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The presence of microbes in the atmosphere and their transport over long distances

across the Earth’s surface was recently shown. Precipitation is likely a major path by

which aerial microbes fall to the ground surface, affecting its microbial ecosystems and

introducing pathogenic microbes. Understanding microbial communities in precipitation

is of multidisciplinary interest from the perspectives of microbial ecology and public

health; however, community-wide and seasonal analyses have not been conducted.

Here, we carried out 16S rRNA amplicon sequencing of 30 precipitation samples that

were aseptically collected over 1 year in the Greater Tokyo Area, Japan. The precipitation

microbial communities were dominated by Proteobacteria, Firmicutes, Bacteroidetes,

and Actinobacteria and were overall consistent with those previously reported in

atmospheric aerosols and cloud water. Seasonal variations in composition were

observed; specifically, Proteobacteria abundance significantly decreased from summer

to winter. Notably, estimated ordinary habitats of precipitation microbes were dominated

by animal-associated, soil-related, and marine-related environments, and reasonably

consistent with estimated air mass backward trajectories. To our knowledge, this is

the first amplicon-sequencing study investigating precipitation microbial communities

involving sampling over the duration of a year.

Keywords: microbial ecology, precipitation, long-distance transportation, ice nucleation activity, habitat

estimation

INTRODUCTION

Microbes are present and move around nearly everywhere in the Earth. Aerial microbes
have received considerable attention within this context because the atmosphere not
only is an unusual habitat for microbes but also likely represents a path by which
microbes move exceptionally long distances (Kellogg and Griffin, 2006; Burrows et al.,
2009; Després et al., 2012; Smith, 2013; Fröhlich-Nowoisky et al., 2016). To date, several
studies have investigated aerial microbial communities on airborne particles and in
clouds using culture-dependent and independent techniques (Bowers et al., 2011a,b,
2013; Vaïtilingom et al., 2012; Zweifel et al., 2012; DeLeon-Rodriguez et al., 2013; Woo
et al., 2013; Dong et al., 2016), and revealed that aerial microbes can originate from
terrestrial habitats, including plant surfaces (Bowers et al., 2009, 2011a,b). The long-distance

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
https://doi.org/10.3389/fmicb.2017.01506
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.01506&domain=pdf&date_stamp=2017-08-11
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:hiraoka@cb.k.u-tokyo.ac.jp
mailto:iwasaki@bs.s.u-tokyo.ac.jp
https://doi.org/10.3389/fmicb.2017.01506
http://journal.frontiersin.org/article/10.3389/fmicb.2017.01506/abstract
http://loop.frontiersin.org/people/395948/overview
http://loop.frontiersin.org/people/103852/overview


Hiraoka et al. Seasonal Analysis of Precipitation Microbes

transport of aerial microbes has also been reported, for example
from Chinese deserts to Japan over the east Eurasian continent
and the Sea of Japan (Echigo et al., 2005; Maki et al., 2011).
Pathogens in the atmosphere may be transported over long
distances, as integrated simulation analyses of climate and
disease propagation suggest the involvement of aerial microbes in
human diseases (Rodó et al., 2011, 2014). Likewise, the outbreak
of several plant infections due to aerial microbes transported
beyond borders and seas has been hypothesized (Fitt et al., 1989;
Brown and Hovmøller, 2002).

Precipitation, i.e., rainfall and snowfall, would bring aerial
microbes in the troposphere to the ground surface. Quantitative
polymerase chain reaction (PCR) has detected pathogenic
bacterial sequences in precipitation samples (Kaushik et al.,
2012), implicating that precipitation may alter microbial
ecosystems on the ground (Hervàs et al., 2009; Peter et al.,
2014). In the reverse direction, aerial microbes impact the climate
by accelerating cloud formation and precipitation, known as
“bioprecipitation” (Hamilton and Lenton, 1998; Christner et al.,
2008; Konstantinidis, 2014; Morris et al., 2014; Stopelli et al.,
2015; Hara et al., 2016). Several microbial species experimentally
exhibit ice nucleation activity (INA), which is the ability to
accelerate ice nucleation at relatively warm temperatures by
producing so-called INA proteins (Hoose and Möhler, 2012).
Such INA microbes are broadly distributed among bacteria and
fungi and have been isolated from precipitation and cloud water
(Mortazavi et al., 2008; Joly et al., 2013). In addition, microbes
in clouds may affect the chemical composition of clouds via
carbon (Amato et al., 2007; Vaïtilingom et al., 2013) and nitrogen
metabolism (Hill et al., 2007). Thus, a basic understanding
of microbial communities in precipitation provides important
knowledge regarding microbial ecology, public health, and even
meteorology. To date, several cloning-based (Ahern et al., 2007;
Zweifel et al., 2012; Šantl-Temkiv et al., 2013; Peter et al.,
2014) and community-wide but short-term (Cho and Jang, 2014;
Kaushik et al., 2014) analyses of microbial communities in
precipitation have been carried out. However, community-wide
and seasonal analyses have not been conducted.

Here, we conducted 16S ribosomal RNA (rRNA) amplicon-
sequencing analysis of 30 precipitation samples that were
aseptically collected over 1 year in the Greater Tokyo Area, Japan.
Microbial community analysis revealed seasonal variations in
their composition. Notably, the estimated original habitats
of precipitation microbes showed reasonable consistency with
estimated air mass backward trajectories. Our results support
a precipitation-mediated microbial cycle model in which soil,
oceanic, and animal-associated microbes are spread in the
atmosphere, transported for long distances, and deposited via
precipitation.

MATERIALS AND METHODS

Precipitation Sampling
Precipitation samples were collected at two sites in the Greater
Tokyo Area, Japan: Kashiwa (35◦54′00′′N, 139◦55′59′′E, 50m
above sea level) and Hongo (35◦42′55”N, 139◦45’56′′E, 30m
above sea level) (Figure 1). The Kashiwa site was on the roof of

a seven-story building on the Kashiwa campus, the University
of Tokyo, Chiba, Japan, which is surrounded by residences,
farms, and woods in a suburb of Tokyo. The Hongo site was
on the roof of a five-story building on the Hongo campus, the
University of Tokyo, Tokyo, Japan, which is located in downtown
Tokyo. The sites are 25.5 km apart and neither geologically nor
meteorologically separated in the Kanto plain. The upper areas
of both sites are wide open and lack any obstructing buildings
or structures that would contaminate the precipitation samples.
At the Kashiwa site, precipitation was aseptically collected using
a US-330 automatic precipitation sampler (Ogasawara Keiki,
Tokyo, Japan) following the method of Kaushik et al. (2012).
This device consists of a sterile and disposable bottle inside
a 4◦C refrigerator and automatically collects precipitation by
opening the lid only when a sensor detects precipitation. At
the Hongo site, precipitation samples were manually collected
into a sterile and disposable bottle on ice and immediately
stored in a 4◦C refrigerator. At both sites, every part of
the collection equipment that potentially directly contacted
precipitation samples (e.g., disposable collection bottles and
channel tubes) was sterilized by gamma rays in advance of
each sample collection. The precipitation samples were pre-
filtered through 5-µmmembrane filters, and microbial cells were
collected using 0.22-µm Sterivex filters (Millipore, USA). The
Sterivex filters were promptly moved to a −20◦C freezer and
stored until DNA extraction. Precipitation sampling required
no special permission. To prepare negative control samples,
we poured 1 L of Milli-Q purified water into the collection
equipment and carried out filtration in the same manner.

We collected 25 and 5 precipitation samples containing
sufficient amounts of microbial DNA at the Kashiwa and Hongo
sites, respectively. The sampling dates spanned more than 1 year
from May 2014 to October 2015, encompassing the rainy and
typhoon seasons in Japan (Table 1; the six digits, letter, and
suffix number for each sample name represent the sampling date
(YYMMDD), the site (K for Kashiwa and H for Hongo), and
the volume (if multiple samples were collected during the same
precipitation event). A precipitation event was defined if there
was no precipitation 6 h before and after the event. The volumes
of collected and filtered precipitation ranged from 50 to 1,000mL.
For correlation analysis with meteorological data, we excluded
the data obtained from samples 140630K_50, 140630K _100,
140810K_50, and 140810K_100, which were retrieved as replicate
samples with different volumes. Eight negative control samples
were also collected at different dates at the Kashiwa and Hongo
sites.

DNA Extraction and PCR Amplification
Microbial DNA on the Sterivex filters was retrieved using
a ChargeSwitch Forensic DNA Purification Kit (Invitrogen)
according to the supplier’s protocol with one exception: the
filters were directly suspended in the extraction solution from
the kit during the cell lysis process. The V5-V6 region
of the prokaryotic 16S rRNA gene was amplified using
a standard PCR protocol with TaKaRa Ex Taq (TaKaRa)
and the following high-performance liquid chromatography-
purified primers: 784F (5′- RGGATTAGATACCC -3′) and
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FIGURE 1 | A map of the sampling sites (Kashiwa and Hongo, yellow) and meteorological observatories (Abiko and Tokyo, blue) (left panel), with photos of the

sampling sites (right panel). At the Kashiwa site, a US-330 automatic precipitation sampler (Ogasawara Keiki, Tokyo, Japan) was installed. At the Hongo site,

precipitation samples were manually collected.

1064R (5′- CGACRRCCATGCANCACCT -3′) (Wang and Qian,
2009; Claesson et al., 2010). Amplified DNA was concatenated
to multiplex identifier tags that were unique to each sample,
and a mixture of 10 samples on average was sequenced in one
run on a 454 GS Junior System (Roche) after size selection
(350 ± 50 bp). Pre-packaged sterile water for injection (in lieu
of water from a laboratory water purification system) was used
throughout the DNA extraction, PCR amplification, and DNA
library preparation steps to avoid water-mediated contamination.

Bioinformatic Analysis
For raw sequence data from both precipitation and negative
control samples, sequence regions at both ends that contained
low-quality bases (quality score < 20) were trimmed using
DynamicTrim (Cox et al., 2010), chimeric sequences were
filtered out using UCHIME with default settings (Edgar et al.,
2011), and sequences whose lengths were shorter than 150
bp were discarded. All remaining high-quality sequences were
clustered with a 97% identity threshold using CD-HIT (Fu
et al., 2012). After discarding clusters that contained negative
control sequences (Cho and Jang, 2014), each cluster was
designated as an operational taxonomic unit (OTU). For
hierarchical cluster analysis of the precipitation samples, the
Ward method was used based on Bray-Curtis dissimilarities
between their OTU compositions. Non-metric multidimensional
scaling (NMDS) analysis was conducted using Bray-Curtis
dissimilarities. The taxonomic assignment of each OTU was
performed by conducting a BLASTN search (Camacho et al.,
2009) against the SILVA database (Quast et al., 2013) and

retrieving the top hit sequence that showed e-values ≤ 1E-15.
To estimate ordinary habitats for each 16S rRNA sequence, a
BLASTN search was performed against MetaMetaDB (Yang and
Iwasaki, 2014), and the top hit sequence with an e-value ≤ 1E-10
and an identity≥ 90% was retrieved. Microbial habitability index
(MHI) scores were calculated as previously described (Yang and
Iwasaki, 2014).

Amplicon-sequencing data of aerosol and cloudwater samples
were downloaded from NCBI SRA database (the accession
numbers are shown in Supplementary Table S1). Their ordinary
habitat analyses were conducted as described above after quality
filtering.

Meteorological Data Analysis
The data on the amount of precipitation, temperature, wind
speed, and atmospheric pressure were retrieved from the website
of the Japan Meteorological Agency (http://www.jma.go.jp/jma/
menu/menureport.html), Ministry of Land, Infrastructure, and
Transport of Japan. Precipitation, wind speed, and temperature
data from the Abiko (35◦51′48′′N, 140◦06′36′′E; 16.4 km from
Kashiwa) and Tokyo (35◦41′30′′N, 139◦45′00′′E; 2.9 km from
Hongo) observatories were used for the analyses of the Kashiwa
and Hongo sites, respectively (Figure 1). Atmospheric pressure
data from the Tokyo observatory were used (this observatory
is the closest to both sites that records atmospheric pressure
data). The wind speed, temperature, and atmospheric pressure
data were averaged over the period of each precipitation event.
To analyze long-range transport paths of air masses that caused
precipitation by providing water vapor, we estimated backward
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trajectories of an air mass at 2,000m altitude for 240 h prior to
all precipitation events for each sampling site. The trajectories
were calculated based on the hybrid single-particle Lagrangian
integrated trajectory (HYSPLIT) model (http://ready.arl.noaa.
gov/HYSPLIT.php) provided by the Global Data Assimilation
System of National Oceanic and Atmospheric Administration,
USA (Stein et al., 2015). The HYSPLIT model uses gridded
meteorological data and considers advection and diffusion of air
parcels in calculation of their trajectories. This model has been
used in a variety of atmospheric simulations focusing on the
atmospheric transport, dispersion, and deposition of pollutants
and hazardous materials (Stein et al., 2015), while it has also
been adopted for estimation of sources of airbornemicrobes (e.g.,
Smith et al., 2013; Cho and Jang, 2014; Kobayashi et al., 2015; Xia
et al., 2015; Xu et al., 2017).

Data Deposition
The amplicon sequence data were deposited in the
DDBJ/ENA/GenBank database under BioSample IDs
SAMD00059586-SAMD00059614 and SAMD00060461-
SAMD00060468. All data were registered under BioProject ID
PRJDB5087.

RESULTS AND DISCUSSION

Amplicon Sequencing of Precipitation
Samples
A total of 64,100 high-quality sequences 231 ± 45 bp in
length were generated from 30 precipitation and eight negative
control samples. The precipitation samples included typhoon
rain, rainy season rain, and snow. After removing sequences
exhibiting >97% similarity to the negative control samples,
12,089 “effective” sequences comprising 1,297 OTUs remained.
To make our analyses based on reads that were not likely from
contamination as much as possible, we took a conservative
and strict filtering approach, whose extent of read number
reduction was similar to that in a previous study (Cho and
Jang, 2014). The number of OTUs per sample ranged from
4 to 226 (Table 1). Based on rarefaction curves, the obtained
OTUs represented their microbial communities well for some
samples, although several samples required additional sequences
(Supplementary Figure S1).

Hierarchical cluster analysis of OTU composition in the
precipitation samples indicated samples collected during the
same precipitation event with different volumes (50, 100, and
200mL) that were highly similar to each other (Figure 2,
open symbols), suggesting that differences in volume have
little effect on analysis in the 50–200mL range. Moreover,
microbial communities in samples that were collected on the
same day at different sampling sites (Kashiwa and Hongo) were
closely positioned in the dendrogram (Figure 2, closed symbols),
indicating that the observed OTU compositions reflect the
microbial populations in precipitation rather than those in the
atmosphere near the ground surface or equipment- or reagent-
mediated contamination at each site. NMDS analysis did not
show any clear trend, although samples of close dates tended to
be clustered together (Supplementary Figure S2).

FIGURE 2 | Hierarchical clustering of precipitation samples based on OTU

composition. The distance matrix was calculated based on the Bray-Curtis

dissimilarity, and clusters were calculated using Ward’s method. Open symbols

indicate samples that were collected during the same precipitation event with

different volumes. Closed symbols indicate samples that were collected on the

same day at different sites (Kashiwa and Hongo).

Taxonomic Composition of Precipitation
Microbial Communities
Among the 12,089 effective sequences, 11,994 (99.2%) were
taxonomically assigned at the phylum level. Almost all sequences
were assigned to 24 phyla in the domain Bacteria with the
exception of 4 (0.03%) and 219 (1.7%) sequences assigned to
Archaea and mitochondria, respectively. This strong bias toward
bacterial sequences may reflect the actual composition but may
also be attributable to amplification bias introduced by primer
specificity. The top three and six most abundant bacterial phyla
accounted for >80 and >95%, respectively, of the sequence
pool of all precipitation samples (Figure 3A). Proteobacteria was
the most abundant phylum (23–88%) across all precipitation
samples with the exception of the 140630, 140926, and 150116K
samples (Firmicutes (89–94%), Actinobacteria (50%), and
Firmicutes (49%) were the most abundant phyla, respectively).
A particularly exceptional microbial community dominated by
Firmicutes was observed in the 140630K sample. Firmicutes,
Bacteroidetes, and Actinobacteria were the other dominant
phyla in the total sequence pool. In principle, these results
were consistent with those of a previous study in which
Proteobacteria, Firmicutes, and Bacteroidetes were the dominant
phyla in precipitation samples captured in Seoul, Korea (Cho
and Jang, 2014), whereas comparatively greater numbers of
sequences were assigned to Actinobacteria, Planctomycetes, and
Cyanobacteria in this study. At the class level, the abundant
groups were Gammaproteobacteria, Betaproteobacteria, and
Alphaproteobacteria, followed by Bacilli, Flavobacteriia,
Clostridia, Actinobacteria, and Sphingobacteriia (Figure 3B).
Notably, the enrichment of these phyla and classes was
also reported in previous studies investigating aerosolized
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FIGURE 3 | Relative abundances of sequences at the phylum (A) and class

(B) levels. Groups demonstrating <5% abundance were summarized as

“Others.”

(Bowers et al., 2009, 2011a; DeLeon-Rodriguez et al., 2013)
and cloud water microbial communities (Kourtev et al., 2011;
DeLeon-Rodriguez et al., 2013).

Several OTUs were assigned to genera that potentially
contain INA bacteria, i.e., Acinetobacter, Bacillus, Erwinia,
Flavobacterium, Luteimonas, Microbacterium, Pseudomonas,
Psychrobacter, Sphingomonas, and Stenotrophomonas (Després
et al., 2012). We also detected several genera containing
known pathogens, including typical human pathogens such as
Legionella, Streptococcus, Arcobacter, Rickettsia, and Clostridium,
and plant pathogens such as Erwinia, although their abundance
was low. We did not detect season-specific microbial groups in
the typhoon rain, rainy season, and snow samples with statistical
significance, probably partly due to small sample sizes.

Seasonal and Meteorological Correlations
Taxonomic distribution exhibited seasonal variability (Figure 3).
Notably, the abundance of Proteobacteria decreased from
summer to winter (p < 0.01, Mann-Whitney U-test), and a

similar trend has consistently been observed in aerosolized
microbial communities (Bowers et al., 2011b). To more
closely investigate the factors underlying changes in the
precipitationmicrobial communities, we performed a correlation
analysis between meteorological characteristics and microbial
composition (Figure 4). The relative abundance of the order
Bacteroidales negatively correlated with temperature (Spearman
correlation ρ =−0.70, p < 0.01 after the Bonferroni correction).
Although other correlations were not statistically significant after
multiple testing correction, the amount of precipitation, wind
speed, and atmospheric pressure showed tendencies of positive
correlations with the abundance of the orders Cellvibrionales
(ρ = 0.59), Cellvibrionales (ρ = 0.58), and Pseudomonadales
(ρ = 0.57), respectively. Notably, the abundance of the order
Legionellales, which contains several known pathogens, showed
a tendency of a positive correlation with temperature (ρ = 0.47),
where aerosolized water is known to facilitate the dispersion of
Legionella (Nguyen et al., 2006) and a warm and wet climate is
associated with the incidence of Legionnaires’ disease (Fisman
et al., 2005; Fisman, 2007). Although cell numbers were not
measured except for one sample in this study, we note that
seasonal variability in cell numbers would also be important,
especially because that of atmospheric samples was reported
(Kaushik et al., 2014; Dong et al., 2016). Similarly, analyses with
particulate matter density and O3 and NO3 concentrations are
also envisioned, because they would substantially affect aerial
microbes (Kaushik et al., 2012; DeLeon-Rodriguez et al., 2013;
Wei et al., 2016; Xu et al., 2017).

Relationship between Ordinary Habitats of
Precipitation Microbes and Air Mass
Backward Trajectories
To estimate the environments from which microbes in
precipitation originated, we performed a microbial habitat index
analysis using MetaMetaDB (Yang and Iwasaki, 2014), which is
a database to estimate the ordinary habitats of microbes based
on similarity searches for 16S rRNA gene sequences against
amplicon-sequencing and shotgun metagenomic data in public
databases. In most samples, animal-associated environments,
such as gut microbiota, were estimated to be the most
dominant ordinary habitats (52% on average) (Figure 5,
Supplementary Figure S4), which is consistent with a previous
study in which animal feces were the dominant source of
airborne bacteria (Bowers et al., 2011b). Notably, marine-related
environments, such as marine and marine sediment, were
estimated to be relatively major ordinary habitats for several
samples (e.g., 65.1 and 63.1% in the 140810 and 141014K
samples, respectively). Soil-related environments, such as soil and
rhizosphere, were also estimated to be major ordinary habitats
(11.0% on average). For comparison, we also conducted ordinary
habitat analyses using amplicon-sequencing data from aerosol
(Xia et al., 2015) and cloud water (DeLeon-Rodriguez et al., 2013)
samples. The soil-related and animal-associated environments
were generally major ordinary habitats as consistent to the
present results, whereas marine-related environments were not
major possibly because the origins of the microbes or the
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FIGURE 4 | Correlation analysis between relative abundances of sequences at the order level and meteorological data. The color scheme represents Spearman’s

rank correlation coefficient.

sampling methods were different from those in our study
(Supplementary Figure S5).

The estimated backward trajectories of air masses that led
to the precipitation events at the Kashiwa and Hongo sites
were classified as terrestrial, oceanic, and hybrid routes. The
terrestrial route typically originated from the middle of the
Eurasian continent and passed through the East China Sea, the
Yellow Sea, and the Sea of Japan; the oceanic route typically
originated from the Pacific Ocean and passed through the East
China Sea or the Sea of Okhotsk; and the hybrid route comprised
both the terrestrial and oceanic areas. Consistent with the
typical pattern of the seasonal winds in Asia, the terrestrial and
oceanic routes dominated in winter and summer, respectively
(Figure 5, Supplementary Figure S3). The estimated ordinary
habitats of the precipitation microbes showed agreement with
the estimated air mass backward trajectories. For example,
Planctomycetes, which contains several aquatic microbes (Fuerst,
1995), was frequently found when the backward trajectories
followed oceanic routes (Figures 3A, 5). PERMANOVA analysis
showed a significant relationship between the routes and the
estimated composition of ordinary microbial habitats (p < 0.05).
Notably, the ratios of marine-related environments dominated
when the air masses originated from the oceanic route, and
animal-related environments dominated when they originated
from the terrestrial route. Shannon’s diversity indices of microbes
became larger when the air masses originated from the terrestrial
route (Shannon’s diversity indices were 3.74 ± 0.68, 3.05 ±

1.00, and 3.15 ± 1.36 for the terrestrial, oceanic, and hybrid
routes, respectively. The index of each sample is shown in
Table 1); however, it should be noted that some samples required

additional sequences to reach plateaus of rarefaction curves as
mentioned already.

Soil, oceanic, and animal-associated microbes are spread in
the atmosphere and transported for long distances (Morris
et al., 2014; Smets et al., 2016), and precipitation may facilitate
this microbial cycle. Sea-living microbes are emitted into the
atmosphere via the bursting of bubbles on waves (Fahlgren et al.,
2015), whereas soil-living and animal-associated microbes are
transported on soil dust (Echigo et al., 2005; Prospero et al.,
2005; Maki et al., 2011; Yamaguchi et al., 2014). In high-altitude
atmospheric environments, microbes may be under substantial
selection pressure due to harsh chemical, physical, and nutrient
conditions (Delort et al., 2010; Morris et al., 2013; Smith, 2013).
INA microbes play roles in cloud formation (Morris et al.,
2013) and may facilitate the return of aerial microbes to diverse
environments. The dispersal of pathogenic microbes causes
disease epidemics that threaten public health and agricultural
plant and animal health (Brown and Hovmøller, 2002; Rodó
et al., 2011, 2014; Cao et al., 2014). Continuous long-term
monitoring and large-scale analysis of precipitation microbes
is thus envisioned to reveal the full impact of atmospheric
microbial transport on microbial ecology, microbial evolution,
public health, and climate.

CONCLUSION

Microbes are present nearly everywhere in the Earth, even
in precipitation from the sky. Precipitation is supposed to
make microbes in the atmosphere finally fall down to the
ground surface. In this study, we thoroughly observed microbial
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FIGURE 5 | Estimated ordinary habitats of precipitation microbes. Because the ordinary habitat for an individual 16S rRNA sequence cannot be conclusively

determined, the microbial habitability index (MHI) was calculated to estimate the probability of an ordinary habitat (Yang and Iwasaki, 2014). Estimated ordinary

habitats demonstrating <5% abundance were summarized as “Others.” The estimated route of the air mass before each precipitation event is indicated in the right

column. The terrestrial, oceanic, and hybrid routes are colored in orange, blue, and green, respectively. The estimated air mass backward trajectory maps are provided

in Supplementary Figure S3.

communities in precipitation samples that were collected over 1
year in the Grate Tokyo area, Japan. To our knowledge, this is
the first amplicon-sequencing study investigating precipitation
microbial communities involving sampling over the duration
of a year. Most importantly, our results suggest seasonal
variations in the microbial communities in precipitation, and
their community structures were significantly associated with
the estimated air mass trajectories. These results highlight
importance of precipitation in long-range microbial immigration
via the atmosphere, which may answer how tiny microbes can
dynamically travel around the globe.
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Supplementary Figure S1 | Rarefaction curves for each precipitation sample.

Supplementary Figure S2 | Nonmetric multidimensional scaling plot for OTU

compositions. The distance matrix was calculated based on the Bray-Curtis

dissimilarity. The stress value of the final configuration was 20.46%.
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Supplementary Figure S3 | The estimated air mass backward trajectories 240 h

prior to precipitation events.

Supplementary Figure S4 | Estimated ordinary habitats of precipitation

microbes for three ecosystem groups. The abundance values in each ecosystem

group are summation for habitats described below. Marine-related: “aquatic”,

“marine”, “marine sediment”, “fish”, and “hot spring”; Animal-associated:

“human”, “human gut”, “human lung”, “human nasal pharyngeal”, “bovine gut”,

and “mouse gut”; and Soil-related: “hydrocarbon”, “rhizosphere”, “soil”, and

“terrestrial.” The estimated route of the air mass before each precipitation event is

indicated in the right column.

Supplementary Figure S5 | Estimated ordinary habitats of microbes in aerosol

and cloud water samples. Estimated ordinary habitats demonstrating <5%

abundance were summarized as “Others.”

Supplementary Table S1 | Amplicon-sequencing data of aerosol and cloud

water samples.
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