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The functional connection of experimental metabolic time series data with biochemical

network information is an important, yet complex, issue in systems biology. Frequently,

experimental analysis of diurnal, circadian, or developmental dynamics of metabolism

results in a comprehensive and multidimensional data matrix comprising information

about metabolite concentrations, protein levels, and/or enzyme activities. While,

irrespective of the type of organism, the experimental high-throughput analysis of

the transcriptome, proteome, and metabolome has become a common part of

many systems biological studies, functional data integration in a biochemical and

physiological context is still challenging. Here, an approach is presented which

addresses the functional connection of experimental time series data with biochemical

network information which can be inferred, for example, from a metabolic network

reconstruction. Based on a time-continuous and variance-weighted regression analysis

of experimental data, metabolic functions, i.e., first-order derivatives of metabolite

concentrations, were related to time-dependent changes in other biochemically relevant

metabolic functions, i.e., second-order derivatives of metabolite concentrations. This

finally revealed time points of perturbed dependencies in metabolic functions indicating a

modified biochemical interaction. The approach was validated using previously published

experimental data on a diurnal time course of metabolite levels, enzyme activities, and

metabolic flux simulations. To support and ease the presented approach of functional

time series analysis, a graphical user interface including a test data set and a manual is

provided which can be run within the numerical software environment Matlab®.

Keywords: metabolic network, data integration, metabolomics, time series analysis, systems biology, network

dynamics

INTRODUCTION

The functional interpretation of experimental data in context of biochemical network information
represents one of the central challenges in current biological research. While genome sequencing
projects have enabled the reconstruction of genome-scale metabolic networks, their high
dimensionality precludes a direct and intuitive application to interpret experimental data. Hence,
although genome sequence information and metabolic networks have become available for
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numerous organisms, tissues, or cell types (Herrgard et al., 2008;
Chang et al., 2011; De Oliveira Dal’Molin and Nielsen, 2013;
Thiele et al., 2013), functional metabolic data interpretation
still represents a major obstacle in systems biology. Various
mathematical and computational strategies from the fields
of multivariate statistics, ordinary, and partial differential
equations (ODEs/PDEs), optimization or statistical time
series analysis have been developed and applied to reveal
a biologically meaningful interpretation of comprehensive
and multidimensional experimental data sets. For example, a
computational model of starch metabolism in plants enabled
the analysis of starch kinetics through diurnal metabolic and
circadian sensors (Pokhilko et al., 2014). The authors developed
a model of 28 ODEs which were numerically simulated in order
to analyze diurnal kinetics of carbon metabolism in silico. In
another study, the response of Escherichia coli to varying oxygen
concentrations was analyzed applying a mathematical model of
the central metabolism (Ederer et al., 2014). Here, the authors
derived a prediction about the impact of product formation on
biomass concentration using steady state simulations at varying
environmental conditions.

Both examples for mathematical modeling differ in organism
and application. Besides, the dynamic approach can be
distinguished from the steady state approach. However, in
both approaches, dynamics of metabolic systems can be
described by sets of ODEs. If sufficient kinetic information is
available, such ODEs can be numerically integrated revealing
simulated metabolic concentrations depending on time, enzyme
parameters, thermodynamic constraints, etc. Yet, statistically
robust experimental enzyme kinetic information often limits
the applicability of such modeling approaches. Particularly, the
resolution of enzyme activities, substrate affinities, or inhibitory
constants is very laborious and only possible if well-established
experimental assays and sufficient biochemical knowledge are
available. Additionally, uncertainties about model structures and
reaction kinetics complicate the interpretation of a numerically
simulated output (Schaber et al., 2009). Such limitations have
been addressed by different theoretical approaches, for example
by structural kinetic modeling, SKM (Steuer et al., 2006). In the
SKM approach, local linear models are applied to explore and
statistically analyze a given parameter space without the need for
explicit information about functional forms of enzyme kinetics
and rate equations. Finally, a Jacobian matrix is derived which
characterizes the dynamic capabilities of a metabolic system
at a certain steady state. In previous publications, we have
developed a procedure to determine Jacobian matrices directly
from experimental metabolomics data (Nägele, 2014; Nägele
et al., 2014). Based on experimental metabolic (co)variance
information a metabolic regulator was identified indicating a
strategy how plantmetabolism is reprogrammed during exposure
to energy limiting conditions. In a different context, other studies
have also shown that it is possible to infer regulatory information
about metabolic steady states from experimental data with such
approaches (see e.g., Steuer et al., 2003; Sun and Weckwerth,
2012; Kügler and Yang, 2014).

Beyond these approaches of dynamic and steady state
modeling, time series analysis and related regression models

offer another mathematical strategy to reveal information about
molecular system dynamics (Schelter, 2006). For example, Dutta
and co-workers developed an algorithm for identification of
differentially expressed genes in a time series experiment (Dutta
et al., 2007), which they also applied to integrate transcriptome
and metabolome data (Dutta et al., 2009). In another study,
statistical modeling and regression analysis revealed a nitrogen-
dependent modulation of root system architecture in the genetic
model plant Arabidopsis thaliana (Araya et al., 2015). While
these exemplarily mentioned studies present only a very small
fraction of possible statistical applications, it already becomes
evident that these are promising and necessary mathematical
approaches to reveal biologically meaningful information from
comprehensive experimental data sets being preliminary for
hypothesis generation and experimental validation. However, a
common problem of regression and correlation approaches in
a biochemical context is a missing functional linkage of the
results to causal biochemical interrelations, i.e., enzymatically
driven reactions. To overcome this limitation and to facilitate the
biochemical interpretation of the statistical results, the present
study derives a theoretical connection between mathematical
approaches of ODE-based dynamic modeling and statistical time
series analysis. Based on the stoichiometric matrix information
of a metabolic network, ratios of time-dependent derivative
functions were built providing an estimate for the strength
and probability of a metabolic interaction during the time
course. The suggested strategy was tested using previously
published experimental data sets on diurnal and stress-induced
dynamics of metabolite concentrations and related enzyme
kinetic information. Finally, a graphical user interface for Matlab
is provided which intends to facilitate the application of the
presented strategy.

RESULTS

Deriving Metabolic Functions by Inverse
Variance-Weighted Regression Analysis
Time-dependent dynamics of metabolite concentrations in a
biochemical network can be described by a set of ODEs:

d

dt
M (t) = Nv

(

M,p, t
)

= f (M,p, t) (1)

Here, M represents an n-dimensional vector of mean metabolite
concentrations (cn), N is the n × k stoichiometric matrix
and v describes the k-dimensional vector of reaction rates
which depend on metabolite concentrations M, enzyme kinetic
parameters p and time t. The right side of the ODE system
can be summarized by metabolic functions, f(M,p,t). Hence,
these metabolic functions define the time-dependent changes in
metabolite concentration as a sum of all biochemical reactions
either consuming or producing a metabolite. A metabolic steady
state is described by ODEs which equal zero:

d

dt
M (t) = 0 (2)
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Linearization enables the investigation of the system behavior
close to a steady state. The linearization process results in the
so-called Jacobian matrix J which characterizes the dynamic
properties of the system at a steady state:

J =









∂f1
∂c1

· · ·
∂f1
∂cn

...
. . .

...
∂fn
∂c1

· · ·
∂fn
∂cn









(3)

Hence, in a biochemical context, the Jacobian matrix J describes
the behavior of metabolic functions fi (for i = 1,...,n) of a
metabolic network with regard to small changes of variables
ci (for i = 1,...,n), i.e., metabolite concentrations at the
considered steady state. The information if ametabolic function fi
biochemically depends on the concentration of a metabolite ci is
provided by the stoichiometric matrix N of a metabolic network
(see Equation 1).

To derive, i.e., predict, time continuous information from
time discrete experimental observations, interpolation methods
can be applied. To prevent unrealistic oscillations of high-
degree polynomial interpolation, intervals of approximation can
be partitioned in subintervals which can be approximated, for
example, by cubic polynomials which form a cubic spline Sci (t)
(see e.g., Bronstein et al., 2008):

Sci (t) = αij + βij

(

t − tj
)

+ γij
(

t − tj
)2

+ δij(t − tj)
3 (4)

Here, it is t ∈ [tj, tj+1] with (j = 1, 2,..., z−1), where z
represents the number of interpolation nodes (tj, gij), and it is
Sci
(

tj
)

= gij. Interpolation coefficients are represented by α,
β , γ , and δ. Due to the occurrence of experimental errors, the
requirement of Sci

(

tj
)

= gij is not fulfilled which prevents the
suitability of such a type of interpolation. Instead, a smoothing
element can be introduced accounting for those experimental
errors:

min





z
∑

j=1

wij[gij − Sci (tj)]
2 + λ

tz
∫

t=t1

[S
′ ′

ci
(t)]

2
dt



 (5)

Here, wij represents a weighting factor, S
′′

ci
(t) is the second

derivative of Sci (t) , and λ (with λ ≥ 0) represents a smoothing
factor. For λ = 0, one obtains the cubic spline interpolation,
while the degree of smoothing increases with the value of λ.
To connect the smoothing spline generation to experimentally
observed errors we defined the weighting factor wij to equal the
inverse variance information, i.e., the inverse squared standard
deviation:

wij = σij
−2 =

(

1

r − 1

r
∑

k=1

(cij,k − c̄ij)
2

)−1

(6)

Here, r represents the number of experimental and independent
replicates.

Merging Equations (1), (5) and (6) and replacing gij by the
mean concentration of metabolite i at time point j, c̄ij , reveals a

description of metabolic functions by inverse variance-weighted
regression analysis:

d

dt
Mi (t) = fi

(

M,p, t
)

=
d

dt



min





z
∑

j=1





(

1

r − 1

r
∑

k=1

(cij,k − c̄ij)
2

)−1

[c̄ij − Sci (tj)]
2



+ λ

tz
∫

t=t1

[Sci
′′(t)]

2
dt







 (7)

Hence, building the first derivative of the smoothed interpolation
of experimental time-course data reveals information about
the connected metabolic function. In the present study, this
approach was applied to evaluate a diurnal time course of
previously published metabolite concentrations (Nägele et al.,
2012) belonging to the central carbohydrate metabolism in leaves
of the genetic model plant A. thaliana. Diurnal dynamics of
metabolic functions are shown exemplarily (Figure 1) for the
metabolite pools of sucrose (Suc) and sugar phosphates (SP) in a
control experiment (non-cold acclimated, na) and after exposure
to low temperature (acc).

To characterize time-dependent changes in metabolic
functions, the second time-dependent derivative was built
from the approximated diurnal time course of metabolite
concentrations:

d2

dt2
Mi (t) =

d

dt
fi
(

M,p, t
)

=
d2

dt2



min





z
∑

j=1





(

1

r − 1

r
∑

k=1

(cij,k − c̄ij)
2

)−1

[c̄ij − Sci (tj)]
2



+ λ

tz
∫

t=t1

[S
′ ′

ci
(t)]

2
dt







 (8)

As described for Figure 1, diurnal dynamics of those time-
dependent changes of metabolic functions are also shown
exemplarily for Suc and SP (Figure 2).

Connecting Metabolic Functions Based on
Biochemical Network Information
While the metabolic time-course information derived before
characterizes time-dependent rates of changes in each considered
metabolite concentration separately (see Equations 7 and
8), information of biochemical interdependencies, i.e., the
information about a substrate - product relationship between two
or more metabolites, is only contained implicitly. To explicitly
analyze and visualize these biochemical interdependencies with
regard to the time-dependent rates of concentrations changes,
a metabolic n × n interaction matrix, Y , was derived where
n represents the number of metabolites comprised by the
model. In Y , each entry indicates whether two metabolites
are biochemically connected (entry: 1) or not (entry: 0). The
interaction is characterized analogous to entries of the Jacobian
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FIGURE 1 | Metabolic functions derived from inverse

variance-weighted regression analysis for (A) non-cold acclimated and

(B) cold acclimated plants. Metabolic functions fi (M,p,t) were derived for

sugar phosphates (SP) and sucrose (Suc) as described in the text (see

Equation 7). Experimental data were derived from a previous study comprising

metabolite levels of non-cold acclimated (na) and cold acclimated (acc) leaf

material of Arabidopsis thaliana, accession Col-0 (Nägele et al., 2012). White

and black bars on the top indicate light and dark phase of a diurnal cycle.

matrix (Equation 3): if the metabolic function of metabolite
A is biochemically connected to changes in concentrations of
metabolite B, the corresponding entry in Y is 1. Information
about metabolic functions is given row-wise, while biochemically
connected metabolites are indicated column-wise for each
function. In a simple example, containing three reactions
(r1–r3) and four metabolites (A–D), the construction and
content of Y is exemplified (Figure 3). The diagonal entries
indicate the biochemical dependencies of metabolic functions on
substrate concentrations. For example, Y11 = 1 indicates that
metabolic function f(A,t) depends on the concentration of A(t).
The non-diagonal entries describe interdependencies between
different metabolite pools. For example, Y21 = 1 indicates
that metabolic function f(B,t) depends on the concentration
of A(t).

Based on a previously published metabolic model (Nägele
et al., 2012), an interaction matrix Y was derived for the central
carbohydrate metabolism in leaves of A. thaliana. The metabolic
functions (Equation 7) and their time-dependent derivatives
(Equation 8) were related to each other according to the entries
of Y . This finally resulted in functions ω(a → b, t) indicating
changes in metabolic functions of b in context of concentration

FIGURE 2 | Time-dependent dynamics of metabolic functions derived

from inverse variance-weighted regression analysis for (A) non-cold

acclimated and (B) cold acclimated plants. Function dynamics were

derived for sugar phosphates (SP) and sucrose (Suc) as described in the text

(see Equation 8). Experimental data were derived from a previous study

comprising metabolite levels of non-cold acclimated (na) and cold acclimated

(acc) leaf material of A. thaliana, accession Col-0 (Nägele et al., 2012). White

and black bars on the top indicate light and dark phase of a diurnal cycle.

changes of a which might represent substrates, inhibitors or
activators:

ω
(

a → b, t
)

=

d
dt
fb(M,p, t)

fa(M,p, t)
, D =

{

\fa
(

M,p, t
)

= 0
}

(9)

With regard to the analyzed time-course of sugar phosphate
(SP) and sucrose (Suc) concentrations (see Figures 1, 2),
ω(SP→Suc, t) revealed information about the reaction of
sucrose biosynthesis, catalyzed by the enzyme sucrose phosphate
synthase (SPS):

SugarPhosphates (SP)
SPS
→ Sucrose (10)

In detail, ω(SP→Suc, t) described changes in the metabolic
function of sucrose in context of concentration changes of its
biochemical substrate sugar phosphates:

ω (SP → Suc, t) =
d
dt
fSuc(M,p, t)

fSP(M,p, t)
(11)

Comparing ω(SP→Suc, t) for na and acc plants revealed a
noticeable difference between both conditions within the first
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4 h of the day (Figure 4). Interestingly, in the same time
period, simulations of sucrose biosynthesis, based on a system of
ordinary differential equations (ODEs), revealed a similar picture
in which rates of sucrose biosynthesis were decreased only in acc
plants (Nägele et al., 2012).

Characterization of ω(t)
ω(t) represents a ratio of metabolic functions and related
derivatives. Hence, the unit of ω(t) is derived from the flux unit
of a metabolic function, [mM s−1]:

[

ω
(

a → b, t
)]

=

[

d
dt
fb(M,p, t)

]

[

fa(M,p, t)
] =

[

mM s−2
]

[

mM s−1
] =

[

1

s

]

(12)

Here, concentrations are given in mM (mmol l−1) and the time
unit is seconds (s).

This results in the unit of a rate or frequency. Hence,
|ω(a→b,t)| was interpreted as oscillations of a metabolic function
per time-period with reference to a biochemical effector.

In the case of |ω(a → b, t)| → ∞ for t → τ, the influence of
the biochemical effector on a metabolic function was defined to
be strong, while |ω(a → b, t)| → 0 for t → τ indicated a weak
effect. In detail, |ω(a → b, t)| → ∞ for t → τ indicates that it is
|d/dt (f b(M,p,t))| >> |f a(M,p,t)|. Vice versa, |ω(a → b, t)| → 0
for t → τ indicates that |d/dt (f b(M,p,t))| << |f a(M,p,t)|.

Application Example: Stress-Induced
Metabolic Reprogramming in Arabidopsis

thaliana
While in the above mentioned example, the calculation and
interpretation of ω(t) was demonstrated in context of a
previously published kinetic ODE model, another published
data set was analyzed by this strategy comprising metabolite
levels of the primary and secondary metabolism in A. thaliana
(Doerfler et al., 2013). In the experiment performed by Doerfler
and co-workers, a combined strategy of gas chromatography
and liquid chromatography coupled to mass spectrometry was
applied in order to reveal a comprehensive picture of metabolic
reprogramming during exposure to low temperature and high
light intensity. The time period of stress exposure comprised
more than 2 weeks which allowed for the analysis of a short-
and long-term acclimation response in the metabolome of A.
thaliana, accession Col-0. A central output of the study was the
characterization of metabolomic and regulatory dynamics at the
interface of primary and secondary metabolism. The authors
observed a fast increase of stress-responsive compounds, e.g.,
sucrose, which became significant already after 2 days of stress
exposure, while the interaction with the secondary metabolism,
resulting in biosynthesis of flavonoids, became most significant
after 8 days of stress exposure.

To prove the suitability of deriving the absolute value
function |ω(a→b, t)| in order to reveal steps of metabolic
regulation within a considered time interval, regression analysis
and metabolic functions were calculated for the dataset of
Doerfler et al. (2013) and compared to their observations. The
metabolic interaction matrix Y was derived from the metabolic

FIGURE 3 | Schematic reaction chain and the derived interaction

matrix Y. Rows (metabolic functions) and columns (metabolites) of Y describe

biochemical interactions of metabolites A (first row/column), B (second

row/column), C (third row/column), and D (fourth row/column). Entries, i.e., 0

and 1, indicate if two metabolites interact (entry 1) or not (entry 0).

FIGURE 4 | Functions ω(t) indicating changes in metabolic functions in

context of concentration changes of biochemical interaction partners.

ω(t) was calculated as described in the main text (see Equation 9). Results of

ω(t) are shown for the reaction of sucrose biosynthesis for non-cold acclimated

(na) and cold acclimated (acc) leaf material of A. thaliana, accession Col-0

(Nägele et al., 2012). White and black bars on the top indicate light and dark

phase of a diurnal cycle.

network model which was previously suggested and applied for
inverse approximations of the Jacobian matrix (Doerfler et al.,
2013). For regression analysis and for integration of metabolic
network information we developed and applied a graphical
user interface (FEMTO, Functional Evaluation of Metabolic
Time series Observations) which is based on the numerical
software environment Matlab R© (http://www.mathworks.com),
and which is provided in the supplements together with a user
manual (Supplementary Files S1, S2).

To characterize sucrose metabolism, changes of the metabolic
function of sucrose were related to changes in sucrose
concentrations:

|ω (Suc → Suc, t)| =

∣

∣

∣

∣

∣

d
dt
fSuc(M,p, t)

fSuc(M,p, t)

∣

∣

∣

∣

∣

(13)
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For time-dependent characterization of flavonoid dynamics,
changes in the flavonoid (Flav) metabolic function were related
to substrate concentration changes, i.e., phenylalanine (Phe)
dynamics:

∣

∣

ω

(

Phe → Flav, t
)∣

∣ =

∣

∣

∣

∣

∣

d
dt
fFlav(M,p, t)

fPhe(M,p, t)

∣

∣

∣

∣

∣

(14)

Results of metabolic function analysis and the resulting time
course of |ω(t)| revealed an early de-regulation of sucrose
metabolism during the first 2 days of stress exposure (Figure 5A),
while the peak value of |ω(t)| for flavonoid biosynthesis occurred
delayed after 8 days (Figure 5B).

These findings coincide with the previous findings described
by Doerfler and colleagues who applied the method of Granger
causality time-series correlation and a covariance-based inverse
approximation of Jacobian matrices to reveal strategies of
metabolic regulation (Doerfler et al., 2013). Conclusions which
have been drawn from the |ω(t)| calculation were found to be
highly similar to the output of other statistical methods, finally
substantiating the validity of the suggested workflow and the
derived method to unravel time points of regulatory perturbation
in a biochemical system.

DISCUSSION

Mathematical analysis of biochemical system dynamics
represents a central focus of current biomathematical,
biochemical and biotechnological research due to the need
for methods and algorithms enabling a functional interpretation
of experimental data in context of a biochemical network.
Particularly, system dynamics which arise due to circadian
regulation (Harmer, 2009; Kumar Jha et al., 2015), diurnal
metabolic adjustment (Geiger and Servaites, 1994; Pokhilko
et al., 2014) or stress-induced metabolic reprogramming
(Jozefczuk et al., 2010; Kanshin et al., 2015) are hardly
traceable by intuition. Hence, this indicates a strong need for
suitable theoretical approaches being capable of resolving and
functionally connecting molecular moieties with underlying
biochemical regulation.

Various theoretical strategies have addressed this complex
issue, providing a comprehensive methodological platform for
time-series analysis, dynamic flux balance analysis, kinetic and
Boolean modeling (see e.g., Mahadevan et al., 2002; Schelter,
2006; Rohwer, 2012; Steinway et al., 2015). In a recent approach,
Willemsen and colleagues have modified the approach of
dynamic flux balance analysis by incorporating time-resolved
metabolomics measurements (Willemsen et al., 2015). With their
extended method, the authors derived an estimate of dynamic
flux profiles which allowed them to generate and test hypotheses
related to environmentally induced molecular dynamics. In
another recent study, a computational approach was suggested
to translate metabolomics data into flux information (Cortassa
et al., 2015). One main methodological difference between the
studies of Willemsen et al. and Cortassa et al. was the extent
of kinetic information which was needed to estimate cellular
behavior and metabolic fluxes. While Willemsen et al. focused

on minimalistic kinetic information, the study of Cortassa and
co-workers used a detailed kinetic model of glucose catabolic
pathways to derive flux information.

In our presented approach, flux information, which was
implicitly derived from spline interpolation, was interpreted only
indirectly by comparing time-dependent changes in metabolic
functions to concentration changes of biochemical reaction
partners. This procedure revealed information about a rate
which was interpreted in terms of metabolic functions related to
concentration changes in a substrate or co-substrate. Comparing
derived results to other methods, it was shown that changes in
ratios of second- to first-order derivatives between functionally
connected variables potentially reveal time points of regulatory
perturbation within a biochemical interaction. Hence, these
observed perturbations might indicate a change in enzymatic
activity, protein abundance, or allosteric regulation ultimately
leading to a change in the metabolic functions.

The information content of the introduced time-dependent
functions ω(t) is related to entries of the Jacobian matrix J (see
Equation 3) indicating the dynamics of metabolic functions with
respect to (small) concentration changes at a certain steady state.
This theoretical connection of J and ω(t) at a considered time
point t0 might be illustrated in a simple first-order reaction
scheme.

A
k
→B (15)

Here, substance A is interconverted into substance B, and the
reaction velocity is characterized by the rate constant k. The time-
dependent change in concentration of A equals dA/dt = −k·A.
Hence, a general solution of this ODE is given by A(t) = A0e

−kt

which finally yields J11(t0)= ω(A→A, t0)=−k.
With this, the information of ω(t) becomes comparable to

entries of the Jacobian matrix J. Yet, in contrast to entries
of J, characterizing dynamic properties of a metabolic steady
state (d/dt M(t) = 0), functions ω(t) were derived from a
time series of experimental data and might rather be valid
for a non-infinitesimal than for an infinitesimal time frame.
While for limt→t0

∣

∣ω(t)
∣

∣ , |ω(t)| might be assumed to approach
entries of J, this was not tested in the present study and
would need experimental validation. In addition, while a
connection, and probable correlation, to other molecular levels,
such as the proteome or transcriptome, was not experimentally
analyzed, this might be a promising target for analysis in future
studies. However, the incorporation of an interaction matrix,
which, in the present study, was derived from a previously
published reaction network, and which might be derived from
genome-scale metabolic reconstruction works in future studies
(Weckwerth, 2011; King et al., 2015), provides direct evidence
for the biochemical and physiological relevance of the performed
theoretical analysis.

While our results indicate a realistic and biochemically
interpretable output of the presented method, limitations
of application might occur due to several reasons. First, the
presented method significantly depends on the knowledge about
the biochemical network structure and involved regulatory
interactions, e.g., feedback inhibition or feedforward activation.
Although regression analysis of time series data might be
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FIGURE 5 | Absolute value functions of ω(t) for (A) sucrose metabolism and (B) flavonoid biosynthesis in leaves of Arabidopsis thaliana. Abscissae

indicate days of exposure to low temperature and high-light stress conditions. Detailed information about the calculation is provided in the main text (see Equations 13

and 14). Experimental data were derived from a previous study (Doerfler et al., 2013).

performed for all network components independently, deriving
a reliable biochemical interaction matrix Y is essential to
reveal realistic information about time-dependent changes
in metabolic interactions. A second central prerequisite for a
meaningful regression analysis is the design of an adequate
experimental setup. This comprises the number of biological
(independent) replicates as well as the number and interval of
sampling points. It is hardly possible to generalize a number of
replicates or sampling points due to heterogeneous technical or
environmental fluctuations which are introduced by different
analytical techniques, growth conditions or sample types. Yet,
spanning various experimental scenarios, it might be generalized
that the interval of sampling points is crucial to be able to
discriminate between metabolic fast or short-term responses
and slow or long-term responses. Particularly to resolve fast
metabolic regulation, a narrow sampling interval is needed in
order to prevent any over-interpretation of regression analysis
and related derivatives. Comparing the presented approach to
methods of metabolic modeling, a third major limitation is the
missing predictive output by model simulations. For example,
enzyme kinetic models of metabolism aim at going beyond
the time interval of measured rate constants or metabolite
concentrations to predict changes in system dynamics under
changing environmental conditions or due to a mutated
gene. However, although our presented method cannot afford
this simulation output, time-dependent changes within the
considered time interval might indicate regulatory bottlenecks
and kinetic information supporting the numerical solution and
simulation of metabolic ODE models.

In summary, the suggested approach intends to promote
the functional interpretability of metabolic time series data
in context of metabolic network information. Particularly
with regard to multidimensional metabolomics data sets, this
might unravel strategies of complex biochemical regulation
and might overcome some limitations in the generation of
testable hypotheses as we have discussed previously (Nägele and
Weckwerth, 2012). Finally, the direct integration of biochemical
network information with experimental data promises to enable
the functional interpretation and the causal connection of various
levels of molecular organization.

MATERIALS AND METHODS

The described procedure of data analysis, spline interpolation
and graphical representation was performed within the
numerical software environment Matlab R©. A Matlab-based
graphical user interface (FEMTO, Functional Evaluation of
Metabolic Time series Observations) was developed and is
provided, together with a user manual, in the supplements
(Supplementary Files S1, S2).
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