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reduced translation on memory and long-lasting forms of synaptic 
plasticity will be considered, as well as the consequences of altered 
long-term plasticity on spatial information processing and memory. 
Lastly, pharmaceutical interventions are discussed that enhance 
age-related memory loss by modifying signaling pathways that elicit 
new protein synthesis, and new drug targets for alleviating cognitive 
aging are suggested based on recently discovered mechanisms of 
long-lasting synaptic plasticity.

TranscripTion and TranslaTion in The aging Brain
reduced neural proTein synThesis raTe during aging
It was not until the 1980s that methods for routinely obtaining 
accurate measurements of brain proteins became standardized 
and reliable. Prior to this time, the experimental methods did 
not consider specific activity of the precursor pool (reviewed by 
Richardson and Birchenall-Sparks, 1983), which resulted in highly 
variable outcomes across studies. Using improved methodology, 
several groups found that levels of brain protein synthesis increase 
during development in the rodent, reaching maximum levels some-
time during the first 6 months of age, and then decline thereafter 
(Dwyer et al., 1980; Ekstrom et al., 1980; Fando et al., 1980; Ingvar 
et al., 1985; Smith et al., 1995; but see Filion and Laughrea, 1985; 
reviewed by Richardson, 1981; Richardson and Birchenall-Sparks, 
1983; Richardson et al., 1983). A similar pattern was observed in the 
white leghorn chicken (Yang et al., 1977). There is some disagree-
ment pertaining to the exact time course of the decline, with some 

The idea that changes in the amount of protein synthesis in the brain 
might explain some of the cognitive effects of aging began to be 
tested in the 1960s (Flexner et al., 1962, 1963, 1967). Methodologies 
advanced during the ensuing two decades, but the general strategy 
was to determine rates of translation by measuring the amounts of 
particular amino acids that were incorporated into protein using 
in vivo or in vitro preparations of whole brain or selected brain 
structures. As more and more brain-specific proteins and their 
putative roles were discovered, it became evident that expression of 
individual proteins could either increase or decrease with age, and 
that the rates of change across the lifespan could also differ between 
proteins. Following the discovery that de novo protein synthesis is 
necessary for the establishment of long-term information storage, 
experiments were designed to examine translation of individual 
proteins in restricted regions of the brain, and in response to cogni-
tive or artificial stimulation. It also became apparent that regulation 
of transcription undergoes age-related changes, and that increases 
or decreases in transcription, translation, or both determine the 
expression of a given protein at any point during the lifespan.

The focus of this review is on hippocampal learning and mem-
ory, how it changes with age, and the contributions made to age-
related cognitive decline by plasticity mechanisms that require 
protein synthesis. First, studies of overall brain protein synthesis 
levels are reviewed, and then age-related changes in expression of 
specific mRNAs and proteins thought to have important roles in 
plasticity and memory are described. The effects of age-dependent 
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Indeed, the translation of specific proteins is preceded by tran-
scription of the mRNAs that encode these proteins, which can also 
undergo age-related change. In order to understand the origin of 
age-related changes in protein expression, research methods have 
adapted to measure both protein and mRNA synthesis. By combin-
ing methodologies such as immunohistochemistry, in situ hybridi-
zation, real-time quantitative reverse transcriptase polymerase chain 
reaction (RT-PCR), microarray analysis, and laser capture dissec-
tion, amounts of specific proteins and mRNAs can be measured in 
discrete brain regions and even in single cells. Whereas early studies 
measured general expression levels in gross tissue samples, it can 
now be discerned whether particular mRNAs or proteins undergo 
age-related changes in expression specifically in neurons or in glial 
cells within subregions of brain structures. Of particular interest 
are those studies that have examined expression associated with a 
time-locked event, whether artificial (i.e., electrical stimulation of 
neural circuitry) or naturalistic (e.g., exploratory behavior).

The immediate-early genes (IEGs) encode transcription fac-
tors that regulate expression of their target genes, and effector 
proteins that directly influence the state of the cell (reviewed by 
Sheng and Greenberg, 1990; Guzowski, 2002). They are activated 
rapidly and transiently by patterned synaptic activity (Cole et al., 
1989; Dragunow et al. 1989), and function to induce transcription 
independently of protein synthesis, although termination of this 
transcription does require protein synthesis (Sheng and Greenberg, 
1990; Guzowski, 2002).

Of the IEGs that function as transcription factors, zif268 is quite 
interesting as it is up-regulated 10 min to 2 h after stimuli that 
induce long-term potentiation (LTP) (Cole et al., 1989; Richardson 
et al., 1992). Thus, it is active during the time that LTP transitions 
from its early state into its longer-lasting (late), protein synthesis-
dependent state (Abraham et al., 1991; Abraham and Williams, 
2003, 2008; and see Jones et al., 2001, for evidence that zif268 has 
a role in late LTP in the dentate gyrus). Consistent with this time 
course of activation, zif268 expression is required for long-term, 
but not short-term, memory (Jones et al., 2001). zif268 expression 
is also increased in the hippocampus by foraging behaviors (Wallace 
et al., 1995). Together, these patterns of expression suggest that 
zif268 may play a central role in activating transcription of genes 
necessary for hippocampus-dependent long-term memory.

Does zif268 activity change in senescence? Yau et al. (1996) 
demonstrated that resting levels of zif268 mRNA are decreased in 
hippocampal areas CA1 and CA2, and in the neocortex, of aged 
animals. Also, fewer aged CA1 cells express Zif268 protein, but the 
proportion of Zif268-positive cells at rest does not correlate with 
spatial learning in the Morris water maze (Desjardins et al., 1997). 
Blalock et al. (2003) later showed in a microarray study that in area 
CA1, there are reduced levels zif268 mRNA at rest in aged rats that 
expressed deficits in spatial learning as a group. These data indicate 
that zif268 expression changes with age, and may contribute to age-
related deficits in hippocampus-dependent memory.

c-Fos is another IEG-encoded protein that can act as a transcrip-
tion factor (Morgan et al., 1987; Morgan and Curran, 1991), and 
it likely has a role in learning and memory (Grimm et al., 1997; 
Guzowski and McGaugh, 1997). Like zif268, c-fos expression can 
be up-regulated by stimuli that elicit LTP, learning, and explora-
tion of a novel environment (Worley et al., 1993; see reviews by 

finding a greater rate of decline in translation during adulthood 
(Ekstrom et al., 1980; Fando et al., 1980; Ingvar et al., 1985; Smith 
et al., 1995), and  others finding the greatest rate of decline during 
senescence (Dwyer et al., 1980). Similarly, although protein synthesis 
decline has been observed in many other types of tissues and cells 
(e.g., liver, kidney, muscle), the time courses and rates of decline vary 
(reviewed by Webster, 1985). In spite of the fact that there remains 
some disagreement on the timing of the accelerated decline in brain 
tissue, there is agreement that translation is reduced as animals age. 
It is important to note here that most of these studies examined rates 
of translation in the brains of animals that were not manipulated 
or cognitively activated prior to measurement, or in non-perturbed 
in vitro preparations. Thus, the measurements obtained from the 
foregoing experiments reveal resting rates of synthesis that may or 
may not reflect rates occurring when the system is activated.

Ingvar et al. (1985) thoroughly examined levels of protein 
synthesis in a wide range of brain structures during aging, and 
a decade later followed this up with a second report that calcu-
lated these levels more accurately (Smith et al., 1995). Age-related 
declines (6 month vs. 15- to 23-month-old Sprague-Dawley rats) 
were found in the olfactory cortex, the internal capsule, cerebellar 
white matter, and brain structures having roles in the auditory, 
visual, and extrapyramidal motor systems. The authors con-
cluded that protein synthesis is particularly affected in sensory 
and extrapyramidal motor systems during aging, however, an alter-
nate interpretation of this result is that activity in sensorimotor 
circuitry might be reduced because of reduced locomotion in aged 
animals. Although Ingvar et al. suggested that regions required 
for higher cognitive function are relatively spared, they did find 
age-related protein synthesis declines in the hippocampal dentate 
gyrus region (but not area CA1), the nucleus accumbens, and the 
locus coeruleus, regions that mediate and module learning and 
memory. Several explanations might be offered for the decreased 
rate of protein synthesis in the dentate gyrus, including reduced 
synaptic terminals in this area in aged animals (Geinisman et al., 
1977, 1978, 1992), or reduced rates of neurogenesis (Kuhn et al., 
1996). Although the absolute rates of translation reported were 
quite different, Smith et al. (1995) largely confirmed the conclu-
sions that Ingvar et al. (1985) had made a decade earlier, and the 
relative differences found between groups and brain structures 
remained similar.

age-relaTed TranscripTional changes
Although it is clear that general protein expression levels in specific 
brain structures can change during the aging process, more mecha-
nistic insight is derived from examining the expression of individual 
proteins that are known to have roles in synaptic plasticity and 
memory. Bishop et al. (2010) review several signaling pathways 
that exhibit evolutionarily conserved up- or down- regulation of 
gene expression. In general, genes involved in regulating mito-
chondrial function, neural plasticity and synaptic function are 
down-regulated during aging, whereas those required for stress 
and immune/inflammatory responses are up-regulated. In fact, 
although the overall level of protein synthesis in hippocampal area 
CA1 remains constant (Smith et al., 1995), the expression levels of 
numerous individual genes and proteins either increase or decrease 
in this brain region during aging.
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examine both transcriptional and translational changes across the 
lifespan to pinpoint whether the locus of age-related change in 
expression of a protein is at the stage of RNA or protein synthesis. 
In the end, however, it is the protein that “does the work,” and 
whose expression and activity must be examined, in order to begin 
to understand the causes of cognitive aging.

age-relaTed changes in proTein synThesis  
affecT memory
long-Term memory requires proTein synThesis
The early work by Flexner and colleagues first demonstrated the 
importance of protein synthesis in the long-term consolidation 
of memory. Using puromycin, they were able to show that, for 
several days after training, new protein synthesis in the tempo-
ral lobe is crucial for the later expression of long-term memory 
(Flexner et al., 1962, 1963, 1967). This study also suggested that 
protein synthesis is required in the neocortex at later time points 
for memory consolidation. It later became evident that inhibition 
of protein synthesis during training left immediate learning and 
short-term memory (which occurs within a timeframe of minutes 
to hours) intact, but prevented the stabilization of memory for 
longer time periods.

Among the early studies was one conducted by Squire and 
Barondes (1973) who showed that mice could learn an object dis-
crimination task while treated with cycloheximide, a protein synthe-
sis inhibitor; however, these same mice exhibited retention deficits 
when tested 24 h later. A consensus therefore began to emerge that 
under conditions of 80–90% cerebral protein synthesis inhibition, 
acquisition and initial performance on memory tasks is left intact, but 
retention becomes progressively impaired thereafter, with significant 
impairment observed days or weeks after training (e.g., Davis and 
Squire, 1984). More recent studies have confirmed these findings, 
and provide further insight into the time course of protein synthesis 
requirements following a learning event. Injection of the protein syn-
thesis inhibitor anisomycin immediately following training results 
in impaired hippocampus-dependent long-term (24-h) memory for 
contextual fear conditioning and inhibitory avoidance learning in 
mice and rats, respectively (Bourtchouladze et al., 1998; Quevedo 
et al., 2004), and injection 30-min before training results in 24-h 
(but not 30-min) social recognition memory impairment in mice 
(Kogan et al., 2000). Some studies also indicate that during a later 
interval (4 h after training) protein synthesis is required for memory 
consolidation when a weak training protocol is used (Bourtchouladze 
et al., 1998). This is mirrored by a requirement for mRNA synthesis 
immediately after, and 3–6 h after training, for long-term memory 
in an inhibitory avoidance paradigm (Igaz et al., 2002).

While there are clearly experimental design issues that arise due 
to toxicity and potential “non-specific effects” of protein synthesis 
disruption (Alberini, 2008; Hernandez and Abel, 2008) the observa-
tion of reduced levels of protein synthesis in aged organisms began 
to suggest that the ability to form new long-term memories might 
be particularly vulnerable in advanced age.

some forms of long-Term memory are reduced in senescence
Normal aging is often accompanied by memory impairment (for 
review see Rosenzweig and Barnes, 2003; Burke and Barnes, 2006). 
Although many forms of memory are left intact by the aging process, 

Herdegen and Leah, 1998; Hughes et al., 1999). Also like zif268, 
c-fos expression changes in senescence, but the story is less consist-
ent. In fact, the proportion of cells in the dorsal hippocampus that 
show  expression of c-Fos protein at rest does not change with age 
(Desjardins et al., 1997). However, Touzani et al. (2003) found that 
fewer CA1 and CA3 cells were positive for c-Fos protein in aged 
than in young rats 6 days after learning in a radial arm maze. No 
differences were found between young and old 30 days after learn-
ing, nor at either time point in the dentate gyrus. However, using a 
semi-quantitative reverse Northern strategy that confers enhanced 
sensitivity to low levels of mRNA, Lanahan et al. (1997) found that 
following LTP induction in the hippocampus, c-fos mRNA expres-
sion is enhanced to a greater degree in aged than in young rats.

One of the most-studied IEGs in terms of plasticity and memory 
function is activity-regulated cytoskeleton-associated protein (Arc). 
Whereas zif268 and c-fos encode transcription factors and are found 
near the nucleus, Arc is an effector protein that coprecipitates with 
actin, and has been suggested to contribute to structural plasticity in 
dendrites (Lyford et al., 1995). In fact, Arc can be targeted to dendrites 
engaged in synaptic activity (Steward et al., 1998), and this pattern 
of expression is not affected by protein synthesis inhibition (Wallace 
et al., 1998). Arc expression at activated synapses can be achieved 
by high-frequency electrical stimulation, exposure to psychomotor 
stimulants, odor and visual stimulation, exploration of environments, 
and Pavlovian conditioning (Steward et al., 1998; Tan et al., 2000; 
Pinaud et al., 2001; Steward and Worley, 2001; Petrovich et al., 2005; 
Tagawa et al., 2005; Zou and Buck, 2006). It also appears that Arc has 
a lasting influence on memory formation: Arc blockade selectively 
impairs LTP maintenance and long-term memory without affecting 
LTP induction nor short-term memory (Guzowski et al., 2000).

Hippocampal Arc expression does change with age. Fewer hip-
pocampal granule cells express Arc mRNA following exploratory 
behavior in old rats (Small et al., 2004). Blalock et al. (2003) also 
found reduced resting Arc expression in CA1 of old rats using 
microarray analysis. Penner et al. (2010a) confirmed these results 
by combining methods for quantifying single-cell RNA expression 
in one hemisphere (catFISH, Guzowski et al., 1999) with RT-PCR 
analysis in the other. While there are fewer granule cells that express 
Arc, there is no change in the number of cells expressing Arc in aged 
CA1. For CA1, however, there is a reduction in transcription of Arc 
per CA1 neuron in aged rats. Although Arc expression can be up-
regulated when the aged hippocampus is activated, its consistently 
diminished presence across behavioral states may reduce capacity 
for long-term changes in hippocampal synaptic structure. Such 
age-related changes could negatively impact hippocampal function 
dependent memory consolidation.

Other IEGs that are involved in hippocampal memory and 
plasticity have potential roles in cognitive aging (e.g., AP-1, Narp, 
Cox-2, BDNF, tPA, Homer1A, Rheb), but their expression across 
the lifespan has not yet been examined in enough depth for defini-
tive conclusions (but see Lanahan et al., 1997; Blalock et al., 2003; 
Pang and Lu, 2004). What can be said, however, is that several IEGs 
likely have selective roles in long-term memory: disruption of c-Fos, 
tPA, Zif268, or Arc does not affect learning or short-term memory, 
but impairs memory consolidation (reviewed by Guzowski, 2002). 
Nevertheless, it is possible to have reduced levels of transcription 
yet similar levels of protein, and vice versa. It will be necessary to 
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A further study of contextual fear memory by Ward et al. (1999) 
suggests that aged rats do not exhibit better memory for infor-
mation encoded long before hippocampal lesions as opposed to 
soon before lesions, as is observed in young rats. Rather, aged rats 
exhibited contextual fear impairment during all retention intervals 
tested between 1 and 28 days after training. Ward et al. (1999) sug-
gest that memory impairments were seen during early retention 
tests in this study but not that of Oler and Markus (1998) due to 
differences in training; old rats in the Ward et al. (1999) study were 
slower to learn the association between context and shock, perhaps 
reflecting age-related hippocampal deficits in spatial and contex-
tual processing. Overall, these fear conditioning studies indicate 
that aged rats can show intact acquisition and initial memory for 
a contextual fear association, but impaired long-term memory 
may result from altered consolidation processes (see also Houston 
et al., 1999).

Thus, it appears that in some tasks that depend on an intact 
hippocampus, the mechanisms required for learning can be largely 
intact. However, age-related changes in processes necessary for 
memory stabilization show vulnerability to the aging process.

proTein synThesis-dependenT memory in aged organisms
There are indications that the time course of protein synthesis-
 dependent memory consolidation might be extended in aged 
rodents. Davis et al. (1981) injected mice with anisomycin either 
before or immediately after training in a passive avoidance 
task. These injections impaired memory 7 days later in young 
(2–3 month), middle aged (6–7 month), and older (14–15 month) 
mice. However, injections 10-min after training impaired 7-day 
memory in only the old group, although the time course of whole 
brain protein synthesis inhibition was similar between all three 
age groups. Mizumori et al. (1985) extended this experiment with 
longer time intervals in even older mice (17–20 months), and 
again found that the older mice showed a longer time interval over 
which impairments of memory could be observed via inhibition 
of protein synthesis (up to 30 min after training). Another way to 
inhibit protein synthesis in the brain during a discrete time interval 
(typically hours) is to give electroconvulsive shock (ECS). Essman 
(1982) found that when training was followed immediately by ECS, 
memory for a conditioned response was reduced over a 48-h reten-
tion interval in 6, 12, 18, and 24-month-old mice. However, when 
ECS was given 20-min after training, memory was impaired only 
in 18- and 24-month-old mice. Essman then evaluated the effects 
of ECS on the rate of protein synthesis in limbic structures, and 
found that it was reduced 1 h after ECS in all age groups, but after 
12 h was reduced only in 18- and 24-month-old mice.

From these data, Essman suggested that memory consolidation 
processes may be slowed in aged mice as a consequence of cellular/
metabolic changes, and/or a slowdown in protein synthesis may 
impair the consolidation of memory traces. Overall, the authors of 
these studies interpret these findings to indicate that the transition 
time from short- to long-term memory is extended during aging, 
suggesting that a longer time period after training may be required 
in order for memory consolidation to be successful.

Several more recent studies have examined age-related changes 
in cAMP responsive element binding protein (CREB) activity as 
a potential cause of memory impairment in aging. CREB is a 

age-related deficits have been identified in several types of hippoc-
ampus-dependent memory, including spatial memory (e.g., Barnes 
et al., 1980; McIntyre and Craik, 1987; Spencer and Raz, 1995), fear 
memory (e.g., Houston et al., 1999; Ward et al., 1999) and trace eye-
blink conditioning (e.g., Finkbiner and Woodruff-Pak, 1991; Solomon 
and Groccia-Ellison, 1996; Thompson et al., 1996; Kishimoto et al., 
2001; Knuttinen et al., 2001). Importantly, these hippocampal func-
tion dependent memory deficits have been observed across phylogeny, 
including mouse, rat, rabbit, dog, monkey, and human; as such, mech-
anisms of age-related memory deficits may be meaningfully studied 
in detail in the rodent as a precursor to further primate studies.

Barnes and McNaughton (1985) demonstrated an acceler-
ated rate of decline of spatial memory in aged rats that paralleled 
more rapid decay of LTP at the perforant path-granule cell syn-
apse. Further studies have indicated that there is a tendency for 
aged rodents to exhibit greater deficits in some types of long-term 
memory than in short-term memory (Winocur, 1988a). Aged rats 
show selective deficits 21 days, but not 1 h, after training when 
tested for recall of a passive avoidance response (Winocur, 1988b). 
In the Morris water maze, if multiple swim trials are conducted 
each day for several concurrent days, a “saw-toothed” pattern of 
performance emerges for aged but not young rats (Foster, 1999). 
This pattern results from performance improvements from trial to 
trial when the elapsed time between trials is short, but a decline in 
performance on the first trial the following day (after a long interval 
between trials); there is little evidence of this decline in young rats 
(Gage et al., 1984; Rapp et al., 1987; Diana et al., 1995).

Oler and Markus (1998) investigated the time course of hip-
pocampal memory consolidation in young (4 month), middle 
aged (10 month), and old (23 month) F344 rats. Rats underwent 
contextual fear conditioning and were given retention tests 10 
and 52 days later. These time points were chosen to examine 
memory when the hippocampus is necessary for memory expres-
sion (10 days) and when the memory is presumably stored in 
neocortical circuitry (52 days) (Kim and Fanselow, 1992; see 
also Anagnostaras et al., 1999). There were no age differences 
in retention 10 days after conditioning, but the conditioned fear 
response increased between 10 and 52 days in young rats, whereas 
it decreased in old rats. This pattern of retention in young rats may 
be considered a “memory incubation” effect in which increases 
are observed for some time following an aversive stimulus with-
out further exposure to it, possibly counteracting forgetting. 
Houston et al. (1999) examined conditioned fear memory in 
different age groups using similar methods. Again, there were no 
age differences in fear memory 1 day after conditioning, but after 
20 days a similar pattern emerged with increased fear memory 
in young rats but decreased fear memory in old rats. There are 
several possible explanations for these results. There may be an 
age-related decrease in either the efficiency or the duration of 
hippocampus-dependent consolidation processes (e.g., protein 
synthesis-dependent mechanisms) that interfere with normal 
memory formation in aged rats. Alternatively, the processes that 
enable a gradual transformation of episodic memory over time to 
produce the memory incubation effect seen in young rats could 
be diminished in old rats. The data are also consistent with the 
possibility of faster forgetting in old rats, which may be independ-
ent of consolidation.
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studies will be required to determine whether a later onset of CREB 
or ICER overexpression can affect memory with age, and whether 
acute (rather than chronic) CREB overexpression can also enhance 
memory in aged rats.

Collectively, there is a large body of evidence for a decline in 
long-term memory in aged animals, including hippocampal defi-
cits in spatial memory, trace eyeblink conditioning, and contextual 
fear memory. The intra-hippocampal mechanisms that underlie 
impaired long-term memory during aging are less clear, but evi-
dence is mounting that irregularities in CREB-dependent transcrip-
tion are a key contributor in this memory decline. These findings 
converge with those showing an altered time course of protein 
synthesis inhibition to suggest that the regulation of protein syn-
thesis differs in aged animals, resulting in a reduced capacity for 
long-term memory.

properTies of long-lasTing forms of synapTic 
plasTiciTy are alTered in advanced age
Long-term potentiation (LTP) is an activity-dependent enhance-
ment of synaptic transmission (Bliss and Lomo, 1973) that is a 
putative cellular mechanism of learning and memory. Long-term 
depression (LTD), alternately, is a reduction in strength of syn-
aptic transmission that is typically elicited by different patterns 
of activity than LTP. LTP and LTD have primarily been studied 
through the application of patterned electrical stimuli to synaptic 
pathways ex vivo (i.e., in brain slices) or in vivo (i.e., using sur-
gically-implanted electrodes in anesthetized or awake animals). 
Using in vivo methods, changes in synaptic transmission similar 
to LTP have been shown to accompany learning (e.g., Gruart et al., 
2006). Although these methods do not exactly mimic the more 
synaptically diffuse patterns of activity thought to occur naturally 
(although see Whitlock et al., 2006) they have been quite useful in 
examining cellular and molecular activity that contributes to the 
consolidation of plastic changes.

long-lasTing lTp depends on The iniTiaTion of new  
proTein synThesis
Different forms of LTP can be induced by distinct patterns of stim-
uli; early-LTP (E-LTP) can last minutes to hours and is thought 
to relate mechanistically to short-term memory, whereas late-LTP 
(L-LTP) can last hours to days and relies on mechanisms that par-
allel those of long-term memory (Abraham and Williams, 2003, 
2008). Of particular interest is the fact that L-LTP in the dentate 
gyrus and hippocampal area CA1 requires new protein synthesis for 
a brief period of time after induction (Krug et al., 1984; Stanton and 
Sarvey, 1984; Montarolo et al., 1986; Frey et al., 1988; Otani et al., 
1989, 1992; Nguyen et al., 1994; Mullany and Lynch, 1997) as does 
long-term memory (see previous sections). By applying selective 
inhibitors of mRNA synthesis (e.g., actinomycin D), it has been 
determined that de novo synthesis of mRNA is not required for LTP 
maintenance for up to 3 h after tetanic stimulation (Otani et al., 
1989; Frey et al., 1996; Raymond et al., 2000), indicating that any 
new proteins required up to this point can be translated from pre-
existing mRNAs (including the possibility of local protein synthesis 
of dendritic mRNA). This transcription-independent time interval 
has been suggested as an intermediate phase of LTP (Raymond 
et al., 2000; Abraham and Williams, 2008). However, new mRNAs 

 transcription factor whose activity is required for hippocampal 
memory consolidation (Guzowski and McGaugh, 1997; Impey et al., 
1998; Silva et al., 1998; Shaywitz and Greenberg, 1999; Taubenfeld 
et al., 1999; Kogan et al., 2000; Tully et al., 2003; Frankland et al., 
2004; Brightwell et al., 2005). CREB is active when phosphorylated 
(pCREB; Gonzalez and Montminy, 1989), and can be up-regulated 
by the induction of LTP (Bito et al., 1996; Deisseroth et al., 1996; 
Impey et al., 1996; Schulz et al., 1999) and learning (Impey et al., 
1998; Taubenfeld et al., 1999). pCREB stimulates the expression of 
proteins thought to promote long-lasting forms of synaptic plas-
ticity and memory (reviewed by Bailey et al., 1996; Yin and Tully, 
1996), and several studies have indicated that pCREB activity is 
reduced in aged rodents. Monti et al. (2005) studied hippocampal 
resting CREB expression, and pCREB expression following fear 
conditioning, in 5- and 30-month-old male Wistar rats. No age-
related changes in resting CREB expression were found, but its 
level of phosphorylation was higher in aged animals. Aged animals 
exhibited impaired fear memory 24-h after conditioning, and at that 
time the ratio of pCREB to CREB was increased in young but not 
aged rats. Furthermore, resting expression of CREB-binding pro-
tein (CBP, a CREB co-activator) is also reduced in the hippocampus 
of aged rats (Chung et al., 2002), potentially blunting the propensity 
for pCREB to elicit transcription during aging. In fact, the expres-
sion of Arc and the transcription factor CCAAT enhancer binding 
protein β (C/EBP β), whose expression is thought to be activated 
by pCREB (Niehof et al., 1997; Athos et al., 2002), also increased 
more in young than in aged rats following fear conditioning. Porte 
et al. (2008) also found lower numbers of pCREB-immunoreactive 
cells in dorsal hippocampal area CA1 and the dentate gyrus 15-min 
after spatial learning in memory-impaired aged mice.

Countryman and Gold (2007) utilized a social transmission of 
food preferences task to probe age-related differences in memory 
at different post-training delays in the rat. Young (3-month) and 
aged (32-month) Fischer 344/Brown Norway F1 hybrid rats were 
tested for memory immediately, 24-h, 48-h, 72-h, and 1-week after 
training. The groups performed comparably on the immediate and 
24-h tests, but aged rats showed reduced memory thereafter. When 
CREB was measured at rest, the number of CREB-immunoreactive 
cells was lower in area CA3 of the ventral hippocampus in aged 
rats than in young rats. The numbers of pCREB-immunoreactive 
cells in dorsal CA1 and ventral dentate gyrus were also lower in 
aged rats. pCREB- but not CREB-immunoreactive cells in most 
hippocampal regions increased dramatically after training in both 
age groups, but these increases were significantly less in dorsal CA1 
and ventral dentate gyrus, CA3, and CA1 in old rats. Thus, in this 
study, age differences in the activation status of CREB are more 
dramatic than those in resting expression of CREB.

Mouravlev et al. (2006) manipulated CREB expression using 
a recombinant adeno-associated virus vector. Rats were injected 
with vector at 8 weeks of age to transgenically express CREB or the 
inducible cAMP early repressor (ICER) in the dorsal hippocampus. 
No effects of transfection were found at 3 months of age in spatial 
and passive avoidance memory, but by 15 months of age overexpres-
sion of CREB resulted in enhanced memory, and overexpression of 
ICER led to reduced memory in 24-h and 3-day (but not 10-min) 
retention tests. Although this study provides a strong indication that 
CREB activity interacts with age-related memory changes, further 
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that when strong induction stimuli are used the magnitude and 
stability of LTD is similar in aged and adult rats, and thus the basic 
synaptic mechanisms required for expression of LTD are intact in 
aged animals.

age-relaTed changes in long-lasTing synapTic plasTiciTy: 
poTenTial mechanisms
Signaling, receptors, calcium homeostasis
Evidence suggests that in advanced age, the activity in some signal-
ing pathways is enhanced, whereas activity in others is diminished. 
Complex interactions between different patterns of synaptic activ-
ity and age-related changes in multiple signaling pathways likely 
determine the balance between LTP and LTD induction, and main-
tenance of changes in synaptic strength, in aged animals.

Several definitive molecular changes have been identified in the 
aged hippocampus that affect synaptic transmission and plastic-
ity. There is a large body of evidence for altered calcium home-
ostasis in the aged rat hippocampus (e.g., Disterhoft et al., 1996; 
Hartmann et al., 1996; reviewed by Landfield, 1996; Foster, 2002, 
2007). There are two major sources of altered calcium regulation 
that can affect NMDA receptor-dependent synaptic plasticity: first, 
the influx of Ca2+ through voltage-dependent calcium channels 
(VDCCs), such as l-type calcium channels, increases in hippocam-
pal neurons in senescence (Campbell et al., 1996), and an increased 
density of VDCCs has been identified in CA1 neurons (Thibault 
and Landfield, 1996). Second, the release of Ca2+ from intracellular 
calcium stores may be regulated differently in the aged hippocam-
pus (Kumar and Foster, 2004).

The consequences of these age-related changes in calcium 
handling are far reaching. Calcium action potentials are larger 
and have increased latency in aged hippocampal neurons (Pitler 
and Landfield, 1990; Disterhoft et al., 1993). The Ca2+-dependent, 
K+-mediated afterhyperpolarization is augmented in amplitude and 
duration in aged hippocampal CA1 cells (Landfield and Pitler, 1984; 
Kerr et al., 1989; Disterhoft et al., 1993), which can affect induc-
tion of LTP (Kumar and Foster, 2004). In fact, a form of LTP that 
depends on VDCCs but not NMDA

R
 activity (Grover and Teyler, 

1990, 1992, 1994) is increased in aged rats, whereas some forms of 
NMDA

R
-dependent LTP are decreased (Shankar et al., 1998). These 

physiological changes may have important implications for the bal-
ance between potentiation and depression in aged animals, as the 
amplitude and duration of changes in postsynaptic calcium con-
centrations regulate the strength and direction of plastic changes 
at synapses (Cummings et al., 1996; Yang et al., 1999; Mizuno et al., 
2001; Shouval et al., 2002).

NMDA
R
 activity is also reduced in the hippocampus of the aged 

rat. There are fewer perforant path synapses in the mid-molecular 
layer of the aged dentate gyrus (Geinisman et al., 1992), and at the 
remaining synapses, there is a reduced NMDA

R
-mediated response 

(Rao et al., 1994). In area CA1, reduced depolarization in response 
to stimuli likely results in less NMDA

R
 activation and a requirement 

for stronger patterns of stimuli to induce LTP (Barnes et al., 1997a). 
Wenk and Barnes (2000) found fewer NMDA

R
-binding sites in 

CA1, CA3, and the subiculum of aged rats, although no differences 
between age groups were found in the dentate gyrus. Other studies 
have also found reduced NMDA

R
 binding in the aged rat hippoc-

ampus (Tamaru et al., 1991; Wenk et al., 1991; Clark et al., 1992; 

are necessary for LTP maintenance lasting 5 h or longer in the 
dentate gyrus and CA1 (Frey et al., 1996), suggesting that L-LTP is 
dependent on both transcription and translation.

There is evidence that LTD also participates in hippocampus-
dependent memory formation (reviewed by Kemp and Manahan-
Vaughan, 2007). A protein synthesis-dependent late phase of LTD 
has been identified (Manahan-Vaughan et al., 2000; Sajikumar and 
Frey, 2004), which may also be vulnerable to the changes observed in 
protein synthesis during aging. However, it might be that a particu-
lar balance between protein synthesis and degradation of particular 
proteins is required for long-term maintenance of LTP and LTD at 
synapses, and not just new protein synthesis per se (e.g., Fonseca 
et al., 2006a,b; reviewed by Abraham and Williams, 2008).

alTered long-lasTing plasTiciTy in aged animals
Long-term potentiation induction using weak stimulation pat-
terns elicits lower levels of synaptic modification in aged than in 
young rodents (in vitro: Deupree et al., 1993; Moore et al., 1993; 
Rosenzweig et al., 1997). Similarly, Gruart et al. (2008) found a 
gradual increase in the synaptic field potential during learning in 
a trace eyeblink conditioning paradigm in young mice, whereas 
old mice exhibited neither significant learning nor changes in field 
potential magnitude. However, induction of LTP with strong pat-
terns of high-frequency electrical stimulation is typically intact in 
aged animals (in vivo awake preparation: Barnes, 1979; anesthetized 
preparation: Landfield et al., 1978; Landfield, 1980; Applegate and 
Landfield, 1988; in vitro preparation: Landfield and Lynch, 1977; 
Chang et al., 1991; Deupree et al., 1991; Moore et al., 1993; Diana 
et al., 1994a,b; Barnes et al., 1996a; Norris et al., 1996; Shankar 
et al., 1998; but see awake: Gruart et al., 2008; anesthetized: Lynch 
and Voss, 1994; McGahon et al., 1997; Murray and Lynch, 1998a,b; 
in vitro: Tielen et al., 1983; Hori et al., 1992). In fact, when the level 
of postsynaptic depolarization is controlled during tetanic stimuli 
LTP induction magnitude is equivalent across the lifespan of the 
F344 rat, indicating that NMDA receptor activation is intact in 
aged hippocampal area CA1 (Barnes et al., 1996a).

However, long-term maintenance of LTP (L-LTP) is impaired 
in aged rodents, and this often correlates with deficits in 
 hippocampus-dependent memory (in vivo awake: Barnes, 1979; 
Barnes and McNaughton, 1980, 1985; in vitro: Bach et al., 1999; 
reviewed by de Toledo-Morrell et al., 1988). This reduction of LTP 
maintenance is observed several hours to days after its induction.

The general decline in LTP maintenance observed in old ani-
mals is accompanied with a greater susceptibility to induction of 
LTD and depotentiation in area CA1 of hippocampal slices (Norris 
et al., 1996; Foster and Norris, 1997). Norris et al. (1996) found 
that low-frequency stimuli (LFS) that do not elicit lasting changes 
in synaptic strength in adult rats (e.g., 15-min of 1-Hz stimuli) can 
induce LTD in old rats. If such LFS is applied to already-potenti-
ated synapses, depotentiation is equivalent in aged and adult rats. 
However, when spaced bursts of LFS are delivered (30-s of 1-Hz 
stimuli given at 10-min inter-burst-intervals), synaptic strength in 
old rats depotentiates more quickly than in adult rats (Norris et al., 
1996). Kumar et al. (2007) induced LTD and depotentiation in area 
CA1 of hippocampal slices from adult and aged rats using a paired 
LFS protocol; this resulted in equivalent and lasting depression and 
depotentiation in both age groups. Kumar et al. (2007) concluded 
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(4-month old) and old (22-month old) rats. Tetanic stimulation 
significantly increased protein synthesis in the entorhinal cortex 
of young, but not aged, rats; this correlated with reduced levels of 
potentiation in the aged rats 40 min after potentiation. In particular, 
expression of synaptophysin and Trk proteins were enhanced in the 
entorhinal cortex following potentiation in young, but not aged, 
rats. Even in the absence of tetanic stimuli, protein synthesis was 
reduced in the entorhinal cortex of aged rats.

Gooney et al. (2004) examined the role of BDNF in potentia-
tion in the young (2- to 4-month old) and aged (20- to 24-month 
old) rat dentate gyrus by pharmacologically inducing L-LTP using 
BDNF application. A long-lasting potentiation was observed in 
both age groups, but the magnitude of potentiation was attenu-
ated in aged rats. Interestingly, ERK phosphorylation in dentate 
gyrus synaptosomes was enhanced to a greater degree in young 
than in aged rats, also suggesting that presynaptic mechanisms of 
LTP change during aging. In light of the critical, but incompletely 
understood role of BDNF in protein synthesis-dependent L-LTP 
(Lu et al., 2008), the reduced BDNF-LTP seen in aged rats might 
indicate defective activity downstream of the BDNF synthesis that 
is typically observed during LTP.

There are indications that the balance between LTP and LTD 
induction is shifted in aged rodents. Huang and Kandel (2006) 
found that a novel form of protein synthesis-dependent LTP could 
be induced by applying 1 min of 1-Hz paired-pulse stimulation to 
area CA1 of hippocampal slices from middle aged and old (6-7-, 12- 
and 18-month old) but not young (6–8 week old) mice. Emetine (an 
irreversible protein synthesis blocker that prevents the coordinated 
movement of mRNA through the ribosome) blocked this potentia-
tion more strongly than did rapamycin (an inhibitor of mammalian 
target of rapamycin (mTOR), which has a role in local protein syn-
thesis), suggesting that local protein synthesis at dendritic sites may 
have a small role in maintenance of this potentiation. Huang and 
Kandel also showed that this LTP is mediated by D1/D5 dopamine 
receptor and protein kinase A activity, which could have roles in 
eliciting protein synthesis. Interestingly, induction of this 1-Hz LTP 
in aged rats requires NMDA receptor activity, and its maintenance 
requires VDCC activity. Considering the known changes in VDCC 
conductance in aged rodents, it is likely that postsynaptic Ca2+ levels 
differ between young and old rats following this type of tetanic 
stimulation, which may be the cause for different LTP induction 
thresholds between the age groups. Because memory is enhanced 
by VDCC blockade in aged animals (Deyo et al., 1989; Scriabine 
et al., 1989; Straube et al., 1990; McMonagle-Strucko and Fanelli, 
1993), Huang and Kandel’s data suggest that inhibiting forms of 
plasticity induced by low-frequency stimulation may confer ben-
efits for memory function in the aged.

Like Huang and Kandel, Kumar and Foster (2007) found a shift 
in induction mechanisms for a long-lasting form of LTD in aged 
rats. This LTD was induced by application of the group I metabo-
tropic receptor selective agonist (R,S)-3,5-dihydroxyphenylglycine 
(DHPG) and was measured at CA3-CA1 synapses. This LTD was 
greater in magnitude in aged rats than in young rats 30-min after 
induction, and relied on protein synthesis only in the aged group. 
The receptors and signaling cascades required for induction varied 
between groups: mGluR1 and NMDA receptors, and VDCCs, con-
tributed more to induction in aged rats, whereas protein tyrosine 

but see Shimada et al., 1997; Adams et al., 2001). Magnusson et al. 
(2002) used semi-quantitative Western blotting to determine that 
the expression of NR1 and NR2B, but not NR2A, NMDA

R
 subunits 

is decreased in the hippocampus of aged (30-months old) mice as 
compared to young adults (10-months old). As such, the NR2A/
NR2B ratio may be increased in aged rodents, which could alter 
induction thresholds such that stronger synaptic activity is required 
for LTP, and a wider range of low-frequency activity patterns result 
in LTD (see Yashiro and Philpot, 2008, for a discussion of the inter-
action between NMDA

R
 subunit composition and induction of 

synaptic plasticity). This agrees with observed age-related changes 
in LTP/LTD induction. Further studies that conjointly examine 
electrophysiological properties and receptor expression would be 
useful to fully understand the physiological consequences of age-
related changes in hippocampal NMDA

R
 activity.

Implications for protein synthesis-dependent LTP in senescence
There is some evidence that signaling pathways that can stimulate 
new transcription and translation undergo changes with aging. The 
forms of L-LTP that exhibit age-related reductions in maintenance 
are often induced by multiple, spaced trains of high-frequency 
activity; these types of induction protocols also elicit activity of 
the cAMP pathway and CREB in hippocampal neurons (Frey et al., 
1993; Matthies and Reymann, 1993; Nguyen et al., 1994; Blitzer 
et al., 1995), in which age-related changes have been identified 
(Godefroy et al., 1989; Luine et al., 1990; Araki et al., 1995; Asanuma 
et al., 1996; Karege et al., 2001a,b; Monti et al., 2005; Porte et al., 
2008). Other signaling pathways, including MAPK, also undergo 
changes with aging that could affect induction of new protein syn-
thesis (e.g., Davis et al., 2000; Van der Zee, 2004; Williams et al., 
2006, 2007).

Relatively few studies have directly examined molecular mecha-
nisms of reduced L-LTP in aged rodents. Bach et al. (1999) exam-
ined both E-LTP and L-LTP in area CA1 of hippocampal slices from 
young (3-month old) and aged (18 month old) mice and found 
that E-LTP was equivalent between age groups 1 h after induc-
tion. Although initial levels of potentiation were similar between 
age groups immediately after induction, L-LTP measured 3 h after 
induction was reduced in aged mice. Furthermore, spatial memory 
(measured with the Barnes maze) correlated with 3-h L-LTP within 
the aged cohort. Upregulation of the cAMP-dependent signaling 
pathway via application of dopamine D1/D5 receptor agonists 
attenuated age-related reductions in L-LTP and spatial memory in 
aged mice, providing further evidence that activity in this pathway 
is altered in the aged rodent.

Although much research has focused on postsynaptic changes 
following LTP, there is some evidence that new protein synthesis 
can be initiated in the presynaptic neuron following LTP induc-
tion, and that it has a role in regulating the number of synaptic 
terminals and the rate of vesicle recycling (Malgaroli et al., 1995; 
Ryan et al., 1996; Ma et al., 1999; Kelly et al., 2000). Although no age-
related changes have been observed in hippocampal paired-pulse 
facilitation (Landfield et al., 1978; Barnes, 1979; Deupree et al., 
1993), which relies on presynaptic mechanisms, presynaptic protein 
synthesis may be diminished following LTP induction in aged rats. 
Kelly et al. (2000) investigated protein synthesis in the entorhinal 
cortex following potentiation of the perforant pathway in young 
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This place field expansion plasticity may function to facilitate 
sequence and path learning (Levy, 1989; Abbott and Blum, 1996; 
Blum and Abbott, 1996; Redish and Touretzky, 1998; Lisman and 
Redish, 2009), as the activation of one cell could come to propagate 
activity of the rest of the cells in a sequence. More recently, the 
discovery of reverse replay of place field sequences during sharp 
wave activity while on a linear maze (Foster and Wilson, 2006; 
Csicsvari et al., 2007) has prompted speculation that place cells may 
form bidirectional connections. Furthermore, the observation of 
“forward sweeps” of sequential activity at a choice point in a maze 
in area CA3 (Johnson and Redish, 2007) has been suggested as 
evidence that such propagated activity may be used to guide future 
behavior (Lisman and Redish, 2009).

Place field expansion is reduced in aged rats such that place fields 
do not expand to the extent that occurs in young rats through up to 
15 traversals of a rectangular track (Shen et al., 1997). Although place 
field sizes were similar between young and old rats on the first lap of 
the maze, indicating that they form normally, field sizes were larger 
in young rats during laps 5, 10, and 15. These data provide an expla-
nation for reduced field size in aged rats that was calculated over 
many traversals of the place fields in earlier studies (Markus et al., 
1994; Mizumori et al., 1996). As CA1 place field expansion plasticity 
does not persist to subsequent sessions of maze running a day later 
in a familiar environment (Mehta et al., 1997; Lee et al., 2004), it 
likely reflects short-term plasticity processes in the intact animal. 
As such, it is not possible to draw conclusions restricted to mecha-
nisms of long-term plasticity from studies of place field expansion 
in aged rats, but this finding is one of few examples of age deficits 
in a plasticity-dependent mechanism that has been recorded from 
an awake, behaving animal during naturalistic behavior. The reduc-
tion of place field expansion in aged rats may have consequences for 
learning sequences and guidance of future spatial behaviors.

alTered nmdar acTiviTy in aged animals affecTs  
place field properTies
Place field expansion depends on NMDA

R
 activity (Ekstrom et al., 

2001), further suggesting that LTP-like processes are involved in its 
expression. Reduced NMDA

R
 activity in the hippocampus of the 

aged rat possibly explains the observed age-related decline in place 
field expansion. With these age-related changes in NMDA

R
 activity 

in mind, Burke et al. (2008) designed a study in which an attempt 
was made to pharmacologically restore place field expansion in aged 
rats. Memantine, a low-affinity, non-competitive NMDA

R
 antago-

nist, blocks the open pore of the receptor (Parsons et al., 1995). This 
drug was selected for the study because it enhances spatial memory 
in the Morris water maze and LTP maintenance in adult rats (Barnes 
et al., 1996b). Burke et al. (2008) found that memantine, but not 
ampakine CX516, augmented place field expansion in hippocampal 
area CA1 of 24- to 30-month old F344 rats. It is interesting that treat-
ment with the competitive NMDA

R
 antagonist CPP prevents place 

field expansion (Ekstrom et al., 2001), whereas memantine facili-
tates this in aged rats. It has been hypothesized that memantine’s 
unique chemical properties (fast offset kinetics and strong voltage 
dependency) act to restore glutamatergic homeostasis, rather than to 
block NMDA

R
 activity (Parsons et al., 2007). Thus, memantine may 

increase the signal to noise ratio of NMDA
R
-dependent signaling to 

restore plasticity mechanisms in aged rats.

phosphatases were crucial for induction in young rats. This study, 
and that of Huang and Kandel (2006), illustrates that some forms 
of long-lasting synaptic depression are enhanced in aged animals, 
and suggests that age-related changes in the activity of signaling 
cascades affect induction thresholds for synaptic plasticity. Here, 
protein synthesis is elicited only in aged rats, demonstrating that 
the mechanisms required for translation still function at some level, 
but are recruited by different types of stimulation.

Collectively, the evidence thus far suggests that in the aged rodent, 
the expression of protein synthesis-dependent synaptic strength-
ening is diminished, whereas that of protein synthesis-dependent 
synaptic depression is increased. This may result from changes in 
calcium homeostasis and signaling pathway activity that affect the 
balance between induction of synaptic potentiation and depression, 
and recruitment of protein synthesis processes in the aged.

changes in Behaviorally induced  
plasTiciTy during aging
Although informative, the interpretation of ex vivo studies of 
synaptic plasticity can be limited because the artificial electrical 
or chemical stimuli that induce the plasticity are not naturalistic. 
In vivo studies, however, have confirmed that the ability to modify 
synaptic transmission does undergo age-related change. In particu-
lar, studies of hippocampal place cells in aged rats have illustrated 
the effects that subtle changes in plasticity mechanisms can have 
on the function of a cognitive system.

Basic place field properTies are largely inTacT in aging
Many of the basic properties of hippocampal CA1 neuron place 
fields are intact in aged rats (reviewed by Rosenzweig and Barnes, 
2003). Mean and maximum firing rates, inter-spike-interval dis-
tributions, and spike characteristics (e.g., amplitude, width) are 
similar between age groups (Barnes et al., 1983; Shen et al., 1997). 
When aged rats initially enter an environment, place fields form 
normally and are the same size as those seen in young rats (Shen 
et al. 1997). Although there is a small reduction in overall theta 
frequency during maze running in the aged hippocampus, place 
fields show normal phase precession in relation to the theta rhythm 
(Shen et al., 1997). For CA3, on the other hand, although place field 
size does not change with age, the mean firing rates of these cells 
are increased (Wilson et al., 2005).

place field expansion plasTiciTy is diminished in aged raTs
Place fields expand when young rats repeatedly traverse the same 
linear path, and place field centers move slightly “backwards” along 
the path (Mehta et al., 1997). In order to explain why this might 
occur, consider that while a rat is running along a given trajectory, 
a number of place fields become active in sequence; that is, firing 
of one cell will repeatedly precede the firing of the next. Synaptic 
connections between these cells may undergo LTP-like, or Hebbian, 
plasticity mechanisms such that their connections are strengthened. 
Following this synaptic enhancement, firing of the first cell will 
cause firing of the second cell earlier in temporal/spatial order than 
the original activity, resulting in backwards expansion of the second 
place field (see Rosenzweig and Barnes, 2003, for more details, and 
Mehta et al., 2000, for a model of CA3-CA1 plasticity that gives rise 
to these place field properties).
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Another possible explanation is that mossy fiber LTP is impaired in 
aged rodents, allowing autoassociative processing in CA3 to promote 
the stabilization of already-formed representations in the relative 
absence of consistent pattern separation input from granule cells.

Weakened synaptic plasticity in the aged hippocampus may also 
result in less binding of landmarks and cues via LTP-like processes 
to the hippocampal map, as suggested by models in which the map 
is initially based on self-motion (e.g., McNaughton et al., 1996; 
Touretzky and Redish, 1996). Rosenzweig et al. (2003) found that 
when rats begin their journeys along a linear track at different start-
ing points, place fields in area CA1 are initially aligned to the start-
ing position, representing dominance of self-motion input. During 
the rat’s journey to the end of the track, these place fields realigned 
with reference to their position in the room, indicating a dominant 
influence of visual input. In aged rats, this realignment to visual 
input signals was delayed with respect to that observed in young 
rats. This is evidence for an increased dependence on self-motion 
input in aged rats, which may result from weakened plasticity and 
less binding of cue information to the hippocampal map.

reacTivaTion
The hippocampus may participate in consolidation of memory to 
long-term storage sites in the neocortex (e.g., Scoville and Milner, 
1957; Winocur, 1990; Zola-Morgan and Squire, 1990). Although 
the exact nature of hippocampus-neocortical interactions necessary 
for this storage is not well understood, it has been hypothesized 
that the hippocampus “reactivates” activity patterns during offline 
periods (i.e., rest or sleep) when external inputs are not being proc-
essed (e.g., Marr, 1971; reviewed by McNaughton and Morris, 1987; 
McNaughton et al., 2003). It has been shown that during quiet 
resting, for at least 30-min following behavior (such as running on 
a maze), ensembles of hippocampal neurons express patterns of 
neural firing correlations consistent with those seen during behav-
ior (Pavlides and Winson, 1989; Wilson and McNaughton, 1994; 
Kudrimoti et al., 1999).

Because of the hippocampal memory and plasticity impairments 
seen in aged rats, it was hypothesized that reactivation may be 
impaired in these animals because it requires long-term persistence 
of activity patterns within hippocampal networks. Reactivation 
does occur in the hippocampus of aged rats (Gerrard et al., 2001); 
however, when the temporal order of activity patterns was com-
pared between behavior and rest using a method of analysis that is 
very sensitive to the sequence in which neurons fire action poten-
tials, it was shown that aged rats show less preservation of the 
sequence of firing than do young rats (Gerrard et al., 2008). When 
levels of sequence reactivation were compared to performance in 
the Morris water maze, it was found that rats with cell pairs show-
ing the strongest tendency to fire in the same sequence during 
rest as during behavior also expressed the highest spatial memory 
scores, suggesting that deficient sequence reactivation contributes 
to memory impairments in aged rats.

conclusions and fuTure direcTions
There is considerable evidence that during aging, there are changes 
in the regulation of protein synthesis. Both transcription and transla-
tion are affected; in fact, following artificial or behavioral stimulation, 
some proteins are expressed to a greater degree in the hippocampi 

long-Term place field sTaBilizaTion
Place fields form immediately when animals enter an environment 
for the first time (Bostock et al., 1991; Wilson and McNaughton, 
1993) and can remain stable for months (Thompson and Best, 
1990). Even when NMDA

R
 activity (and presumably LTP) is blocked 

pharmacologically with CPP, fields can remain stable for several 
hours. However, long-term stabilization of this new “map” in CA1 
requires NMDA

R
 activity during exploration (Kentros et al., 1998). 

If CPP is applied during initial encoding of the map in adult ani-
mals, later retrieval of the map is not successful, and this is due to 
impaired plasticity mechanisms. Agnihotri et al. (2004) further 
demonstrated that mechanisms required for L-LTP are also neces-
sary for long-term stabilization of new place fields by blocking pro-
tein synthesis with anisomycin during encoding; protein synthesis 
is required for stabilization of a new hippocampal map that lasts 
6 h or more in young mice. Considering the age-related changes 
observed in protein synthesis and L-LTP, it can be hypothesized 
that place fields may be less stable in the long-term in aged rodents. 
Correspondingly, Yan et al. (2003) have demonstrated reduced sta-
bility of CA1 place fields 24 h after encoding in aged mice.

Interestingly, old rats sometimes express a failure to retrieve pre-
viously expressed maps, similar to what occurs when NMDA recep-
tors are blocked during place field encoding. Barnes et al. (1997b) 
recorded CA1 place cell activity in aged rats during repeated visits 
to a familiar environment. On about 30% of the visits, the aged rats 
expressed a different hippocampal map than during their previous 
visit. Most or all cells completely changed their place-specific firing 
pattern between these visits. Cells never changed their firing fields 
during a visit; the only time “remapping” was observed was upon 
re-entry to the environment after an absence. These findings in aged 
rats are strikingly reflective of the instability of CA1 place fields 
seen in CPP-treated adult rats (Kentros et al., 1998), suggesting 
that impaired plasticity mechanisms in aged rats contribute to this 
instability of place representations.

changes in spaTial represenTaTions
Although place representations in area CA1 are less stable in 
aged than in young rats when an environment remains consist-
ent (Barnes et al., 1997b), this is not the case in all regions of the 
hippocampus. In fact, areas CA1 and CA3 have distinct roles in 
the processing of spatial information (Lee et al., 2004; Leutgeb 
et al., 2004, 2006; Vazdarjanova and Guzowski, 2004; reviewed by 
Leutgeb and Leutgeb, 2007). These hippocampal subregions may 
have dissociable roles in pattern completion and pattern separa-
tion (described by Marr, 1971; McNaughton and Morris, 1987). 
The function of area CA3 appears to be influenced differently by 
changes in hippocampal plasticity during aging than that of area 
CA1. Whereas place representations in young CA3 change when a 
rat is moved from a familiar to a novel environment, place fields in 
aged CA3 tend to generalize between environments such that they 
express similar fields in both (Wilson et al., 2005).

These age differences in CA3 processing may originate with its 
inputs from granule cells; it is believed that sparse encoding in the 
dentate gyrus contributes to the coded orthogonalization of spatial 
information. The dentate gyrus is particularly vulnerable to the 
effects of aging (Small et al., 2002, 2004), and as such, the orthogo-
nalization of spatial inputs may be less effective in the aged rodent. 
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