
ORIGINAL RESEARCH
published: 28 June 2017

doi: 10.3389/fmicb.2017.01195

Frontiers in Microbiology | www.frontiersin.org 1 June 2017 | Volume 8 | Article 1195

Edited by:

Jan-Ulrich Kreft,

University of Birmingham,

United Kingdom

Reviewed by:

Peter Neubauer,

Technische Universität Berlin,

Germany

Frank Delvigne,

University of Liège, Belgium

*Correspondence:

Ralf Takors

takors@ibvt.uni-stuttgart.de

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 29 April 2017

Accepted: 12 June 2017

Published: 28 June 2017

Citation:

Nieß A, Löffler M, Simen JD and

Takors R (2017) Repetitive Short-Term

Stimuli Imposed in Poor Mixing Zones

Induce Long-Term Adaptation of

E. coli Cultures in Large-Scale

Bioreactors: Experimental Evidence

and Mathematical Model.

Front. Microbiol. 8:1195.

doi: 10.3389/fmicb.2017.01195

Repetitive Short-Term Stimuli
Imposed in Poor Mixing Zones
Induce Long-Term Adaptation of
E. coli Cultures in Large-Scale
Bioreactors: Experimental Evidence
and Mathematical Model
Alexander Nieß, Michael Löffler, Joana D. Simen and Ralf Takors*

Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany

Rapidly changing concentrations of substrates frequently occur during large-scale

microbial cultivations. These changing conditions, caused by large mixing times,

result in a heterogeneous population distribution. Here, we present a powerful and

efficient modeling approach to predict the influence of varying substrate levels on the

transcriptional and translational response of the cell. This approach consists of two

parts, a single-cell model to describe transcription and translation for an exemplary

operon (trp operon) and a second part to characterize cell distribution during the

experimental setup. Combination of both models enables prediction of transcriptional

patterns for the whole population. In summary, the resulting model is not only able

to anticipate the experimentally observed short-term and long-term transcriptional

response, it further allows envision of altered protein levels. Our model shows that locally

induced stress responses propagate throughout the bioreactor, resulting in temporal,

and spatial population heterogeneity. Stress induced transcriptional response leads to a

new population steady-state shortly after imposing fluctuating substrate conditions. In

contrast, the protein levels take more than 10 h to achieve steady-state conditions.

Keywords: scale-down, hybrid modeling, population heterogeneity, adaptation times, Escherichia coli

INTRODUCTION

Large-scale industrial bioprocesses make use of reactors ranging from 100 to 800 m3 reaction
volume. For aerobic processes, stirred tank reactors are still preferred, albeit alternative setups
such as airlift reactors may be attractive if reactor sizes exceed the volume of about 500 m3. All
reactors have in common that gradients of substrates, dissolved gases and pH occur, which are the
consequence of poor mixing conditions (Nienow et al., 1997). Cells are circulating in these reactors,
thereby frequently passing through zones of different substrate availability. Accordingly, cellular
interactions are repeatedly triggered (Oldiges and Takors, 2005; Lara et al., 2006; Neubauer and
Junne, 2010; Takors, 2012). Noteworthy, related regulatory responses are not limited to changes of
metabolism but also comprise transcriptional and translational programs (Löffler et al., 2016, 2017;
Simen et al., 2017).
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Often, microbial processes are controlled by limited substrate
feeding to avoid non-wanted overflowmetabolism and to prevent
too high metabolic activity that may exceed the technical
capacities of aeration and cooling. Industrial examples are the
implementation of glucose or ammonia limitations (Neubauer
et al., 1995). Recently, Chubukov et al. (2014) outlined that
proper nitrogen (or phosphate) limitation may even increase
biomass specific substrate uptake during production phases
when cell growth is strongly limited. Michalowski et al. (2017)
further succeeded to engineer the E. coli HGT host for likewise
conditions.

Löffler et al. (2016) and Simen et al. (2017) studied the
scenario of frequently occurring glucose or ammonia limitations
by using a conventional STR-PFR (stirred tank reactor—plug
flow reactor) setup as described by George et al. (1993). Unlike
previous investigations, these studies installed steady-state
growth conditions before large-scale gradients were repeatedly
imposed on the cells by connecting the PFR to the STR. As
such, a distinct reference steady-state was created that enabled
quantitative and highly accurate analysis of the metabolic and
transcriptional responses of the cells on the installed glucose or
ammonia gradients.

These data sets are the experimental basis for the modeling
approaches presented in this study. By exploiting the metabolic
and transcriptional time series it will be investigated whether and
how similar dynamics can be modeled to predict short- and long-
term regulatory responses of E. coli. Related data-driven models
can serve as the core for ensemble modeling (Henson, 2003) to
predict large scale cellular performance in silico and ab initio.

For the sake of simplicity, transcriptional dynamics of the
tryptophan operon were chosen as an illustrative example. It has
been shown by Simen et al. (2017) that the repetitive exposure
to nitrogen starvation induced the frequent transcription
of the trp operon. Considering the well-known attenuation
control (Yanofsky, 2004, 2007), the expression of downstream
genes trpEDCBA, consequently, indicates not only the ongoing
transcriptional response on environmental triggers but also the
start of protein translation. Accordingly, modeling trp expression
dynamics needs to fulfill several challenges: (i) Short-term
transcript dynamics observed in the PFR must be predicted, (ii)
long-term transcript responses of the whole population should
be mirrored, and (iii) the different time-scales of transcriptional
and translational dynamics have to be reflected, too. This study
will outline that every constraint is properly met by a simple
mechanistic model.

MATERIALS AND METHODS

Experimental Setup
Oscillating substrate availability was simulated in a stirred-tank-
reactor (STR) plug-flow-reactor (PFR) scale-down approach.
Figure 1 shows the schematic setup of the system. As Simen
et al. (2017), the STR system was operated as nitrogen limited
chemostat cultivation with a dilution rate of 0.2 h-1 (5 mL
min-1). The well-mixed bioreactor was simulated by using the
steady-state condition in STR without the PFR (SS0). After
characterization of SS0 the PFR was connected and a fraction

FIGURE 1 | Scheme of the scale-down approach. A large-scale bioreactor

and its substrate gradient is simulated by a chemostat STR (limitation zone)

coupled to a PFR (starvation zone). This approach allows the examination of

the influence of substrate gradients (i.e., glucose or ammonia) on the

population dynamic.

of cells cycled through the PFR loop. No additional feed was
added into the PFR. Therefore, the cells shift from nitrogen
limitation to starvation along the PFR. The experimental design
allows the observation of the transcriptional responses along the
PFR (short-term) and over the process time in the STR (long-
term). The system characteristics and cultivation conditions were
published in Löffler et al. (2016). Residence times τ of STR and
PFRwere estimated to be 6.2 min and 125 s, respectively. Samples
for transcriptome analysis were taken at sampling ports P1, P3,
and P5 in the PFR with corresponding residence times of 31,
70, and 110 s. Volumes in STR and PFR were 1.12 and 0.38 L,
respectively. Biosuspension was continuously pumped through
the PFR (180 mL min-1).

Compared to SS0 with a growth rate of 0.2 h-1 in the STR,
the STR-PFR setup splits growth rates individually in the two
compartments. Whereas, the total growth rate of the STR-PFR
system is still 0.2 h-1, no growth can be expected inside PFR
when the nutrient is completely consumed. Accordingly, PFR
can be subdivided into a first part considering still growing cells
and a subsequent part characterized by no growth. Because the
total system runs with the dilution rate of 0.2 h-1, STR growth
rates must be increased accordingly to compensate missing cell
growth in the PFR. Calculation of growth rates in the STR can
be performed based on the residence time distributed average
growth rate that is set equal to the dilution rate. For the sake
of simplicity and because nutrient starvation occurred very rapid
in PFR, no growth was assumed to be existent in the total PFR
compartment. Therefore, the average growth rate can be split into
two different growth rates for each compartment (Equation 1).

µSTR τSTR + µPFRτPFR

τSTR + τPFR
= D (1)

Samples for transcriptome analysis were taken at 25 and 120
min as well as at 28 h after installing the substrate gradient.
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Transcript measurements are published in Simen et al. (2017)
and are available under GEO Accession GSE90743.

Single-Cell Model
For the agent based transcription-translation model, DNA and
mRNA templates are discretized in nucleotides, defining a 1D
lattice. Movement of RNA polymerases (RNAPs) is treated
according to Equation (2). Here, x describes the relative position
of nucleotides inside the operon starting with the first mRNA
encoding nucleotide of the operon sequence. RNAP movement
is based on the elongation rate vRNAP

elo
and the distance 1x

between two subsequent polymerases. The following criteria were
considered for RNAP motion:

- The first elongation step is treated as the initiation step and can
only occur if t is in the interval of possible induction (tind).

- The minimum distance 1x between two subsequent RNAPs is
fulfilled.

dxi

dt
=







0
0

vRNAP
elo

if xi = 0 ∧ t /∈ tind
if xi−1 − xi < 1x ∧ i > 1

otherwise
(2)

For each passed nucleotide on the DNA sequence, the respective
nucleotide in the mRNA sequence is transcribed. The resulting
mRNA strand iwith length LmRNA

i can be directly derived from xi.

LmRNA
i (t) = xi (t) (3)

For simplification, we neglected the modeling of the attenuation
process considering terminator/antiterminator interactions and
assumed ongoing translation only during nitrogen starvation
instead. Position yi,j of a ribosome j on mRNA strand i is a

function of LmRNA
i and the position of the previous ribosome yj−1.

The number of ribosomes that translate a gene g (NTL,max
g ) can

vary and depends on the gene itself. Ribosomal motion on a gene
g starts at Cstart

g (first coding nucleotide) and stops at Cend
g (third

nucleotide of the terminating codon). The necessary criteria for
translation are stated as follows:

- At least 1y nucleotides downstream are already synthesized.
- The previous ribosome is more than 1y nucleotides further
downstream.

- The maximum number of translations for the given gene is not
exceeded.

dyi,j

dt
=



















0
0
0

vRibosome
elo

if Li−yi,j ≤ 1y

if yi,j−1 − y
i,j

< 1y ∧ j > 1

NTL
i,g (t) ≥ NTL,max

g

otherwise

(4)

The number of ribosomes acting on a single mRNA i is calculated
following the Iverson brackets (Equation 5). These brackets
return 1 if the term inside is true and 0 if the term is false.

NTL
i,g (t) =

∑

j

[

yi,j (t) ≥ Cstart
g

]

(5)

The amount of synthesized proteins per cell from the single-cell
model (NProtein

g, SC ) encoded by gene g can be calculated as the sum

of all ribosomes acting on all mRNA strands that have passed the
final nucleotide Cend

g .

NProtein
g, SC (t) =

∑

i

∑

j

[

yi,j > Cend
g

]

(6)

Each mRNA strand is expected to be degraded by RNases.
Initiation of mRNA breakdown begins at the start codon of
transcription. Movement along mRNA is encoded by position
zi on strand i and depends on the degradation elongation
rate vRNAse

elo
. The following constraints define the motion of

RNAses:

- The number of active ribosomes per gene g NTL,max
g is

estimated as the turnover ratio of mRNAs and proteins (see
below)

- 1z encodes the closest nucleotide distance to the next ribosome
downstream of zi

dzi

dt
=











0
0

vRNase
elo

if NTL
i,g (t) < NTL,max

g

if y
i, NTL,max

g
− zi ≤ 1z

otherwise

(7)

Accordingly, the current amount of mRNA per gene is calculated
as the difference of already synthesized mRNAs and the amount
of degraded mRNAs. The first is modeled from the number of
complete mRNA strands synthesized. The second mirrors the
amount of RNases that have passed the first codon.

NmRNA
g, SC (t) =

∑

i

[

LmRNA
i (t) > Cend

g

]

−
∑

i

[

zi ≥ Cstart
g

]

(8)

NTL,max
g is calculated as the turnover ratio of mRNAs per protein

for a given gene g. Protein turnover rProteinturnover was calculated based
on protein levels at a growth rate of 0.2 h-1 (kProtein

deg
= µ)

(Valgepea et al., 2013). Active protein degradation was neglected
and only growth based dilution was considered. mRNA turnover
rmRNA
turnover was calculated based on the levels measured by Valgepea
et al. (2013) with average half-lives of 2 min (kmRNA

deg
= 20.79 h−1)

(Chen et al., 2015). However, no mRNA measurements of trpA
were given in this data set. We thus assumed the translations
per mRNA for trpA to be the same as for trpB, due to the fact
that the resulting protein complex is a tetramer consisting of two
trpA and two trpB (Hyde et al., 1988). TrpL, the leader peptide,
was neglected in this calculation. Table 1 shows the resulting
translations per mRNA.

NTL. max
g =

rProteinturnover

rmRNA
turnover

=
cProteing kProtein

deg

cmRNA
g kmRNA

deg

(9)

We used the trp operon as an example for several reasons:
(i) The trp operon leads to a polycistronic mRNA (Yanofsky
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TABLE 1 | Calculated translations per mRNA for the trp operon.

Gene trpE trpD trpC trpB trpA

Translations per mRNA 4 4 5 10 10

The value for trpA was extrapolated from trpB.

et al., 1981), (ii) the attenuation sequence in the trpL leader
peptide allows the coupled investigation of transcription and
translation (see Figure 2), and (iii) the published data by Simen
et al. shows that the trp operon is upregulated during STR-
PFR cultivations. Accordingly, translation must have happened
if transcripts of genes downstream of trpL are measured, as it
is the case in the data sets used for this study. Simplification
was made by treating the structural genes trpGD and trpCF and
their corresponding proteins as single genes (trpG and trpC,
respectively) and proteins.

All three actively moving species (RNAP, ribosomes and
RNase) are treated as equally fast and their elongation rate was
taken from the RNAP elongation rate reported by Chen et al.
(2015) and set to 21 nucleotides s-1 (see Table 2). Minimum
distances 1 x, 1 y, and 1 z were set to 100 nucleotides each
[which is larger than (Bremer and Dennis, 1987) estimated for a
growth rate of 0.5 h-1].

Each PFR passage induced transcription, however, with a
delay of 30 s based on experimental observations. Once induction
has started and RNAP has passed the attenuation sequence,
transcription was assumed to continue until the terminator
sequence after trpA was reached (see Figure 2).

Cell Distribution Model
The ensemble cell model needs to be embedded in a process
model for describing the flow wiring and residence times of
the cells in the compartments. The PFR is considered as a
plug flow reactor showing almost equally distributed residence
times for all cells. The STR is assumed to be ideally mixed,
thus, having a residence time distribution constrained by the
reaction volume and the throughput. Dilution and growth rate
additionally influence the population.

For population balancing, the following events were
considered to track the fate of each individual cell:

Cells may

1. leave the STR for entering the PFR and cycle back into STR
after τPFR, the residence time in the PFR

2. be drained off by the efflux (harvest)
3. divide, setting all transcriptional and translational programs

on default (no initiation of transcription or translation in the
corresponding daughter cell)

The following probability functions αi were defined

α1 = NSTR
V̇PFR

VSTR
(10)

α2 = NSTR
V̇Feed

VSTR
(11)

α3 = N0
STR D (12)

For modeling event (1), the rate α1is used, indicating that a cell
leaves the STR and enters the PFR again. Washout of cells (event
2) was treated equally with the dilution rate as flux value (α2).
The probability for cell division (α3) is based on the set dilution
rate D and the cell number N0

STR during SS0. Return of cells from
the PFR compartment was fixed to occur after τPFR passed. Cells
that are washed out by event (2) are deleted from the system and
newly born cells from event (3) are treated as default daughter
cells without any transcriptional deflection.

The reaction system was numerically solved by applying
Gillespie’s stochastic simulation algorithm (Gillespie, 1977). Time
increment τ was solved based on the sum of the three reaction
events considering the probabilities as indicated in Equation (13).
The chosen reaction i is calculated, based on Equation (14). r1
and r2 are uniformly distributed random variables in the interval

(0, 1).

τ =
1

∑

αi
ln

(

1

r1

)

(13)

i−1
∑

j =1

αj ≤ r2

3
∑

j =1

αj ≤

i
∑

j =1

αj (14)

Simulations were performed using 10,000 cells, assuming
uniform distribution in the STR (N0

STR) before it is connected to
the PFR. Simulations tracked cell numbers in the STR and the
PFR as well as each transition of a cell from STR to PFR.

Coupling of Single-Cell and Cell
Distribution Model
To minimize computational efforts, the impact of single-cell
metabolic activities on the local environment was ignored.
In essence, cells were considered to travel through a “frozen”
bioreactor background that triggers transcriptional and
translational responses as reflected in the single-cell model. For
balancing the population distribution properly, the history of
every cell was tracked. As the trigger “PFR” is of outstanding
importance, the entrance of each cell into the PFR was logged.

The resulting in a set of time flags (t
flag
i ) for each cell that was

stored for the total simulation period, which allows detailed
tracking of the cells motion in the STR-PFR setup. Additionally,
the events (2) and (3) were tracked for each cell allowing the
calculation of the population distribution in the STR and the
PFR at each time step of simulation.

The simulation approach allowed the independent solution
of the single-cell and cell distribution model. Simulations of
the single-cell model resulted in distinct mRNA (NmRNA

g, SC (t))

and protein (NProtein
g, SC (t)) patterns for every cell entering and

leaving the PFR and this constant sequence can be stored as
look-up table. In the distribution model, each flag indicates start
of induction, whose sequence is stored in the look-up table.
Duration of an induction phase is defined from entering the PFR
at tflag until the last mRNA is degraded at tflag+∆ t. Superposition
of all transcriptional and translational patterns over the cells
lifetime results in a continuous description of transcriptional and
translational patterns in the STR-PFR system.
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FIGURE 2 | Model of coupled transcription and translation. RNA polymerase ( ) binds to the trp promotor and starts transcribing with constant elongation rate. After

transcription of each genes ribosome binding site, translation takes place and ribosomes ( ) elongate with constant elongation rate that is set equal to RNAP rate. If

trp-tRNA is missing, translation continues (A), if trp-tRNA is available, a terminator sequence forms and translation stops (B). Each gene has its own number of

translations before degradation takes place. Degradation by RNases ( ) starts at the 5′ end and continues from gene to gene if the mentioned number of translations

already took place.

Cellular growth by event (3) is treated as generation of a new
default cell without any additional mRNA and protein content
without altering the mother cell.

NmRNA
g (t) =

∑

i

{

NmRNA
g,SC

(

t − t
flag
i

)

0

if t − t
flag
i ≤ 1t

otherwise
(15)

NProtein
g (t) =

∑

i

{

NProtein
g,SC

(

t − t
flag
i

)

NProtein
g,SC (1t)

t − t
flag
i ≤ 1t

otherwise
(16)

RESULTS

Key assumptions
Löffler et al. (2016) and Simen et al. (2017) showed that
the repeated oscillation of the substrate availability of E. coli,
simulated with a STR-PFR system, induce repeated on/off
switching of several hundred genes. Among them, the frequent
activation of the tryptophan operon could be observed (Simen
et al., 2017). The mathematical model comprising the (Equations
2–16) was used to describe not only short- and long-term
transcriptional dynamics but also to estimate the impact
on protein formation by linking the transcription with the
translation machinery. The following key assumptions were
made: (i) Once transcription of mRNA has started, it continued
until the stop signal was achieved at the end of the operon,
namely on the relative position 6726 nt after trpEDCBA (Stoltzfus
et al., 1988), (ii) mRNA was assumed to be immediately
translated into proteins. The number of active ribosomes per

TABLE 2 | Model parameters used for simulation of both single-cell and cell

distribution model.

Parameter Value Unit

νRNAP
elo

21 Nucleotides per second

νRibosome
elo

21 Nucleotides per second

νRNase
elo

21 Nucleotides per second

∆x 100 Nucleotides

∆y 100 Nucleotides

∆z 100 Nucleotides

tind [30 125] Seconds

V̇PFR 180 mL min-1

V̇Feed 5 mL min-1

VSTR 1,120 mL

D 0.2 h-1

N0
STR

10,000 cells

gene (encodingmRNA)was calculated based on the experimental
findings of Valgepea et al. (2013).

Modeling Short-Term Transcriptional
Dynamics
The simulation of transcriptional dynamics during a single
PFR passage was achieved using the single-cell model with the
parameters listed in Table 1. Figure 3A depicts mRNA courses
of two subsequent PFR-STR passages. At t = 0, the PFR
entering cell is induced and initiates transcription after the
experimentally observed delay time of 30 s. Then, transcription
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FIGURE 3 | Time courses of two subsequent cell cycles comprising PFR and STR passage. (A) mRNA and (B) protein profiles are shown, both simulated using the

single-cell model. The genes and their gene products are encoded as follows: Black solid line = trpL, gray solid line = trpE, black short dashed line = trpD, gray short

dashed line = trpC, black long dashed line = trpB, gray long dashed line = trpA. Gray shaded areas indicate that the cell currently passes the PFR.

of the trp operon starts with trpL. As shown, trpL is fully
and trpE partially transcribed before the cell leaves the PFR.
Accordingly, the remaining genes downstream of the operon
were transcribed after the cell reenters the STR. Shortly after
initiation, degradation of trpL mRNA has started, as indicated
by the constant mRNA levels. After leaving the PFR, the cell
stops further RNAP initiation and RNases immediately degrade
the remaining transcripts. Noteworthy, all gene transcripts were
fully degraded (except for a small residual of trpA) before the cells
again reentered the PFR.

Modeling Protein Formation
Based on the single-cell model, translation of mRNA was
simulated as depicted in Figure 3B. It was assumed that protein
formation started as soon as the ribosomal binding site was
transcribed. Because trpL encodes the leader peptide, translation
modeling was simply focused on trpEDCBA. First, TrpE proteins
were produced while the cells passed the PFR compartment.
Downstream proteins were translated after the cells reentered
the STR. Consequently, the majority of translation happened in
STR. Protein formation is delayed and multiplexed compared
to mRNA production. Accordingly, dynamics of protein courses
are less steep than those of transcript levels. The latter are
characterized by fast transcription and fast mRNA degradation
that finally lead to sharp peaks of transcript contents. Protein
degradation is slower by orders ofmagnitude. Consequently, only
moderate pool dynamics and even protein accumulation was
observed after PFR-STR transits.

Each PFR-STR cycle lasted for about 500 s. During this period,
cells managed to produce 20 mRNA copies of the complete
trp operon. Subsequent translation enabled the formation of
80 TrpED, 100 TrpC, and 200 TrpBA copies (considering

FIGURE 4 | Protein levels for the new steady-state after >15 h as a function of

the degradation constant (solid lines). Higher values show the influence of

declining half-lives and thus higher degradation constants. Measured protein

levels (bar graph) were taken from Valgepea et al. (2013).

the ribosomal stoichiometry of Table 1) with corresponding
translation rates of 9.6, 12 and 24 proteins per cell per minute.

As outlined above, protein degradation is known to be
much slower than mRNA decay which enabled the simplified
simulation of protein dynamics shown in Figure 3B. However,
the scenario may change if steady-states are analyzed. As outlined
in equation 17, steady-state protein levels will be dependent on
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FIGURE 5 | Predicted transcript levels for (A) PFR residence times of 30, 71, and 110 s compared to measured values (scaled to mean trpLE level) and (B) for the

STR population compared to measured values (scaled to simulated trpE levels).

the degradation constant.

dcProtein

dt
= rTranslation − rdeg = rTranslation

−cProtein k
Protein
deg = 0 (17)

cProtein =
rTranslation

kProtein
deg

(18)

Because the individual degradation constants for the trp gene
products are unknown, simulation studies were performed and
summarized in Figure 4. In essence, results for kProtein

deg
=

0 indicate protein loss simply based on cell drain under
continuous operating conditions whereas results with kProtein

deg
> 0

consider additional protein degradation with the given rates. For
comparison, experimental results are indicated, too. As shown,
when kProtein

deg
exceeds 0.6 h-1 (which corresponds to half-lives

lower than 1.1 h) simulated protein levels are smaller than
those reported for the given growth rate of 0.2 h-1. Accordingly,
the simplifying assumption to neglect protein degradation for
simulating STR-PFR dynamics is validated as half-lives of 1.1 h
fairly exceed cycling times of about 500 s (about 0.12 h).

Simulating Long-Term Adaptation
As indicated in Löffler et al. (2016) and Simen et al. (2017),
the STR-PFR experiments were performed as a continuous
cultivation. First, glucose- or ammonia limited steady-states were
installed cultivating the cells in STR only. Then, the PFR was
connected while retaining the total system dilution rate of 0.2
h-1. As such, not only short-term transcript dynamics could be
elucidated by sampling the PFR but also long-term adaptation
of the whole population by studying transcript patterns in STR
during the adaptation period of 28 h after PFR connection.

For simulation studies, the cell and the process model were
linked predicting a stable distribution of 7526 ± 68 tracked cells

in the STR (75.0 ± 0.68%) and 2513 ± 47 simulated cells in the
PFR (25.0 ± 0.47%). Accordingly, the simulated cell population
matched well with the volumetric setup comprising 74.7 vol% in
the STR and 25.3 vol% in the PFR.

Neglecting the residence time distribution in the STR indicates
that cells in the STR are always induced as shown in Figure 3.
Therefore, population heterogeneity is not observable. Including
residence time distribution for a perfectly mixed reactor reveals
the existence of several subpopulations. Whilst 34% of the cells
are currently not induced, 48% of the cells are currently induced
once and 18% of the population are induced multiple times.
Multiple inductions in this context indicate that the cell reenters
the PFR while still being induced from a previous PFR passage,

resulting in multiple transcription events (time dependency is
shown in Supplementary Material).

Figure 5A compares measured and simulated transcript
dynamics of the trp operon while passaging through the PFR.
Notably, measured transcript dynamics were very similar so that
measurements taken after 25, 120 min and 28 h were cumulated
and indicated by a common variance. According to the modeling
constraints, mRNA production started after 30 s which is in good
agreement with experimental observations for trpL and for trpE.
Synthesis of further downstream genes trpDCBA was neither
predicted nor measured.

The long-term adaptation of the population was simulated
for the exemplary time points of 25 and 120 min as well as for
28 h (see Figure 5B). Again, experiments and simulation results
show a high agreement for all conditions. This also holds true
for the short trpL mRNA which was hardly detected in the PFR,
confirming the simulation.

To compare the dynamics of transcript and protein adaptation
toward new steady-states, both species were simulated. For
transcript studies, the average trpA transcription was considered.
Protein formation of TrpA disregarded putative degradation
and simply considered continuous cell drain under steady-state
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FIGURE 6 | Long-term prediction of transcript and protein levels neglecting protein degradation. mRNA levels reach stable levels after ∼7 min whereas protein

leveling takes more than 15 h.

conditions. Figure 6 clearly outlines the different speeds.
Whereas, transcript levels converge to a new steady-state within
10 min (slightly more than a PFR-STR cycle), proteins need
about 15 h.

DISCUSSION

The transcriptional dynamics observed in the STR-PFR
experiments of Löffler et al. (2016) and in particular Simen
et al. (2017) were modeled using a combined cell and process
model. By focusing on details of transcription and translation
in the cell model, a set of 10,000 individual cells was created
and tracked during their repeated passages through the STR-
PFR system. Inherently, the modeling approach mirrors a
mechanistic understanding linking external stimuli with cellular
transcriptional responses thereby excluding putative stochastic
events (Elowitz et al., 2002; Avery, 2006). Accordingly, the
modeling approach showed fundamental characteristics of an
ensemble model, as outlined by (Henson, 2003). Here, we used
the trp operon as an example because its polycistronic mRNA
consisting of five structural genes and a leader peptide was
repeatedly transcribed envisaging ammonia limitation (Simen
et al., 2017) and, most importantly, its induction was followed by
attenuation which directly linked transcription and translation
of the gene products. Only by using the approach of ensemble
modeling, individual cell fates could be tracked which finally
explain the occurrence of population heterogeneity.

Comparing the experimental observations of transcript
dynamics with modeling predictions, high agreement between
simulations and experimental data can be observed (Figure 5).
The qualification holds true not only for the prediction of short-
term transcript dynamics in the PFR but also for the long-term
adaptations in the STR, visualized by analyzing samples up to 28
h after initial connection of the PFR with the STR. Notably, the
high precision of transcript prediction was achieved without any
parameter regression. Only literature documented parameters
were chosen to fix the setting of the ensemble model. Again, this
finding is qualified as a confirmation of the basic approach.

Protein formation was assumed to start immediately after
mRNA transcription. Unlike mRNA degradation, no distinct
decay kinetics for the trp genes were known. Simulation studies of

Figure 4 revealed that realistic protein half-lives should be about
1.1 h, which is in the range of experimental observations for other
proteins (Nath andKoch, 1970; Lahtvee et al., 2014). Accordingly,
impacts of protein degradation on short-term kinetics can be
ruled out. However, the long-term adaptations indicated in
Figure 6 are likely to be affected. The additional consideration
of decay kinetics will likewise reduce steady-state levels.

One of the key findings of the STR-PFR studies of Löffler et al.
(2016) and Simen et al. (2017) was the observation that PFR
induced regulatory responses are propagated into STR finally
causing the adaptation of the whole population. Exactly this
phenomenon could be modeled as well. Figures 3, 5 document
that only trpL and trpE are fully transcribed in PFR whereas
the transcription of the rest of the operon continued in the
STR. Subsequently, most of the stress induced cellular burden
occurred after a time-delay in the well-mixed STR compartment
and not immediately in the PFR, the origin of the trigger. As a
consequence, the population in the STR is very heterogeneous,
consisting of cells in different transcription and translation
states. Some cells should be still propagating the PFR induced
stress response, whereas others may have completed the same.
Moreover, given that the STR and the PFR compartments do
not physically exist in large-scale bioreactors, cells are expected
to co-exist next to each other while circulating around. Similar
studies have already be performed investigating the lifelines of
fluctuating cells (Haringa et al., 2016; Kuschel et al., 2017).

CONCLUSION

The ensemble model used in this study succeeded to
predict experimental observations of long- and short-term
transcriptional dynamics with high precision and without
parameter adjustments. As such, the approach demonstrated
its fundamental suitability for predicting large-scale population
heterogeneity as a consequence of local stress triggers.
Accordingly, likewise modeling approaches open the door for an
in silico scale-up design, simulating large-scale performance of
the cells ab initio.

This study illustrates that locally induced stress responses
are propagated into different regions of the bioreactor thereby
creating temporal and spatial inhomogeneity of the population.
Notably, cellular reactions do happen on different time
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scales: Whereas transcriptional responses require <10 min,
translational changes may continue for more than 10 h to
reach new steady-states. Additionally, metabolic responses may
occur which are likely to precede the transcriptional reaction.
The hierarchical sequence of regulatory responses is overlaid
with dynamics of mass transfer, mixing and process control
which make it necessary to track individual cell responses
properly for predicting large-scale performance of the total
culture.
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