file
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FIGURE 1 | The Lyve-SET workflow. Starting from the top left, reads are generated from a single query genome and then compared against a reference genome.

Starting from the top right, other genomes are being generated and compared against the reference genome simultaneously. The order is (1) sequence query

genome; (2) obtain a reference genome; (3) discover SNPs in a comparison against the reference genome; (4) combine SNP profiles into (5) a SNP matrix. In the

bottom portion, the SNP matrix is interrogated for low-quality sites including those that are invariant or semi-invariant (those with masked or reference alleles). The

matrix is also interrogated for clustered SNPs, i.e those that appear too close to each other. After the SNP matrix is queried and filtered, Lyve-SET obtains high-quality

SNPs which are then used for creating a phylogeny. The larger, unfiltered multiple sequence alignment is used to calculate pairwise distances which can be used in a

comparison, e.g., a heat map.

is queried with bcftools query to create a tab-delimited
matrix consisting entirely of SNPs. If requested, the matrix is also
filtered to remove sites with ambiguous nucleotides, invariant
sites, and/or clustered SNPs. The resulting matrix or filtered
matrix contains only SNPs that pass all filters and therefore
contains only hqSNPs. The user may also request annotations for
all SNPs if the reference genome is in the GenBank format using
SnpEff via the launch_snpEff.pl script (Cingolani et al.,
2012).

Lyve-SET’s fifth step is to convert the SNP matrix to a FASTA-
formatted MSA. Using the script pairwiseDistances.pl
on the MSA, Lyve-SET measures pairwise distances which
are helpful in approximating relatedness between taxa. Finally,
a phylogeny is inferred using RAxML v8 with the FASTA
file containing only hqSNPs, which applies a model for
ascertainment bias (Stamatakis, 2014).

All Lyve-SET output files and most intermediate files conform
to standardized file formats. Therefore, all results can be viewed
in other software if necessary.

Outbreak Clusters
Twelve outbreak clusters of four major foodborne pathogens
were queried from the PulseNet database (Table 3; Swaminathan

et al., 2006). PulseNet is a national laboratory network that
tracks the subtypes of bacteria causing foodborne illness cases
to detect outbreaks. The inclusion or exclusion of isolates for
each outbreak was determined using evidence gathered during
outbreak investigations including WGS, molecular subtyping,
demographic, and exposure data. Isolates from each outbreak
were identified; however, some outbreak isolates were excluded
when differing from the main outbreak clade by 200 or more
hqSNPs. To place these outbreak genomes in a global context,
we queried the NCBI k-mer trees from April 2016 (Accessions:
PDG000000001.428, PDG000000002.629, PDG000000003.184,
PDG000000004.427; Data Sheet 1). Each NCBI k-mer tree is
generated by the NCBI Pathogen Detection Pipeline and is a
dendrogram of all publically available genomes (https://www.
ncbi.nlm.nih.gov/pathogens). Briefly, NCBI creates high-quality
genome assemblies. The MinHash algorithm is applied to each
genome, and a Jaccard distance is calculated between each
pair of genomes. Then, NCBI creates a tree based on the
Jaccard distances. Closely related genomes are refined into
subclades using SNPs found among these related assemblies,
and a subtree is created with FastME (Lefort et al., 2015). After
locating the outbreak clade, we advanced one to three ancestral
nodes to acquire a population of potentially related descendent
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TABLE 2 | Presets for Lyve-SET.

Name Settings

lambda min_coverage=4

min_alt_frac=0.75

mask-phages=0

vibrio_cholerae min_coverage=10

min_alt_frac=0.75

listeria_monocytogenes min_coverage=10

min_alt_frac=0.75

salmonella_enterica min_coverage=20

min_alt_frac=0.95

allowedFlanking=5

mask-phages=1

escherichia_coli min_coverage=20

min_alt_frac=0.95

allowedFlanking=5

mask-phages=1

clostridium_botulinum min_coverage=10

min_alt_frac=0.75

allowedFlanking=5

mask-phages=1

mask-cliffs=1

Some settings that have been empirically determined are in a configuration file in

the Lyve-SET package. These settings can be revised by individual users in the file

presets.conf. For many species such as Campylobacter jejuni, we have not yet

determined the most optimal preset options. However in the future these settings could

be added upon or revised following any observations we may make in the due course

of outbreak investigations. In each Lyve-SET run, these settings and their values are

displayed in the log file, whether or not they were explicitly defined and whether or not

the preset configurations were explicitly called.

genomes (Data Sheet 2). True positive (TP) isolates are those
identified to be associated with the outbreak by PulseNet; true
negative (TN) isolates are not associated with the outbreak. For
each bioinformatics pipeline to calculate sensitivity (Sn) and
specificity (Sp), we also needed to find misidentified genomes,
namely the false positives (FP), and false negatives (FN). Sn is
calculated as TP/(TP+FN); Sp is calculated as TN/(TN+FP).

Pipeline Parameters
In the following, “out” is the project output directory. The
versions of each of these workflows was the most up to
date from all stable versions at the time of this work, and
default parameters were used unless otherwise specified. All
wrapper scripts used for these SNP pipelines can be found at
https://github.com/lskatz/Lyve-SET-paper.

Lyve-SET v1.1.4f
The – –presets flag was set according to each taxon (Table 2).
In this example, the taxon is listeria_monocytogenes.

launch_set.pl – –numcpus 12 --read_cleaner

CGP --presets listeria_monocytogenes out

KSNP3 v3.0.0
Reference_in.txt contains the reference genome assembly
used in the other reference-based methods. Because kSNP
is the only SNP pipeline in this study that does not use
nucleotide quality scores, the reads were cleaned before running

TABLE 3 | List of outbreaks.

Outbreak code Species In outbreaka References

1308MDGX6-1 L. monocytogenes 39, 7, 0 Chen et al.,

submitted

1408MLGX6-3WGS L. monocytogenes 19, 64, 1 Jackson et al.,

2015; Timme

et al., in review

1411MLGX6-1WGS L. monocytogenes 28, 16, 0 CDC, 2015

1504MLEXH-1 E. coli 17, 2, 0 Tataryn et al., 2014

1405WAEXK-1 E. coli 6, 4, 4 CDC, 2014;

Timme et al.,

in review

1407MNEXD-1 E. coli 6, 10, 1 Health MDo, 2014

1203NYJAP-1 S. enterica 55, 8, 0 Hoffmann et al.,

2016; Timme

et al., in review

1409MLJN6-1 S. enterica 9, 29, 0 N/A

1410MLJBP-1 S. enterica 5, 10, 0 N/A

0810PADBR-1 C. jejuni 14, 111, 0 Marler-Clark,

2008; Timme

et al., in review

1509VTDBR-1 C. jejuni 8, 8, 0 N/A

1602VTDBR-1 C. jejuni 6, 10, 0 N/A

aThe number of isolates associated with the outbreak, the number of isolates not

associated with the outbreak, and the number of isolates with unknown status. Those

with unknown status were not used in calculations for tree sensitivity and specificity.

Each outbreak is shownwith counts of outbreak-associated and non-outbreak-associated

isolates.

it. CG-Pipeline was used to clean each read set as shown
below, where “uncleaned.fastq.gz” is the original interleaved
read set, “sampleDir” is the reads directory used by kSNP,
and “cleaned.fastq” is the cleaned interleaved reads. The other
specified parameters encode that up to 50 bp were trimmed, the
other parameters were auto-picked, and broken pairs were not
retained.

run_assembly_trimClean.pl -i uncleaned.

fastq.gz -o sampleDir/cleaned.fastq --bases

_to_trim 50 --auto --nosingletons

kSNP3 -k 31 -annotate reference_in.txt

-all_annotations -in in.txt -core -ML -min

_frac 0.75 -CPU $NSLOTS -NJ -vcf -outdir

out

RealPhy v112
REALPHY_v112 out/samples out/out-readLength

250 -ref reference

Snp-Pipeline v0.5.2
run_snp_pipeline.sh -c out/snppipeline.conf

-s $scratch_out/samples -m copy -o out

reference.fasta

SNVPhyl v1.0
TheCLI version of SNVPhyl was run inside of a docker container.
Additionally, SNPs were filtered based on density, with the
default threshold set to 2 SNPs within a 20 bp window.
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snvphyl.py --deploy-docker --fastq-dir

fastqs/ --reference-file reference.fasta

--min-coverage 15 --min-mean-mapping

30 --alternative-allele-ratio 0.75

--run-name name --filter-density-window

20 --filter-density-threshold

2 --repeat-minimum-length 150

--repeat-minimum-pid 90 --output-dir out

BioNumerics v7.5
wgMLST analysis was performed using tools in the graphical
user interface of BioNumerics 7.5 (Applied Maths, Sint-
Martens-Latem, Belgium). Briefly, alleles were identified by
both an assembly-free k-mer based approach using raw reads
and assembly-based BLAST approach based on SPAdes v3.5.0
assembled genomes using the wgMLST L. monocytogenes
database built in BioNumerics 7.5 (Bankevich et al., 2012). This
database contains 4804 loci representing 1748 loci from the
Institute Pasteur core scheme (Moura et al., 2016) and 3056
loci representing the pan-genome of L. monocytogenes identified
from publicly available reference sequences. Once all alleles were
assigned to each genome, an unweighted-pair-group-method-
with-arithmetic-mean (UPGMA) tree was constructed based on
all loci among all the genomes.

Statistical Tests
Three categories of pipeline comparisons were performed: the Sn
and Sp of outbreak isolates included in the target outbreak clade,
tests of tree topology, and tests of variant positions and distances.

Comparing Trees
If an isolate fell into the same well-supported clade as outbreak
isolates (node confidence value ≥70%), it was counted as a
positive. Otherwise, it was counted as a negative. Positives
that retrospectively agree with the outbreak investigation were
counted as TP; otherwise, FN. The target well-supported clade
is defined as a having a confidence value >70% and being as
complementary as possible for Sn and Sp for each tree. Sn was
calculated as TP/(TP+FN). Sp was calculated as TN/(TN+FP).
For the following statistical scripts, Perl v5.16.1 and R v3.3.0 were
used.

To compare trees, we implemented the Kendall-Colijn and
Robinson-Foulds tests (Robinson and Foulds, 1981; Kendall and
Colijn, 2015). The Kendall-Colijn test was implemented in the
R package Treescape v1.9.17. The background distribution of
trees is a set of 105 random trees using the APE package in R
(Paradis et al., 2004). Each random tree was created with the R
function rtree, with the taxon names shuffled. The query tree
was compared against the background distribution and then
against the Lyve-SET tree. A Z-test was performed; a p < 0.05
indicates that the query tree is closely related to the Lyve-SET
tree. The Robinson-Foulds metric, also known as the symmetric
difference, was implemented in the Perl package Bio::Phylo and
was compared against 105 random trees generated in BioPerl
(Stajich et al., 2002; Vos et al., 2011). The query tree, i.e.,
an observed tree from wgMLST or from a SNP pipeline, was
compared against the random distribution and against the Lyve-
SET tree. A Z-test was performed to compare the distances

against the random distribution and the distance vs. Lyve-SET.
A significant p-value (α < 0.05) indicates that the query tree is
more closely related to the Lyve-SET tree topology than would
be expected by chance. Given that low-confidence nodes would
not be considered during an outbreak investigation, we removed
low-confidence nodes (bootstrap support <70%), potentially
creating multifurcating trees, before performing the Kendall-
Colijn test. From this transformation, 47 out of 63 trees became
multifurcating for this comparison. Only one Lyve-SET tree, the
three wgMLST trees, and 12 RealPhy trees remained binary. The
Robinson-Foulds test does not tolerate multifurcation; therefore
low-confidence nodes were not removed for those tests. Unless
otherwise indicated, all trees were midpoint-rooted. All statistical
scripts used in this study are available at https://github.com/
lskatz/Lyve-SET-paper.

Comparing Distances and SNP locations
To compare genetic distances, we plotted each pairwise distance
between genomes into a scatter plot, with the x-axis representing
Lyve-SET SNPs and the y-axis representing the distance
calculated from the other pipeline. This produced one scatter
plot per outbreak dataset. Additionally, we used linear regression
analysis on each dataset to create a trend line with a slope
indicative of calculated distance per Lyve-SET SNP and an R2

value indicative of goodness-of-fit. We combined all datasets into
graphs of each of the four species in this study. Because Lyve-SET
is mainly used for outbreak datasets, we also produced scatter
plots which only included outbreak-associated genomes such that
we could limit the influence of non-outbreak-associated isolates.
Jackson et al. (2016) reported an empirical 50-hqSNP distance
between outbreak isolates. We observed similar maximum
thresholds for all 12 outbreaks in this study for each species. Some
distances in the outbreak-only scatter plots were outliers with
a clear separation between <50 and >100 on the distance axis
(Data Sheet 3); therefore in the context of analyses comparing
only within outbreak-associated isolates, distances > 100 from
non-Lyve-SET pipelines were removed.

We also assessed the correlation between the pairwise distance
matrices directly using the Mantel test implemented in the R
package Vegan v2.4.0 using the Spearman correlation and 1000
permutations (Mantel, 1967; Oksanen et al., 2007). Each query
was compared against Lyve-SET.

To compare SNP positions, the set of SNPs from Lyve-SET
was used as reference even though no one pipeline can predict
with 100% confidence the correct locations of all SNPs. If a
query SNP agreed with the position of the Lyve-SET SNP, it
was considered as a TP; if the pipeline excluded a position as a
SNP that Lyve-SET excluded, then it was a TN. Sn and Sp were
calculated as in the test for Sn/Sp of outbreak isolates.

RESULTS

Evaluation of SNP Pipelines Using
Outbreak Data Sets
In general, all SNP pipelines in the comparison ascribe
outbreak isolates to the outbreak clade with 100% Sn
(Table 4, Data Sheet 4). The one exception is that Snp-
Pipeline misclassified a clade of three isolates in the Salmonella
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TABLE 4 | Summary of 12 pipeline comparisons.

Lyve-SET kSNP RealPhy Snp-Pipeline SNVPhyl wgMLST

Tree sensitivity (Sn)a 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Tree specificity (Sp)a 100.0% 90.2% 100.0% 100.0% 100.0% 100.0%

Average of Sn and Sp 100.0% 95.1% 100.0% 100.0% 100.0% 100.0%

Kendall-Colijn (λ = 0)b – 1.26E-02 7.51E-03 9.28E-03 9.15E-02 1.00E-04

Robinson-Fouldsb – 3.16E-69 6.79E-40 5.39E-74 9.61E-49 1.55E-147

Mantel – 0.60 0.77 0.77 0.79 0.74

SNP ratioc,d – 0.53, 0.78 0.97, 0.84 1.61, 1.75 0.67, 0.84 0.69, 0.72

Goodness-of-fit (R2)d – 0.46, 0.42 0.7, 0.75 0.77, 0.3 0.83, 0.68 0.75, 0.72

Genome analyzede 25.9% 0.1% 84.8% 0.3% 82.1% 88.2%

aAverage percentage from 11 outbreaks. The S. enterica outbreak 1203NYJAP-1 was removed as an outlier because all pipelines except wgMLST produced errors with grouping

outbreak vs. non-outbreak isolates. Therefore this dataset was removed from the Sn and Sp calculations as an outlier. bGeometric mean.
cNumber of SNPs per Lyve-SET SNP, averaged across 12 outbreaks. For wgMLST, this is the number of alleles per Lyve-SET SNP.
dThe average for 12 outbreaks. First value is for all data points; second value is for distances between only outbreak-associated genomes.
eThe average for 12 outbreaks. Percentage of the reference genome included for analysis. For wgMLST, the average percentage was calculated by obtaining each GenBank-formatted

file with annotated wgMLST loci and calculating the breadth of coverage for all loci.

More information can be found in Data Sheets 3, 4.

1203NYJAP-1 dataset (Table 3). Additionally in most instances,
the pipelines have 100% Sp as well. Notably for C. jejuni, all
pipelines yielded 100% Sn and Sp; for L. monocytogenes and E.
coli, all pipelines but one yielded 100%. The S. enterica outbreak
data caused some difficulty with less-than-perfect Sn and Sp
scores for all six pipelines. For four outbreaks associated with
L. monocytogenes, E. coli, and S. enterica, kSNP yielded <100%
Sp meaning that some isolates not associated with the outbreak
were found in the outbreak clade. Additionally the trees of each
pipeline were compared against Lyve-SET (Data Sheets 1, 2).
The Robinson Foulds test reported p< 0.05 with the exception of
the kSNP trees for outbreaks 1405WAEXK-1 (E. coli, p < 0.625)
and 1410MLJBP-1 (S. enterica, p < 0.674). However, according
to the Kendall-Colijn test for topology (when λ = 0), at least one
tree per pipeline yields a p-value > 0.05.

The regression analyses show that other SNP pipelines
correlate strongly with Lyve-SET (Figure 2). The correlation
coefficients from RealPhy and Snp-Pipeline are consistently >

0.8 for outbreaks caused by L. monocytogenes, S. enterica, and
C. jejuni; SNVPhyl correlates with >0.8 for S. enterica, E.
coli and C. jejuni. Only SNVPhyl has a high correlation with
Lyve-SET distances for E. coli outbreaks (R2 = 0.92). Overall
except for C. jejuni outbreaks (R2 = 0.89), kSNP has low
correlation with Lyve-SET (R2 = 0.69, 0.23, 0.43). For many
of the organism-specific outbreaks tested, viewing a correlation
between outbreak-only isolates was difficult because, the range of
Lyve-SET SNPs is very low (Figure S1). For the L. monocytogenes
and E. coli regression analyses whose Lyve-SET SNPs range 0–43
and 0–16, respectively, only RealPhy and SNVPhyl consistently
have a correlation coefficient >0.8. In the S. enterica and
C. jejuni analyses whose Lyve-SET distances are small, most
distances from other pipelines are also small. However, there
are a significant number of data points from kSNP and Snp-
Pipeline in the S. enterica analysis whose values for Lyve-SET
are zero or one, and whose distance values are >10. Additionally
there are many data points in the C. jejuni scatter plot whose

Lyve-SET distances are <3 and whose Snp-Pipeline distances
are >10.

Comparison between hqSNP and wgMLST
As a result of the increased utility of wgMLST for outbreak
surveillance (Jackson et al., 2016), an important question is how
well allelic distances compare with hqSNP distances. The only
well-validated wgMLST scheme at the time of this analysis was
for L monocytogenes; therefore, hqSNP and wgMLST comparison
was performed using the L. monocytogenes data sets (Table 5;
Moura et al., 2016). For pairwise distances found in all isolates
(Figure 3, panel 1), the correlation coefficient is 0.58. However,
when viewing outbreak-only distances (Figure 3, panel 3), the
correlation coefficient jumps to 0.96. Visually, there are three
distinct clusters of pairwise distances for L. monocytogenes;
therefore, we performed a third regression analysis with Lyve-
SET hqSNPs < 255 (Figure 3, panel 2). The correlation is highest
in this analysis with R2 = 0.98 and a slope of 0.79 allelic
differences per Lyve-SET hqSNP.

The discrepancy between large and small distances and their
correlations is most likely due to a large variance in the number
of hqSNPs per locus. That is to say, if there are many hqSNPs,
it is more likely that a single locus contains many hqSNPs and
also likely that many loci contain zero or one hqSNP. To test this
hypothesis, we counted the number of hqSNPs that intersected
each locus in the reference genome of each of the three outbreak
datasets. Fourteen percent of all intragenic hqSNPs shared a locus
with at least one other hqSNP (Data Sheet 5).

DISCUSSION

We built a whole-genome SNP phylogenomics pipeline called
Lyve-SET to aid in epidemiological investigations. The design of
Lyve-SET was optimized for these investigations. Several features
were incorporated to help retain high-quality SNPs, discard low-
support SNPs, and generate highly reliable phylogenies (Table 1).
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FIGURE 2 | Scatterplot of all pairwise distances. Regression analysis of all pipelines compared with Lyve-SET. Outbreaks are shown in clockwise order from the

top-left as those caused by L. monocytogenes, S. enterica, C. jejuni, and E. coli. Pairwise distances between genomes are plotted for Lyve-SET (x-axis) and other

pipelines (y-axis). For each species, three outbreaks have been combined into one scatterplot. A trend line was calculated using regression analysis, and a y = mx+b

formula is displayed accordingly with the goodness-of-fit (R2) value. The y = mx+b formula describes the slope of the trendline where m is the number of hqSNPs per

Lyve-SET hqSNP and b is the number of hqSNPs when there are no Lyve-SET hqSNPs. All four pipelines are compared against Lyve-SET, and each panel is a

different one of the four species.

For example, Lyve-SET has the ability to mask “cliffs,” regions
where sequencing coverage significantly increases or decreases
in a short genomic range. A cliff can be indicative of a repeat
region that causes aggregation of short sequencing reads during
read mapping. Similarly, other user-defined regions in a BED-
formatted file can be supplied to mask unwanted sequences
from SNP calling. One example is that, although phages can be
useful for typing in their own right (Chen and Knabel, 2008),
phage sequences should be removed from a SNP analysis because
they often display different rates of mutation than bacterial
core genomes. If phages appear to contribute to phylogenetic
noise in an investigation, Lyve-SET can provide phage sequence
identification with a script set_findPhages.pl which is
based on a BLAST search against the PHAST database (Zhou
et al., 2011). Another way for Lyve-SET to detect troublesome
regions is to discard clustered SNPs. For most organisms, this
option is preset to 5 bp, such that only one SNP per 5 bp passes the
filter. Much like MLST, discarding clustered SNPs reduces noise
introduced by horizontal gene transfer. This flanking distance
hypothetically should approximate the average recombination
cassette length (Vos and Didelot, 2009), but empirically we have
found that having a low flanking distance, e.g., 5 bp, is sufficient.
There are preset options to customize parameters of each Lyve-
SET run for specific organisms (Table 2). For example, a 20x
coverage cutoff is used for S. enterica while a 10x coverage cutoff

is used for L. monocytogenes. In addition to aforementioned
features, Lyve-SET, like other SNP pipelines, employs a set of
commonly used SNP quality filters such as a percent consensus,
a minimum specific coverage threshold, and a requirement of
both forward and reverse reads. That is to say, each SNP must
be supported by both forward and reverse reads, must have at
least a certain number of reads covering each SNP, and must have
a certain percentage of reads that agree with the base call. These
filters are not only applied to each SNP but also to each position
in the genome. Therefore, a SNP should be called for any genome
position with a homologous locus in the reference genome,
provided that it is not masked and passes all filters. As opposed to
most other SNP pipelines, Lyve-SET calls all invariant positions
in addition to SNPs in order to perform a rigorous comparison.
Therefore in positions where a percentage of genomes have a
variant site, all genomes with variant and invariant nucleotide
calls can be appropriately compared using various models of
evolution. All of these features and filters make Lyve-SET a high-
quality SNP pipeline that results in a high-confidence phylogeny,
which is often required for outbreak investigations.

Lyve-SET provides a detailed provenance for its outputs
including the original Lyve-SET invocation and well-defined
intermediate files (Table 1). All intermediate files are in standard
file formats (e.g., BAM, VCF) and can be easily inspected with
popular third-party tools (Li et al., 2009; Danecek et al., 2011;
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TABLE 5 | wgMLST compared against Lyve-SET for outbreaks of

L. monocytogenes.

1308MDGX6-1 1408MLGX6-3WGS 1411MLGX6-

1WGS

PHYLOGENETIC COMPARISONS

pKendall–Colijn (λ = 0) 1E-999 1E-999 1E-4

pRobinson–Foulds 5.53E-108 1.76E-263 3.79E-71

GENOMIC DISTANCE COMPARISONS

Mantel R2 0.74 0.73 0.75

Correlation coefficient 0.64 0.73 0.70

Trend line R2 0.64 0.77 0.84

FIGURE 3 | Scatterplot of wgMLST against Lyve-SET. As in Figure 2, a

scatterplot was generated using all allelic distances from wgMLST and SNP

distances from Lyve-SET, but only for the three L. monocytogenes outbreak

clusters. The top-left plot shows all pairwise distances; the top-right limits the

data points to those with <255 SNPs; the bottom-left limits the data points to

those <100. For this analysis, in cluster 1408MLGX6-3WGS, PNUSAL001994

was removed as an outlier because most of its data points are zero hqSNPs in

contrast to >30 alleles.

Rodelsperger et al., 2011; Milne et al., 2013; Tamura et al., 2013).
In addition to these intermediate files, the output directory has
multiple standardized and detailed files (e.g., FASTA, Newick,
VCF). These too can be inspected with popular third-party tools

(Danecek et al., 2011; Rodelsperger et al., 2011; Milne et al., 2013;
Tamura et al., 2013).

Four other SNP pipelines including kSNP3, RealPhy, Snp-
Pipeline, and SNVPhyl were chosen to analyze the same
data sets along with Lyve-SET. Each of these pipelines has a
history of application to outbreak investigation. In general, all
the SNP pipelines evaluated in this study performed well by
identifying outbreak isolates in each outbreak clade, yielding
>99.5% sensitivity for all pipelines. Except for a few exceptions,
all pipelines appropriately excluded non-outbreak-associated
isolates. Most notably, the S. enterica outbreak 1203NYJAP-1
yielded conflicting results for all pipelines in varying degrees.
RealPhy and kSNP identified three and five isolates, respectively,
that fit into the outbreak clade for this outbreak. Snp-Pipeline
excluded three isolates from the outbreak, reducing its Sn.
SNVPhyl produced a star phylogeny, making it difficult to
distinguish outbreak from non-outbreak. Lyve-SET included a
non-outbreak-associated isolate. The outbreak 1203NYJAP-1 was
the sole outbreak that reduced the specificity for Lyve-SET. In
all other outbreaks, Lyve-SET correctly classified outbreak vs.
non-outbreak isolates 100% of the time.

Due to the increasing utility of wgMLST and the likely
co-existence of wgMLST and SNP analyses in surveillance
and outbreak investigation of foodborne pathogens, we
investigated the concordance of the two methods using three
L. monocytogenes datasets. By gauging pairwise allelic distances
among isolates, we found that the two methods were most
consistent with each other when the number of Lyve-SET
hqSNPs between any two genomes was <255. The discrepancy
between the two methods grew as isolates under study became
more divergent. This divergence is most likely due to multiple
hits per gene, where one MLST locus could comprise multiple
hqSNPs. Therefore if the diversity of the outbreak surpasses
the sensitivity of the SNP pipeline and if a wgMLST scheme is
available, then a wgMLST approach is more appropriate for an
outbreak investigation.

The methodology and datasets reported in this study can help
evaluate different pipelines. Due to the non-standard or missing
intermediate files of some pipelines and even some output files,
it is difficult to compare their results. We recommend that SNP
pipelines provide standardized intermediate and output files such
as VCF. It is impractical to compare non-standard file formats;
fortunately, all pipelines evaluated in this study output a standard
Newick tree file and either a FASTA or VCF file which can be
used to determine genome distance.We have demonstrated some
methods for comparing trees including (1) examining whether
individual pipelines could identify outbreak-associated isolates
consistent with previous investigation, and (2) whether two
trees were significantly similar to each other using the Kendall-
Colijn and Robinson-Foulds metrics. We have identified several
methods for comparing genome distances. Most notably, the
regression analysis has helped identify whether genome distances
correlate well between two pipelines and if so, it supplies an
equation (y = mx+b) that describes how much distance in one
pipeline is in another pipeline.

SNP analysis for epidemiological investigations is becoming
more common and is a powerful technique (Bertels et al., 2014;
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Pettengill et al., 2014; Morganti et al., 2015; Bekal et al., 2016;
Jackson et al., 2016; Mercante et al., 2016; Shirey et al., 2016). The
methods for analysis for each SNP pipeline have many nuances
and are difficult to encompass into a standardized workflow. We
have created Lyve-SET to incorporate the many steps of SNP
calling into a complete pipeline. Therefore we present Lyve-SET
to the community.
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Figure S1 | Scatterplot of all pairwise distances, restricted to outbreak

isolates vs. outbreak isolates. The data from Figure 2 was filtered to only data

points that represent only outbreak isolates vs. outbreak isolates. All non-outbreak

isolates have been removed. Due to the low numbers of data points and narrow

ranges of SNPs, some trend lines are less reliable.

Data Sheet 1 | All NCBI trees. Datasets were originally obtained using PulseNet

outbreak codes. However, to identify likely phylogenetic relatives to each

outbreak, we used trees from NCBI consisting of all of a single species. There are

four trees used in this study. See Section Materials and Methods, Outbreak

clusters, for more details.

Data Sheet 2 | All genomes in this study. Genomes are grouped according to

the outbreak code. Outbreak or non-outbreak status is shown under “event,” and

a suggested reference genome is given. If a genome’s event status is unknown, it

is given a value of −1.

Data Sheet 3 | All visual results for tree and SNP comparisons.

Visualizations from Data Sheet 4 and other comparisons are displayed here.

Data Sheet 4 | All metrics results for tree and SNP comparisons. All metrics

that were determined from comparison tests are displayed in this file according to

outbreak and pipeline. The last tab shows how Table 4 was determined.

Data Sheet 5 | hqSNPs per wgMLST locus. MLST-annotated GenBank files

were obtained from BioNumerics from each of the three L. monocytogenes

outbreak datasets. Lyve-SET was re-run using these as reference genome

assemblies. The hqSNPs in each sample was compared against the coordinates

of the wgMLST loci. The number of hqSNPs per locus was counted per genome,

and these counts were aggregated across outbreaks.
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