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A Balanced Approach to Adaptive
Probability Density Estimation
Julio A. Kovacs*, Cailee Helmick and Willy Wriggers
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Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics

time series data led us to the general problem of how to accurately estimate the

probability density function of a random variable, especially in cases of very uneven

samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE)

method that effectively optimizes the amount of smoothing at each point. To do this,

BADE relies on an efficient nearest-neighbor search which results in good scaling for

large data sizes. Our tests on simulated data show that BADE exhibits equal or better

accuracy than existing methods, and visual tests on univariate and bivariate experimental

data show that the results are also aesthetically pleasing. This is due in part to the use of a

visual criterion for setting the smoothing level of the density estimate. Our results suggest

that BADE offers an attractive new take on the fundamental density estimation problem

in statistics. We have applied it on molecular dynamics simulations of membrane pore

formation. We also expect BADE to be generally useful for low-dimensional applications

in other statistical application domains such as bioinformatics, signal processing and

econometrics.

Keywords: adaptive density estimation, covariance ellipsoid, covariance smoothing, optimal number of nearest

neighbors, R∗-tree, visual criterion

1. INTRODUCTION

One of the most popular non-parametric density estimation methods is kernel density estimation
(KDE), whereby the density is estimated by means of a sum of kernel functions centered at the
sample points (Silverman, 1986; Wand and Jones, 1995):

f̂ (x) = 1

M

M
∑

j = 1

KH(x− xj), (1)

where KH(x) = det(H)−1/2K(H−1/2 · x), K : R
d → R being the d-variate kernel and M the data

size. One of the most commonly used kernels is the Gaussian: K(x) = Cd exp(−‖x‖2/2), with Cd a
normalizing constant that depends on the dimension d. The d × d matrix H, called the bandwidth
matrix, could either be fixed, or it could depend on the sample point xj (“sample point estimator”)
or on the test point x (“balloon-type estimator”).

Originally, we adopted a fixed-bandwidth KDE approach in our recent application to Fast
(Mutual) Information Matching (FIM) of molecular dynamics time series data (Kovacs and
Wriggers, 2016). The fixed-bandwidth approach is well mature and there exist a wide range
of methods for bandwidth selection (see e.g., Jones et al., 1996 for a survey). Among these,
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the method by Sheather and Jones (1991) could be regarded as
the de facto standard in the univariate case (Jones et al., 1996).
Our application to molecular dynamics time series relies on
non-negative activity functions (Kovacs and Wriggers, 2016). As
discussed in more detail by Wriggers et al. (2017), the graph-
based activity functions we typically use are zero during quiescent
time periods of the simulation, leading to an uneven distribution
of activity values with a strong peak at zero that is not amenable
to fixed-bandwidth KDE approaches. In protein simulations we
have therefore recommended to use a rms-fluctuation-based
activity that gives a more even histogram (Kovacs and Wriggers,
2016). Unfortunately this is not an option for the membrane
simulations in the accompanying paper (Wriggers et al., 2017),
so we require a variable-bandwidth approach that can handle
graph-based activity functions in that application.

The situation in regard to the variable-bandwidth KDE
methods is less well developed. In fact, it has not been easy
to make significant performance improvements by allowing the
bandwidth to vary from point to point (Farmen and Marron,
1999). Several approaches have been proposed, with varying
degrees of success across different types of data sets. One of the
earliest approaches was that of Breiman, Meisel and Purcell, who
used bandwidths proportional to the distance from each sample
point to its kth nearest neighbor (Breiman et al., 1977). So, for
dimensions d > 1 the j-dependent bandwidth matrices are scalar
(i.e., multiples of the identity matrix). Later, Abramson (1982)
proposed a square-root law, whereby the bandwidth at each point
is taken to be inversely proportional to the square root of the
density. Since the actual density is not known, a “pilot density”
is needed, which is usually computed using a fixed-bandwidth
method. Like the previous approach, in d > 1 it produces
bandwidth matrices that are scalar.

One of the earliest alternative approaches to improve the
performance of variable bandwidth estimators was proposed by
Sain and Scott (1996): the binned kernel estimator, in which
the support of the density is divided in m equal parts. Each
of these subintervals yields a value of the bandwidth, which is
then used for the kernels centered at points belonging to the
corresponding subinterval. This method was extended to the
multivariate setting by Sain (2002). Hazelton (2003) refined this
approach (in the univariate case) by using cubic splines instead of
piecewise-constant functions to model the bandwidths, showing
improvements in the quality of the density estimates. However,
these approaches are very slow, as they involve an optimization
problem over many variables. Brewer (2000) showed improved
results relative to Sain and Scott (1996) by using a Bayesian
approach based on likelihood cross-validation, which works
specially well for small sample sizes, and adds a local smoothing
step to enhance the visual appeal of the density estimates. This
method was extended by Zougab et al. (2014) to the multivariate
case, in which the bandwidth matrices are not restricted to being
diagonal. Like Brewer’s approach, it works very well for small
sample sizes, but the complexity scales quadratically with the
sample size.

Attempts at alleviating the mentioned limitations include
a class of methods that use convex combinations (i.e., linear
combinations with non-negative coefficients adding up to 1) or

mixtures of densities of certain types. Vapnik and Mukherjee
(2000) used a mixture of Gaussian densities in which the
coefficients are optimized by matching the sample’s cumulative
distribution function (CDF) with the CDF estimator. The
Gaussian densities are isotropic (i.e., having scalar covariance
matrices). Song et al. (2008) assume the density to be a convex
combination of several prototype densities, and optimizes the
coefficients by matching the mean estimators. The prototype
densities are Gaussians with diagonal covariance matrices. Ganti
and Gray (2011) proposed a density estimator in which the
kernel functions are convex combinations of isotropic Gaussians
of various widths. The expected outcome is that this would
produce a richer set of function shapes which would compensate
the limitation arising from using isotropic Gaussians. However,
the quality of the resulting density estimates (judged by visual
inspection) is questionable.

Several other interesting ideas have also been put forward.
For instance, Katkovnik and Shmulevich (2002) described a
univariate balloon-type estimator based on the “intersection
of confidence intervals” (ICI) rule (i.e., shrinking sequences
of intervals), for which, at each test point x, a fixed,
arbitrary sequence of increasing bandwidth values is scanned
until the ICI criterion is met, yielding the bandwidth for
that point. Wu et al. (2007) used a cluster analysis of the
set of nearest neighbors to derive the bandwidths at each
sample point. The analysis is restricted to isotropic (scalar)
bandwidth matrices. Shimazaki and Shinomoto (2010) used
a “local MISE” criterion, which includes a window factor
in the integral defining the mean squared integrated error
(MISE) to derive local bandwidths in the univariate case. The
“Rodeo” approach (Liu et al., 2007) is specially suited for high-
dimensional data. The density is assumed to be the product
of a non-parametric factor and a parametric one, which is
known either completely or up to finitely many parameters.
Bandwidth matrices are restricted to being diagonal, and a
sparsity condition has to be imposed for the problem to be
tractable.

Motivated by the various limitations of previous methods,
here we propose a novel approach, which we call “BADE”
(for Balanced Adaptive Density Estimation) that offers several
desirable features: good scaling for large data sizes (sublinear
complexity in M for d = 1 and 2); not restricted to diagonal
bandwidth matrices; free of data-dependent parameters (the
user does not need to make any choices). In fact, we are no
longer dealing with bandwidth matrices per se, although there
is a connection with kernel estimation through the “effective”
number of neighbors (Section 2.1).

2. BALANCED ADAPTIVE DENSITY
ESTIMATION

Let P = {p1, . . . , pM} ⊂ R
d be a sample of size M drawn

independently from an unknown d-dimensional distribution
having probability density function f : R

d → R. Let 6P be
the covariance matrix of P, which we use as an estimate of the
covariance matrix of the true distribution. This matrix will be
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used later to give us an idea of the global size and shape of the
whole sample.

Unlike most of the previous approaches, we do not use a
kernel-based estimation approach. Instead, the basic idea is the
following: for each probe point x ∈ R

d where we want to estimate
the density, we determine the set Nk(x) of its k nearest neighbors
among P, and compute its covariance matrix:

6k(x) = Cov(Nk(x)), (2)

which gives us a basic description of the size and shape of the set
of sample points near x, bymeans of the “covariance ellipsoid” (or
“inertia ellipsoid”) defined by the eigenvectors and eigenvalues of
this matrix. The volume (modulo a constant) of that ellipsoid is
Vk(x) =

√

det6k(x). (Recall that the determinant is the product
of the eigenvalues, which are the squares of the corresponding
principal axes of the ellipsoid.) Then, our first version for the
density estimate at x is:

f̂ (x) = C · k

MVk(x)
, (3)

where C is a scaling constant. In practice, the density estimate is
computed, omitting C, on a grid covering the sample P, and then

C is determined so that the integral of f̂ is 1.
Of course, this expression is very reminiscent of the original

proposal of Loftsgaarden and Quesenberry (1965), just with
the volume of the ellipsoid in place of the volume of the
sphere of radius equal to the distance from x to the kth
nearest sample point. It is well known that Loftsgaarden and
Quesenberry’s method produce heavy tails and spiky density
estimates (Silverman, 1986). The spikiness is due to the use of the
simple kth nearest neighbor, which is highly variable. The use of
Vk(x) drastically decreases this variability, since this ellipsoid—
being the covariance ellipsoid of a set of k neighbors— is much
more stable than a domain (whether spherical or ellipsoidal)
whose size is based simply on the distance to the kth neighbor.
Note that this ellipsoid does not, in general, contain the set of
neighbors on which it is based.

2.1. Fixing Heavy Tails
The basic idea described above still suffers from a number
of drawbacks. First, as with the method of Loftsgaarden and
Quesenberry (1965), this basic idea produces heavy tails—since
the set of nearest neighbors remains virtually constant as the
point xmoves away (and exactly constant in the univariate case).
This can be remedied by introducing a decay factor, giving an
“effective” k:

ke(x) = k · exp
[

−1

2
(x− µk(x)) · 6k(x)

−1 · (x− µk(x))
T
]

, (4)

where µk(x) = Mean(Nk(x)). This factor follows a decay rate
corresponding to the distribution of the k nearest neighbors of x,
and is useful in the “interior” of the set P as well as the “exterior.”
Thus, our second version for the density estimate is

f̂ (x) = C · ke(x)

MVk(x)
. (5)

We note that due to the exponential decay of ke(x), this estimator
is integrable. Incidentally, we can write Equation (5) as follows
(using the kernel notation as in Equation 1):

f̂ (x) = C

M
· k ·K6k(x)(x−µk(x)) ≈

C

M
·

k
∑

l = 1

K6k(x)(x−prl ), (6)

where {prl | 1 ≤ l ≤ k} = Nk(x). Thus, the estimator given by
Equation (5) is approximately like a balloon-type Gaussian kernel
estimator, but based only on the k nearest neighbors of the probe
point x, instead of all the sample points.

2.2. Determination of k
A second drawback of our basic idea is: what should k be?
Loftsgaarden and Quesenberry (1965) take it as independent of x,
depending only on the sample sizeM. We can improve on this by
choosing k in such a way that the volume Vk(x) of the covariance
ellipsoid be a certain function of f (x). Two common choices, in a
sense antipodal to each other, are:

1. Volume = const. This would yield a k that is approximately
proportional to the density.

2. Volume = const/f . This would yield a k that is approximately
constant.

We found that neither of these extremes produces good density
estimates: a constant volume is essentially like a histogram: it will
not resolve sharp enough peaks, and will yield zero in regions
where the sample points are widely spread; a constant k will tend
to be too large in region of low density, and too small in regions
of high density.

However, the geometric mean of both offers a good
compromise: Volume = const/

√

f . (This is why we named our
approach “balanced.”) Hence, we have the equation

Vk(x) = const/
√

f (x). (7)

For f (x) we can use, in this equation, the estimate f (x) ≈
C1k/Vk(x). This allows us to solve the equation for Vk(x):

Vk(x) =
C2

k
, (8)

where C2 (which depends on M but not on x) subsumes the
various constants. Figure 1 depicts the situation graphically:
when k is small, the left-hand side of the equation (i.e., Vk(x))
is small, while the right-hand side (C2/k) is large, and vice versa.
The point where the two curves cross gives the optimal k for this
x. Solving this equation is easy: keep increasing k by 1 until the
inequality

Vk(x) · k < C2 (9)

no longer holds. This can be efficiently implemented in code
by means of incremental nearest neighbor methods (Hjaltason
and Samet, 1999), in which the cost of retrieving each additional
neighbor is essentially O(1) (see “Complexity,” below).
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FIGURE 1 | Graphical illustration of the determination of the optimal

number of nearest neighbors, k, to be used at each test point x (this

particular plot corresponds to the univariate Old Faithfual data set, at

x0 = 3.59). The intersection of both curves provides the solution to

Equation (8).

FIGURE 2 | Comparison between timings obtained by three methods

applied to 2-dimensional data sets. The data sets were artificially

generated to simulate a bimodal distribution, shown in Figure 3A for

M = 1, 000. See the section on Complexity for more details.

2.3. Determination of C2
The constant C2 in Equation (8) depends on M, d, and f . As
pointed out in the introduction, one of our goals was to devise
a method that does not depend on parameters that have to
be adjusted for each particular data set. Our method satisfies
this condition (as we’ll describe in a moment) except for the
dependence on the dimension d, which has to be worked out for
each d. (We worked out the values for d = 1 and 2 since these are
the ones that most interest us for our applications.)

In d > 1 the data needs to be rescaled so that each coordinate
have unit variance. This is important not only for the derivation
of the expression of the constants, but also for the correct
functioning of the nearest neighbor search: if the rescaling were
not done, then the neighbor search would be as if using ellipsoids
instead of spheres for its distance queries. (We preferred this
transformation rather than sphering—making the covariance
matrix the identity—since the latter changes the correlations,
being a skewed transformation.) In these conditions, we factor

the volume of the covariance ellipsoid of the whole sample
(square root expression in this equation) out of C2:

C2 = H0

√

det6P. (10)

It turns out that H0 does not depend on f , but only on
M and d. We verified this by means of a “visual criterion.”
The reason we chose this type of criterion, instead of a more
objective one such as MISE, is that good MISE performance
does not guarantee visually appealing density estimates (Farmen
and Marron, 1999), which is one of our goals. One such visual
criterion was proposed byMarron and Tsybakov (1995), in which
the distance between the graphs of both functions is evaluated,
instead of the vertical distance. Here we needed a different type
of criterion to determine H0: we ourselves examined by eye the
density estimates resulting from an array of values of M and
H0, for various simulated densities. For each M and density,
we looked for the minimum value of H0 that yielded a density
estimate that did not look undersmoothed. Even though this
visual criterion might seem rather ad hoc, it actually yielded
surprisingly good linear relationships in log/log scale on the
H0/M plane. The fitted lines, which were independent of the
particular density, correspond to the following power laws:

H0 =
{

0.028M4/5 for d = 1,

0.162M2/5 for d = 2.
(11)

It is interesting to note that the expression for d = 2 is nearly

equal to the square root of that for d = 1:
√
0.028M4/5 =

0.167M2/5. This is reassuring and adds confidence to our visual
criterion, in addition to providing an obvious conjecture about
the expression for H0 for d > 2 (which we haven’t tested).

Amore theoretical justification of the expression forH0 would
probably be related to how the human visual system processes
information. One possible approach could be the addition of a
regularization term that would emulate visual perception. An
intriguing link to the standard MISE theory in kernel density
estimation is that the optimal bandwidth, in the 1-dimensional
case, is proportional toM−1/5, which isH0/M (Wand and Jones,
1995).

We emphasize that this visual criterion was used only as a
premise to determine the optimal dependence (on M) of the
coefficient C2. This optimal dependence is determined once and
for all—the user does not need make any choices. However, the
user could, with discretion, vary the coefficients in the formula
for H0 (Equation 11), to obtain density estimates with greater or
lesser amount of smoothing than that provided by the values in
Equation (11). As a rule of thumb, our visual tests (not shown)
suggest to keep the variation within a factor 2 from the stated
values.

2.4. Covariance Smoothing
To further improve the visual appeal of the density estimate
given by Equation (5), we added an optional smoothing step
to our method. The smoothing procedure was inspired by that
of Brewer (2000), who averages the inverse variances of two
neighboring sample points on either side of each sample point,
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FIGURE 3 | (A) Example of a data set used for the timing comparison shown in Figure 2. Here M = 1, 000. (B) Corresponding contour plot of the density estimate,

which includes the covariance-smoothing step.

FIGURE 4 | Test densities (Gaussian mixtures) used in our univariate simulation study. (A) H3 (Kurtotic unimodal); (B) H4 (Skewed bimodal); (C) H5 (Trimodal).

producing estimates that are relatively free from unnecessary
minor fluctuations. Since our approach is grid-based, we need a
more sophisticated procedure, as averaging inverse variances of
neighboring grid points would not be correct, since the spacing
is arbitrary. We need to weight the contributions of all the grid
points according to their respective covariance matrices and
locations relative to the test point. Denoting the grid points
by xj (j = 1, . . . ,G), where G is the size of the grid, and
the corresponding covariance matrices (Equation 2) by 6(xj)
(omitting for clarity the subindex that indicated the number
of nearest neighbors used), we define the smoothed precision
matrices by:

6̂−1
i =

∑G
j = 1 wi,j 6(xj)

−1

∑G
j = 1 wi,j

, (12)

where the weights (influence of point j on point i) are given by

wi,j =
1

√

det6(xj)
· exp

[

−1

2
(xi − xj) · 6(xj)

−1 · (xi − xj)
T
]

.

(13)
Thus, the contribution of each covariance matrix is in accordance
with the value of the Gaussian function defined by it, at each of
the grid points. This equation shows that the smoothing can be
considered local, in the sense that points xj where 6(xj) is large
(where the density is low) or which are far from xi contribute
little, and only points that are close to xi and with a small

6(xj) will contribute significantly to 6̂i. (Note: “large” or “small”
applied to a matrix mean that the volume of its ellipsoid—or
equivalently, its determinant, or the product of its eigenvalues—
is large or small.)

Since both the smoothing step just described and the main
step (Equation 5) are local, we see that ourmethod does not suffer
from the non-locality issues that affect, for instance, one version
of Abramson’s square-rootmethod (basically, extreme tail sample
points affect the density estimate elsewhere too much; see Terrell
and Scott, 1992; Hall et al., 1995 for details).

Finally, we also need the smoothed version of the “effective”
k values (Equation 4). They are computed similarly to
Equation (12):

k̂e,i =
∑G

j = 1 wi,j ke,j
∑G

j = 1 wi,j

. (14)

Then, the smoothed version of the density estimate is given by

f̂ (xi) = C · k̂e,i
√

det 6̂i

, (15)

where the constant C is determined by the condition of f̂
integrating to 1.
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FIGURE 5 | ISE statistics for the three univariate test densities (H3, H4, H5), compaing our method (BADE, in orange) and VB3 (Hazelton, 2003, in gray).

Also shown are results for larger values of the sample size M, not considered by Hazelton.

2.5. Complexity
We analyze separately the two steps of our method: the main
estimator (Equation 5) and the (optional) covariance-smoothing
step (Section 2.4).

The first, main step requires the incremental retrieval, for
each test point x, of successive nearest neighbors. In two and
higher dimensions, the R∗-tree data structure (Beckmann et al.,
1990) provides an effective means to implement such a retrieval
procedure (Hjaltason and Samet, 1999). This procedure makes
use of “priority queues” or heaps, one of its most efficient
implementations being the pairing heap (Fredman et al., 1986),
in which the cost of an insertion operation is O(1). Using this

implementation, the cost of finding k nearest neighbors among
M data points in 2 dimensions turns out to be O(k logM)
(Hjaltason and Samet, 1999). (The complexity analysis gets more
complicated in higher dimensions; see Hjaltason and Samet
(1999) for details. In dimension 1, determining the sequence of
nearest neighbors is a simple logarithmic-time procedure which
does not require the use of any special data structure.) The
number k will vary from point to point, but always k ≤ M, and
so the per-point cost would be ≤ O(M logM). However, this
is not a typical situation, as the average k will usually be much
less than M. If fact, more realistic estimates for the average k
are of the order O(M1/2) (Loftsgaarden and Quesenberry, 1965;
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FIGURE 6 | Density estimates for the univariate Old Faithful data set,

comparing our method (BADE) with LS (Brewer, 2000), CAKE (Ganti

and Gray, 2011), and VB3 (Hazelton, 2003). The second and third rows

show, respectively, the optimal effective number of nearest neighbors, and the

standard deviation of the set of the k nearest neighbors, at each point of a

regular grid of size 100. The marks on the x axis indicate the sample points.

Silverman, 1986). Hence, the total cost of the main step can be
approximated by

T1 =
{

O(G logM) for d = 1,

O(GM1/2 logM) for d = 2.
(16)

where G is the size of the grid. We note that an incremental
implementation of the nearest-neighbor search is essential to
achieve this low complexity. Algorithms that are not incremental
need to recompute the whole set of nearest neighbors each
time one more is needed, with a significant deterioration in the
efficiency.

Figure 2 shows a comparison between timings obtained by
three methods applied to 2-dimensional data sets of a wide range
of sizes, from M = 20 to 108. The data sets were artificially
generated to simulate a bimodal distribution, shown in Figure 3A
for M = 1, 000, with the corresponding density estimate shown
in Figure 3B. The three methods were: (a) FIM (using a fixed
bandwidth) (Kovacs and Wriggers, 2016); (b) BADE-RST using
the R∗-tree to retrieve nearest neighbors; (c) BADE-naive using
a naive way to retrieve nearest neighbors (i.e., by sorting the
data points according to their distances to each probe point). We
can see that FIM and BADE-RST have very similar asymptotics.
In fact, FIM has a complexity of O(M) (Kovacs and Wriggers,
2016), which is slightly worse than that of BADE-RST, although

FIGURE 7 | Density estimates for the suicide data set, comparing our

method (BADE) with LS (Brewer, 2000) and CAKE (Ganti and Gray,

2011). The second and third rows show, respectively, the optimal effective

number of nearest neighbors, and the standard deviation of the set of the k

nearest neighbors, at each point of a regular grid of size 100. The marks on

the x axis indicate the sample points.

the constant is smaller for FIM. However, FIM only computes
the mutual information, not the whole density function as BADE
does, which introduces the factor G in Equation (16).

As for the second step (covariance smoothing), Equations (12)
and (14) tell us that the cost will be

T2 = O(G2), (17)

where the constant can be made quite small by summing each
Gaussian function only over the ellipsoid where it has significant
values (usually a small fraction of the total volume).

3. RESULTS

In order to evaluate the accuracy of BADE, we performed
statistics of the ISE (Integrated Squared Error) for simulated
samples taken from known distributions (Figures 4, 5 for the
univariate case; Figures 9, 10 for the bivariate case). The ISE of

an estimator f̂ is defined as

ISE =
∫

(

f̂ (x)− f (x)
)2
dx ≈ 1x1 · · ·1xd ·

G
∑

j = 1

(

f̂ (xj)− f (xj)
)2
.

(18)
Also, we considered some real data sets to compare the density
estimates of BADE with those of previous methods (Figures 6–8
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for the univariate case; Figures 11, 12 for the bivariate case). The
BADE results were computed using Equation (15), i.e., including
the covariance-smoothing step.

3.1. Univariate Case
3.1.1. Simulated Examples

The three univariate simulated densities, all Gaussian mixtures,
on which we tested our method are shown in Figure 4. They are
densities 3, 4, and 5 used by Hazelton (2003), so we will refer to
them in this paper as H3, H4, and H5:

FIGURE 8 | Density estimates for the Hidalgo stamp data set,

comparing our method (BADE) with LS (Brewer, 2000). The second and

third rows show, respectively, the optimal effective number of nearest

neighbors, and the standard deviation of the set of the k nearest neighbors, at

each point of a regular grid of size 100. The marks on the x axis indicate the

sample points; notice the equispacing due to rounding.

1. H3 (Kurtotic unimodal, equal to density #4 in Marron and
Wand, 1992): 2

3N(0, 1) +
1
3N(0,

1
10 ). (We denote the normal

distribution with mean µ and standard deviation σ by
N(µ, σ ).)

2. H4 (Asymmetric bimodal, similar to density #8 in Marron
and Wand, 1992): 45N(0, 1)+

1
5N(2,

1
5 ).

3. H5 (Symmetric trimodal, similar to density #9 inMarron and
Wand, 1992): 9

20N(−
7
4 , 1)+

9
20N(

7
4 , 1)+

1
10N(0,

1
5 ). (Note the

typo in Table 1 of Hazelton’s paper in the equation for this
density).

We compared the ISE statistics of our method, for each
of the above three densities, with those of Hazelton (2003).
They are displayed, in logarithmic scale, in Figure 5. We also
considered larger sample sizes M, up to 10,000. For each
density and sample size, 500 simulated samples were produced.
We can observe that in most cases the ISE values of our
method (BADE) are lower that those of Hazelton’s method
(VB3). The exceptions are H4 with M = 100 and 200, for
which they are virtually the same. In some cases we note
larger variability in BADE’s ISE values than in VB3’s. This is
presumably due to a lesser degree of smoothing in BADE than
in VB3.

Even though the differences in accuracy seem to be small in
some cases, even a small consistent difference can be considered
significant in this problem, as it has been difficult to make
performance improvements in density estimation even when
moving from fixed-bandwidth to variable-bandwidth methods
(Terrell and Scott, 1992).

3.1.2. Real Examples

We tested our method on three univariate real data sets.
Although not related to our intended application domain of
molecular dynamics, the three data sets are widely used in the
relevant statistics literature so that we can compare results easily
with those from other methods:

1. Univariate Old Faithful: lengths, in minutes, of 107 eruptions
of the Old Faithful geyser (Silverman, 1986).

2. Suicide: lengths, in days, of 86 treatment spells of control
patients in a suicide study (Silverman, 1986).

FIGURE 9 | Test densities (Gaussian mixtures) used in our bivariate simulation study. (A) F2 (bimodal); (B) F3 (trimodal); (C) F4 (dumbbell unimodal).

Frontiers in Molecular Biosciences | www.frontiersin.org 8 April 2017 | Volume 4 | Article 25

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Kovacs et al. BADE

FIGURE 10 | ISE statistics for the three bivariate test densities (F2, F3, F4), comparing our method (BADE, in orange) and BABM (Zougab et al., 2014, in

gray). Also shown are results for larger values of the sample size M, not considered by Zougab et al. Their results are shown by gray rhombi representing the mean

plus and minus 1 standard deviation, which are the only data they reported.

3. Hidalgo stamp: paper thickness, in mm, of 485 stamps from
the 1872 Hidalgo stamp issue (Izenman and Sommer, 1988).
This data set is also available in the locfit package of the R
software (Loader, 2013).

Results for the Old Faithful data set are shown in Figure 6,

where the density estimate from our method, BADE, is compared

to three others: LS (Brewer, 2000), CAKE (Ganti and Gray,
2011), and VB3 (Hazelton, 2003). We can see that the left peak

matches quite well among the four methods, except that CAKE’s

estimate is somewhat shifted and has a wide shoulder, and LS’s

estimate has a lower value at this peak. As for the right peak,

again CAKE’s position is quite shifted to the right, and BADE’s
estimate shows a splitting in two submodes, which is visible
just slightly in the other estimates. Finally, we observe that the
other methods produce heavier tails than BADE (BADE will
always produce “light,” exponential tails due to the “effective”
k (Equation 4). This ke as a function of x is shown in the
second row of the figure, before the covariance-smoothing step.)
The third row of the figure shows the standard deviation σk(x)
(the one-dimensional analog of Vk(x)) of the set Nk(x) of k
nearest neighbors of x. Notice the balanced feature of themethod:
regions of higher k correspond to regions of lower σk, and vice
versa.
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FIGURE 11 | Density estimates for the bivariate Old Faithful data set, comparing our method (BADE) with CAKE (Ganti and Gray, 2011). (A) CAKE

estimate. (B) BADE estimate. (C) BADE estimate shown as a contour plot, along with the sample points. (D) Effective k values (i.e., ke) on a grid of size 100× 100. (E)

Vk on the same grid. Both ke and Vk are the ones before applying the covariance smoothing step.

The density estimates for the suicide data set are shown
in Figure 7. We see a very good agreement among the three
methods: BADE, LS (Brewer, 2000), and CAKE (Ganti and Gray,
2011). BADE shows a small satellite mode of the main peak,
where LS and CAKE exhibit a small shoulder instead. On the
other hand, CAKE is significantly more sensitive than BADE
and LS to the sample points around x = 250, x = 320, and
x = 600, while BADE and LS show only a small mode at around
x = 250 and then they taper off. In this case we can see that that
the exponential decay of ke is slow as x grows, due to the large
separation of the sample points at the right end, and hence the
large σk values in that region.

The Hidalgo stamp comparison between BADE and LS is
shown in Figure 8. In contrast with the Old Faithful example,
here BADE’s estimate looks more smoothed than LS’s, but
otherwise the position and number of modes is the same for both
methods. This is interesting in connection with the results of the
analysis carried out by Brewer (2000), whose LS method was the
only one, among the ones considered in his comparison with
previous methods, that revealed exactly five modes.

3.2. Bivariate case
3.2.1. Simulated Examples

The three bivariate simulated densities, all Gaussian mixtures, on
which we tested our method are shown in Figure 9. They are

densities F2, F3, and F4 used by Zougab et al. (2014), and we will
refer to them by the same names:

1. F2 (bimodal, similar to density H of Wand and Jones, 1993):
1
2N[(1, 1),61]+ 1

2N[(−1,−1),62],

where 61 =
( 1 1/2
1/2 1

)

and 62 =
( 1 −1/2
−1/2 1

)

.

2. F3 (trimodal, equal to density K of Wand and Jones, 1993):
3
7N[(−1, 0),61]+ 3

7N[(1, 2/
√
3),62]+ 1

7N[(1,−2/
√
3),63],

where 61 =
( 9/25 63/250
63/250 49/100

)

and 62 = 63 =
( 9/25 0

0 9/25

)

.

3. F4 (“dumbbell” unimodal):
4
11N[(−2, 2),61]+ 3

11N[(0, 0),62]+ 4
11N[(2,−2),63],

where 61 = 63 =
(

1 0
0 1

)

and 62 =
(

0.8 −0.72
−0.72 0.8

)

.

Results of ISE statistics comparing our method with that of

Zougab et al. (2014) are displayed in Figure 10. Zougab et
al.’s results were taken directly from their paper, but since

they report just the mean and standard deviation of the

ISE values, we show those two parameters as rhombi, whose
horizontal line corresponds to the mean, and whose top
and bottom vertices correspond to ±1 standard deviation
from the mean. We also considered larger sample sizes, up
to 10,000. For each density and sample size, 100 simulated
samples were produced. We can observe that in most cases
the ISE values of our method (BADE) are lower that those of
Zougab et al.’s method (BABM). The exceptions are F3 with
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FIGURE 12 | Density estimates for the UNICEF data set, comparing our method (BADE) with BABM (Zougab et al., 2014). (A) BABM estimate. (B) BADE

estimate. (C) BADE estimate shown as a contour plot, along with the sample points. (D) Effective k values (i.e., ke) on a grid of size 100× 100. (E) Vk on the same

grid. Both ke and Vk are the ones before applying the covariance smoothing step.

M = 50 and F4 with M = 200, for which they are very
similar.

3.2.2. Real Examples

We tested our method on two bivariate real data sets, and
compared the results with those from other methods. Again
we chose data from outside our intended application in
molecular dynamics to better compare with the available statistics
literature:

1. Bivariate Old Faithful: length of eruptions vs. interval
between consecutive eruptions, for 272 observations of the
Old Faithful geyser (Härdle, 1991). These data are also
available on the Internet, as extra material to Wasserman’s
book (Wasserman, 2004).

2. UNICEF: under-5 mortality (number of children who died
under age 5 per 1,000 live births) vs. the average life expectancy
(in years) at birth, for 73 countries with Gross National
Income less than US$1,000 per annum per capita. These data
are available from the UNICEF and also in the ks package of
the R software (Duong, 2016).

Results for the bivariate Old Faithful data set are shown in
Figure 11, where the density estimate from our method, BADE,
is compared to that from CAKE (Ganti and Gray, 2011). (In
this figure, we show the scaled coordinates in order to match
CAKE’s plot.) Both estimates show two main peaks; however,

CAKE’s estimate (Figure 11A) has, in addition, many other
peaks that are not present in BADE’s estimate, which is a
clean bimodal density (Figures 11B,C). Figures 11D,E show,
respectively, the effective number of nearest neighbors, ke, and
the area of the covariance ellipse, Vk (before the covariance-
smoothing step). As in the univariate case, we see that regions
of large ke correspond to regions of small Vk, and vice
versa.

The density estimates for the UNICEF data set, computed
with our method and BABM (Zougab et al., 2014), are
shown in Figure 12. Even though there is a good overall
agreement between the two, BADE’s estimate is apparently
less smoothed than BABM’s, resulting, in particular, in a
shifted position of the mode toward the upper-left of the
plot. In fact, BABM’s estimate is virtually the same as that
obtained using a fixed global bandwidth matrix (Zougab
et al., 2014, Figure 3). Figures 12D,E show again the
inverse relationship between ke and Vk (before covariance
smoothing).

4. CONCLUSION

We have implemented a novel adaptive density-estimation
approach suitable for our statistical evaluation of membrane
simulations in Wriggers et al. (2017).
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Unlike most well known density estimation methods, ours is
not based on kernels. Rather, it estimates the density at a given
point directly, using the information about the sets of k nearest
neighbors, finding the optimal k in an adaptive way, by balancing
it with the size of the “covariance ellipsoid” of the set of nearest
neighbors. Thus, the calculation does not involve solving costly
optimization problems, and is free of data-dependent parameters.
(However, in the optional smoothing step, one could vary the
coefficients in Equation (11), to obtain density estimates with
greater or lesser amount of smoothing).

We note that, specially in the context of fixed-bandwidth
kernels, the covariance matrix could be considered a parameter
which depends on the data. However, since in our approach it is
not a fixed value, but rather a function of the point, we do not
call it a parameter. Rather, the parameters are the coefficients in
Equation (11), which are fixed (except for the optional smoothing
variation) and do not depend on the data.

BADE is well suited for large data sizes. Methods that center
a kernel function at each sample point become very expensive
as the data size grows. Instead, BADE relies only on nearest-
neighbor information, whose average required number k̄(M) is
such that k̄(M)/M → 0 as M → ∞, where M is the sample size
(Loftsgaarden andQuesenberry, 1965). Thus, themain step scales
very well with data size (sublinearly in one and two dimensions,
Equation 16). On the contrary, methods such as that of Zougab
et al. (2014) (with which we compared ours) scale quadratically
with the data size and are thus restricted to smaller data sets.

Our method is free of restrictions on the bandwidth matrices,
such as diagonal or scalar. In fact, we are no longer dealing with
“bandwidth” matrices, but covariance matrices of sets of nearest
neighbors.

BADE has been defined for data of any dimension; however,
we have worked out the constants and made tests only for
dimensions 1 and 2. It is most efficient in low dimensions,
due to the need to compute nearest neighbors. For this, it
takes advantage of the R∗-tree data structure (Beckmann et al.,
1990), which is, to the best of our knowledge, the most efficient
one for nearest-neighbor search in low dimensions. In higher
dimensions the R∗-tree data structure becomes less efficient
due to the increasing relative volume of the “corners” of the
hyperrectangles, and so better adapted data structures would be
preferable in this case (see Hjaltason and Samet, 1999 for details).

Our method was validated, both in the univariate and the
bivariate settings, by ISE analyses on some simulated densities.
These analyses consisted in generating a number of simulated
samples (500 for the univariate case, 100 for the bivariate case)
and measuring the integrated square error (ISE) between the
density estimated from each sample and the actual density

function. The ISE statistics were compared with similar results
from previous approaches that were among the best available. In
most cases we obtained lower errors, and in the remaining few
cases the performance was virtually identical.

The apparent synergy between objective (low ISE) and
subjective (visual appeal) criteria in our algorithm is a curious
phenomenon that has also been observed by other researchers.
Farmen and Marron (1999) pointed out that “visual error
appears to be quite informative about performance,” whereas
Brewer (2000) stated that “subjective feeling about density
estimates” produces “estimates relatively free from unnecessary
minor fluctuations.” Although the earlier work provides a
rationale for including subjective criteria in our work, an open
research question is whether aesthetics and objective error are
covariant. Farmen and Marron have attempted to quantify visual
appeal (Farmen and Marron, 1999) but they found that “good
performance in MISE does not guarantee visually appealing
curve estimates.” In contrast, Hazelton (2003) states that “gains
in ISE may understate the improvements in visual appeal,” which
seems to imply at least a weak dependence. A more systematic
investigation of the objective value of subjective criteria could be
the subject of future work.

The optional covariance-smoothing step in BADE yields very
visually appealing density estimates, as our real-data examples
show, but is not strictly necessary if all that’s needed is a density
estimate to perform further calculations. For instance, one of the
applications for which we need bivariate density estimates is the
computation of Mutual Information. In this case we don’t need
visually appealing functions, and thus we can save significant
compute time.

At this time the algorithm is implemented as a C program. It
will be freely disseminated as a part of release 1.5 of our software
package TimeScapes (Kovacs and Wriggers, 2016). The web site
for our software is http://timescapes.biomachina.org.
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