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We examined in vivo evidence of axonal degeneration in association with neuronal pathol-
ogy in Alzheimer’s disease (AD) through analysis of fornix microstructural integrity and
measures of hippocampal subfield atrophy. Based on known anatomical topography, we
hypothesized that the local thickness of subiculum and CA1 hippocampus fields would
be associated with fornix integrity, reflecting an association between AD-related injury to
hippocampal neurons and degeneration of associated axon fibers. To test this hypothesis,
multi-modal imaging, combining measures of local hippocampal radii with diffusion tensor
imaging (DTI), was applied to 44 individuals clinically diagnosed with AD, 44 individuals
clinically diagnosed with mild cognitive impairment (MCI), and 96 cognitively normal indi-
viduals. Fornix microstructural degradation, as measured by reduced DTI-based fractional
anisotropy (FA), was prominent in both MCI and AD, and was associated with reduced
hippocampal volumes. Further, reduced fornix FA was associated with reduced anterior
CA1 and antero-medial subiculum thickness. Finally, while both lesser fornix FA and lesser
hippocampal volume were associated with lesser episodic memory, only the hippocampal
measures were significant predictors of episodic memory in models including both hip-
pocampal and fornix predictors. The region-specific association between fornix integrity
and hippocampal neuronal death may provide in vivo evidence for degenerative white
matter injury in AD: axonal pathology that is closely linked to neuronal injury.
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INTRODUCTION
Neuropathological changes associated with Alzheimer’s disease
(AD) begin in medial temporal structures including the hip-
pocampus (Ball, 1977; Braak and Braak, 1991). Hippocampal
damage in AD features pyramidal cell neuron loss in the CA1
subfield and subiculum early in the process (Ball, 1977; Mann
et al., 1985; Doebler et al., 1987; Davies et al., 1992). Consistent
with this pathological finding, recent in vivo magnetic resonance
imaging (MRI) studies report significant volume loss within CA1
and subiculum in AD (Csernansky et al., 2000; Wang et al., 2006;
Scher et al., 2007; Chetelat et al., 2008; Frisoni et al., 2008; Xie et al.,
2009; Carmichael et al., 2011) and even mild cognitive impairment
(MCI; Chetelat et al., 2008), a clinical syndrome believed to repre-
sent a preclinical stage of AD (Apostolova and Thompson, 2008).
Because the hippocampus is considered the major neural structure
underlying episodic memory impairments that are the earliest and
the most prominent clinical manifestation of AD dementia (Soini-
nen and Scheltens, 1998; Deweer et al., 2001), the sub-regional
hippocampus measures have potential as markers of brain injury
that underlies the earliest cognitive symptoms leading to eventual
AD dementia.

However, a number of AD studies have also observed injury to
the fornix, the main axonal output pathway from the hippocampus

to the mammillary body (Brodal, 1981; Aggleton and Brown, 1999;
Aggleton et al., 2005). Several such studies have used fractional
anisotropy (FA) derived from diffusion tensor imaging (DTI) as
a measure of anisotropic water diffusion, which is believed to
reflect the microstructural integrity of white matter fibers includ-
ing the axon and surrounding myelin (Assaf and Pasternak, 2008;
Mielke et al., 2009; Pievani et al., 2010; Agosta et al., 2011). Because
the subiculum and CA1 hippocampal subfields are believed to be
principal sources of hippocampal efferent fibers passing through
the fornix (Rosene and Van Hoesen, 1977; Krayniak et al., 1979;
Thierry et al., 2000; Aggleton et al., 2005; Cenquizca and Swanson,
2007), these findings may suggest that damage to axons connected
to early sites of neuronal injury in AD may play a prominent role
in the AD pathological process.

Unfortunately, the relationship between hippocampal neuronal
injury and fornix injury in AD has received little study. To our
knowledge, only one study to date reported a significant associa-
tion between total hippocampal volume and fornix white matter
integrity (Cenquizca and Swanson, 2007) although the regional
specificity of that relationship to hippocampal subfields, as well as
associations between both forms of injury and cognition, was not
explored. Clarifying the relationships between region-specific hip-
pocampal injury, fornix axonal injury, and cognition is important
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for three key reasons. First, axonal pathology with abnormal
axonal transport or myelin breakdown may be a contributing
factor to neuronal loss in AD (de la Monte, 1989; Bartzokis,
2004, 2011; Stokin et al., 2005), although this hypothesis has
not been conclusively confirmed (Muresan and Muresan, 2009).
Second, understanding the relation of axonal to cellular degener-
ation in AD may offer new avenues of therapeutic intervention
(Bartzokis et al., 2004a; Bartzokis, 2011). Third, because suc-
cessful memory function requires not only intact hippocampi
but intact connectivity between hippocampi and a distributed
network of memory-relevant structures (Aggleton and Brown,
1999), imaging markers of injury to hippocampal axonal out-
puts may provide a more complete accounting of brain injury
that is relevant to clinically relevant memory loss early in the AD
process.

Based on the known anatomical connectivity between the hip-
pocampus and fornix, we hypothesized that in MCI and AD,
axonopathy (as measured by reduced fornix FA) would be associ-
ated with neuronal pathology (as measured by regional hippocam-
pus atrophy). To test this hypothesis, we began with a global
approach of associating total hippocampal volume with overall
fornix FA; we then examined whether hippocampal subregion
atrophy was associated with reduced fornix FA in the predicted
topographical manner. The behavioral relevance of these find-
ings was further tested by examining fornix FA and hippocampal
volume as predictors of domain-specific cognitive performance.

MATERIALS AND METHODS
SUBJECTS
Subjects included 44 AD, 44 MCI, and 96 CN individuals. The
AD group consisted of 86.4% patients with probable AD and
13.6% patients with possible AD. All MCI patients were of
the amnestic subtype based on current consensus criteria for
amnestic MCI (Winblad et al., 2004). The diagnosis of AD was
made according to the National Institute of Neurological and
Communication Disorders and Stroke/AD and Related Disor-
ders Association criteria (McKhann et al., 1984). Although no
strict psychometric cut-off scores were used to define cognitive
impairment, memory impairment was defined clinically when a
participant’s performance fell approximately 1.5 SDs below age-
matched norms and in reference to their educational and socioe-
conomic background. No patient had clinical history of stroke.
CN was diagnosed if there was no clinically significant cognitive
impairment.

Subjects were recruited from the AD Center at the University of
California, Davis. All participants received a comprehensive clini-
cal evaluation and neuropsychological testing with a standardized
test battery (Morris et al., 2006). The presence or absence of stroke,
diabetes, hyperlipidemia, transient ischemic attack, hypertension,
and coronary artery disease was systematically assessed to create a
composite score for vascular risks that was the sum of the factors
present ranging 0–6 and reported as a percentage (Lee et al., 2009).
In addition, all subjects received a standardized MRI scan of the
brain at the baseline evaluation. The institutional review boards at
all participating institutions approved this study, and subjects or
their legal representatives gave written informed consent.

IMAGE ACQUISITION
All brain imaging was performed at the University of California at
Davis Imaging Research Center on a 1.5-T GE Signa Horizon LX
EchoSpeed system. A 3D T1-weighted coronal spoiled gradient-
recalled echo acquisition (T1 SPGR: TR 9.1 ms, flip angle 15˚, field
of view 24 and slice thickness 1.5 mm) and an Axial-oblique 2D
DTI sequence based on single-shot spin-echo echo planar imag-
ing (SE-EPI) with a TE of 94 ms, a TR of 8000 ms and a Flip angle
of 90˚ were used to acquire the imaging data. The B-value was
1000 s/mm2 with six gradient directions collected four times each,
along with two B0 images. Ramp sampling was off, but phase cor-
rection for EPI was invoked. An FA map derived from DTI was
obtained according to previously reported methods (Lee et al.,
2009).

MEAN FORNIX FA CALCULATION
In order to obtain mean fornix FA values for each subject, the
fornix body region of interest (ROI) was first delineated in sub-
ject native space using an automatic image warping that fitted
a template mask to the native T1-weighted image. The steps to
accomplish this fit are as follows:

Fornix body mask
A fornix body ROI covering the entire body part of the fornix,
which contains all axonal fibers passing through the fornix, was
drawn by one of the authors (CD) with substantial experience
in neuroanatomy on a minimal deformation template (MDT;
Kochunov et al., 2001). This mask did not include the column
and crux of the fornix because these regions are too small to be
reliably extracted through an ROI approach.

Automatic fitting of fornix body mask
Before the transformation steps, subject T1-weighted images were
first stripped of the skull using an in-house semi-automatic
algorithm that included a user-guided cleanup phase to insure
accurate brain boundaries. The fit of the template fornix body
mask onto subject T1-weighted images relied on registration
between the MDT template and the subject T1-weighted image
including linear alignment followed by B-spline warping. This
method of image registration has been previously described (Lee
et al., 2009). The registration of subject T1-weighted images
to the template allowed the template fornix mask to be fitted
to the subject’s anatomy. The subject FA image was also lin-
early registered to its corresponding T1-weighted image. After
this automatic fitting process, we visually inspected every sub-
ject T1-weighted image and transformed fornix mask to con-
firm that the mask was well fitted to the fornix body in every
subject.

Tissue segmentation
Segmentation of gray matter, white matter, and CSF was per-
formed on subject T1-weighted images by an in-house com-
puter program using Bayesian maximum-likelihood EM com-
putation (Dempster et al., 1977). Tissue probabilities used a
combination of Gaussian intensity distributions and a Markov
random field (MRF) for modeling tissue classification of voxel
neighborhoods.
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Fornix ROI body FA calculation
To avoid artifactual FA reductions due to CSF voxels erroneously
included in the automatically fitted fornix body mask, only voxels
classified as white matter in the tissue segmentation were finally
included in each fornix ROI body mask. The mean FA value was
calculated within each fornix ROI body based on the subject FA
image aligned to the subject T1-weighted image.

HIPPOCAMPUS MANUAL TRACING
Boundaries of the hippocampus of each subject were manually
traced on the native T1-weighted image according to previously
described methods (DeCarli et al., 2008). We used the anterior
two-thirds of the hippocampus that contains most of CA1 and
subiculum neurons whose axons are included in the fornix. Hip-
pocampus volume was corrected for head size (percentage total
cranial volume). Reliability of hippocampus volume using this
method is quite good with intra-rater intraclass correlation coef-
ficients of 0.98 for right hippocampus and 0.96 for left hippocam-
pus, and intra-rater, inter-scanner intraclass correlation coefficient
of 0.87 for bilateral hippocampus volume (see Carmichael et al.,
2012 for details).

3D MAPPING OF REGIONAL HIPPOCAMPAL THICKNESS, FORNIX FA,
AND THEIR ASSOCIATION
We used 3D hippocampal radius mapping (Thompson et al., 2004)
to provide spatially localized measures of hippocampal thickness.
The manually traced right and left hippocampal masks were con-
verted to smooth high-resolution mesh surfaces. These meshes
were linearly transformed using a 12-parameter affine transfor-
mation onto hippocampal masks in the template space. This
transformation reduced global differences in position and scal-
ing over the population of hippocampi, while preserving local
variations in shape. In the template space the transformed meshes
were converted into a set of in-slice radial lines emanating from
the centroid of hippocampal area on each slice. The number of
centroids and radii from each centroid were standardized to the
set of radii for the right and left template hippocampi. The lengths
of the radial lines provided localized thickness measurements at
standardized locations on each right and left hippocampus. These
thickness values were used as dependent variables in group com-
parisons, and dependent or independent variables in regression
analyses.

For voxel-based analysis of fornix FA, each individual FA
image registered to the native T1-weighted image (as described
in the methods above) was warped onto the MDT through affine
transformation and high-dimensional B-spline transformation
previously described (Lee et al., 2009).

Group differences between CN and AD in hippocampus thick-
ness were evaluated at every 3D surface point of the MDT hip-
pocampus, and group differences in FA were evaluated at every
voxel within the fornix body mask in MDT space. Hippocam-
pus surface points showing significant group differences were
collected into a statistical hippocampus ROI, and fornix voxels
showing significant group differences were collected into a statis-
tical fornix ROI. For each hippocampus surface point, a regression
model assessed the association between thickness (dependent vari-
able) and mean FA of the statistical fornix ROI (independent

variable). For each voxel in the fornix mask (dependent variable),
a regression model assessed the association between FA and mean
thickness within the statistical hippocampus ROI (independent
variable). All regression models included age and gender as nui-
sance covariates. Non-parametric permutation testing was used
to correct for multiple comparisons while providing significance
values for the regression models, using p < 0.05 as a significance
threshold (Nichols and Holmes, 2002; Thompson et al., 2003).

The results of hippocampal thickness group comparisons (p-
value and percent difference maps) were displayed on a 3D hip-
pocampal mesh surface in the space of the MDT (Figure 3).
Approximate boundaries of cytoarchitectonic hippocampal fields
were schematically mapped onto the same hippocampal surface
(Figure 3A) in consultation with a well-established source (Duver-
noy, 2005). To demonstrate region-specific associations between
the fornix and hippocampus, we displayed in Figure 4 fornix and
hippocampus surfaces in MDT space showing: (a) p-values for
CN vs. AD group comparisons for both fornix FA and hippocam-
pal RD, (b) the fornix statistical ROI and, at each hippocampal
surface point, the p-value for the association between fornix sta-
tistical ROI mean FA and local hippocampus thickness, and (c) the
hippocampus statistical ROI, and, for every voxel intersecting the
fornix surface, the p-value for the association between hippocam-
pus statistical ROI mean thickness and FA. Additional views of the
hippocampus p-values in Figure 4B, along with an analogous R2

map, is shown in Figure 5.

OTHER STATISTICAL ANALYSIS
Demographic, clinical and global MRI summary variables from
the CN, MCI, and AD groups were compared by one-way analysis
of variance (ANOVA) with post hoc pair wise comparisons using
Tukey correction for multiple comparisons. Group differences in
total hippocampal volume and statistical fornix ROI mean FA were
tested by analyses of covariance (ANCOVAs) with age and gender
as covariates, using Tukey post hoc correction. The association
between fornix body ROI mean FA and total hippocampal volume
was evaluated in a multiple linear regression model with fornix
body ROI mean FA as the dependent variable and hippocampus
volume, age and gender as independent variables. Associations
between cognitive variables and hippocampus and fornix predic-
tors was assessed in multiple linear regression models with the
cognitive variables as dependent variables; hippocampal volume,
fornix FA, or both as independent variables; and age, education,
and gender as additional independent variables. Unless otherwise
specified, p-values less than 0.05 were regarded as significant.

RESULTS
SUBJECT CHARACTERISTICS
Demographic, clinical, and global MRI variables are summarized
in Table 1. The CN, MCI, and AD groups were broadly similar
in age, education, and vascular risk. Expected stepwise differences
between CN, MCI, and AD were observed in cognitive variables
and global brain volume.

HIPPOCAMPAL VOLUME AND MEAN FORNIX FA GROUP DIFFERENCES
Mean hippocampus volume in the AD group was 10.2% lower than
that of the MCI group; mean hippocampus volume in the MCI
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Table 1 | Subject characteristics.

CN MCI AD p-Value

No. (M/F) 96 (33/63) 44 (20/24) 44 (18/26) 0.429

Age, years 74.1 ± 7.4 74.1 ± 7.7 76.5 ± 9.8 0.259

Education, years 12.0 ± 5.1 12.7 ± 5.8 10.5 ± 4.4 0.125

MMSE 27.9 ± 2.3 24.6 ± 4.0 20.3 ± 5.6 <0.001*
†‡

Vascular risk score, % 25.3 ± 22.3 21.4 ± 18.9 26.9 ± 19.4 0.477

Brain vol., % TCV 79.5 ± 4.7 77.5 ± 5.1 75.3 ± 4.6 <0.001*
‡

COGNITIVE COMPOSITE SCORES

Semantic memory 0.131 ± 0.870 −0.434 ± 0.939 −0.842 ± 0.878 <0.001*
‡

Episodic memory 0.061 ± 0.878 −1.049 ± 0.465 −1.605 ± 0.462 <0.001*
†‡

Executive function −0.084 ± 0.693 −0.587 ± 0.601 −1.009 ± 0.732 <0.001*
†‡

Spatial function 0.011 ± 0.866 −0.492 ± 1.059 −0.781 ± 0.871 <0.001*
‡

Data presented as means ± SD. Brain volume corrected for head size [% total cranial volume (TCV)]. Group comparison of gender ratio by χ2 test (df = 2). Comparison

of group mean by ANOVA (df = 2). Post hoc comparison of significant group differences: *cognitively normal (CN) vs. Alzheimer’s disease (AD), †mild cognitive

impairment (MCI) vs. AD, ‡CN vs. MCI.

MMSE, Mini-Mental State Examination.

group, in turn, was 9.6% lower than that of the CN group. These
group differences were statistically significant (F = 17.26, df = 2,
p < 0.001, Figure 1A). Mean fornix FA in the AD group was 1.8%
lower, and mean fornix FA in the MCI group was 1.7% lower, than
in the CN group (F = 12.19, df = 2, p < 0.001), but differences
between AD and MCI groups were not significant (Figure 1B).

RELATIONSHIP BETWEEN HIPPOCAMPAL VOLUME AND MEAN
FORNIX FA
A 1 SD increase in hippocampal volume was associated with
a.41-SD increase in fornix body ROI mean FA in univariate analy-
sis (p < 0.001). Controlling for age and gender in a multiple
regression model did not substantially modify this association
(Figure 2A). Separate analyses within separate baseline clini-
cal groups revealed that the association was significant within
the MCI and AD groups considered individually, but not CN
(Figures 2B–D).

LOCAL HIPPOCAMPAL THICKNESS GROUP DIFFERENCES
Hippocampal thicknesses were significantly decreased in AD vs.
CN bilaterally in most of the CA1, a small region of the CA2 adja-
cent to CA1, and the medial part of the subiculum. In contrast,
the other areas corresponding to most of the CA2–4 and den-
tate gyrus and the middle and lateral part of the subiculum were
relatively spared in AD patients (Figures 3A,B,E). MCI patients
also showed decreased hippocampal thickness compared to CN
at smaller, but similar hippocampal regions including the bilat-
eral anterior CA1 and antero-medial subiculum (Figures 3C,F).
The AD group also had decreased thickness relative to MCI in
similar regions, although the difference was statistically signifi-
cant mainly in the right CA1 region adjacent to the CA2 subfield
(Figures 3D,G).

REGION-SPECIFIC ASSOCIATION BETWEEN HIPPOCAMPAL THICKNESS
AND FORNIX FA
As shown Figures 4B and 5, multiple regression analyses revealed
that greater mean FA in the fornix regions showing reduced

integrity in AD (i.e., the statistical fornix ROI; Figure 4B)
was associated with greater thickness of bilateral antero-medial
subiculum and middle-anterior CA1 subregions. The hippocam-
pal subregions associated with fornix integrity were remark-
ably similar to the hippocampal subregions that were rela-
tively atrophic in AD and MCI (Figures 3B and 4A). Sim-
ilarly, lesser mean thickness of the hippocampal region that
showed marked thinning in AD (i.e., the hippocampus statis-
tical ROI; Figure 4C) was associated with lesser FA in fornix
regions that overlapped greatly with the fornix statistical ROI
(Figures 3A,B).

COGNITIVE CONSEQUENCES OF HIPPOCAMPAL ATROPHY AND FORNIX
MICROSTRUCTURAL ALTERATION
A 1 SD increase in mean fornix body FA was associated with a
0.252 SD increase in episodic memory (p = 0.002) and a 0.22 SD
increase in executive function (p = 0.006), but mean fornix body
FA was not associated with semantic memory or spatial function
(Table 2). A 1 SD increase in total hippocampal volume was asso-
ciated with a 0.3 SD increase in episodic memory, but not with
the three other cognitive measures (Table 2). As shown in Table 2,
in models containing both total hippocampus volume and mean
fornix body FA, the effect of fornix FA on episodic memory was no
longer significant, while its effect on executive function remained.
In contrast, hippocampal volume continued to show a signifi-
cant effect on episodic memory in the model that also contained
fornix FA.

DISCUSSION
Our ROI-based approach confirmed that both microstructural
degradation of the fornix, as measured by FA, and overall hip-
pocampal atrophy were prominent in AD and MCI. We also
found through 3D thickness mapping that AD-associated hip-
pocampal atrophy was mainly localized in the bilateral CA1
and medial subiculum subfields. In addition, greater fornix FA
was associated with greater hippocampal volume as well as with
greater thickness of anterior CA1 and antero-medial subiculum.
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FIGURE 1 | Graphic display of hippocampal volume and fornix fractional

anisotropy (FA) according to diagnostic group. (A) Hippocampal volume;
and (B) fornix FA. White columns indicate cognitively normal (CN) older

individuals; gray columns, patients with mild cognitive impairment (MCI); and
black columns, patients with Alzheimer’s disease (AD). Error bars indicates
SD. *p < 0.05 and **p < 0.01 by Tukey post hoc diagnostic group comparison.

FIGURE 2 | Partial regression plots showing relationship between

fractional anisotropy of the fornix and volume of the hippocampus

within (A) all study subjects (N = 184); (B) cognitively normal (CN,

N = 96); (C) mild cognitive impairment (MCI, N = 44); and (D) Alzheimer’s

disease (AD, N = 44) group. Variables in each plot were adjusted for age and
gender.

Relationships between hippocampal and fornix subregions were
confined to those regions that showed AD-related deficits. Finally,
greater fornix integrity and hippocampal thickness and volume

were associated with greater episodic memory performance, while
greater fornix integrity was additionally associated with greater
executive function.
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FIGURE 3 |Three-dimensional maps of hippocampal regional atrophy.

(A) A schematic representation of the hippocampal subregions mapped
onto a representative hippocampal surface (definition of each subregion
based on Duvernoy, 2005); (B,E) statistical p-value (corrected for multiple
comparison) maps and percent difference maps for cognitively normal (CN)
vs. Alzheimer’s disease (AD) comparison; (C,F) for CN vs. mild cognitive
impairment (MCI) comparison; and (D,G) for MCI vs. AD comparison of
hippocampal radial distance.

Our finding of fornix microstructural disruption in AD is con-
sistent with previous DTI studies (Mielke et al., 2009; Pievani et al.,
2010; Agosta et al., 2011). In addition, however, we also found
milder, but significant reductions in fornix FA in MCI subjects not
previously identified by these studies (Mielke et al., 2009; Pievani
et al., 2010). Enhanced statistical power with our larger sample size
probably contributed to this discrepancy (Pievani et al., 2010). In
addition, we measured FA within the entire body of the fornix,
while one prior study (Mielke et al., 2009) measured FA from
only a single slice of the fornix body, possibly leading to increased
FA measurement error. Our finding in MCI, together with the

results of a prior study (Ringman et al., 2007) that demonstrated
fornix FA reductions in presymptomatic carriers of familial AD
mutations, suggests that fornix degeneration may occur early in
the AD pathological process.

In addition to overall hippocampal atrophy, we found region-
specific atrophy of the CA1 and medial part of the subiculum
adjacent to the presubiculum in AD, and to a lesser extent in MCI.
These findings agree with prior MRI studies (Csernansky et al.,
2000; Wang et al., 2006; Scher et al., 2007; Chetelat et al., 2008;
Frisoni et al., 2008; Xie et al., 2009), which are in turn consistent
with AD neuropathological findings (Ball, 1977; Mann et al., 1985;
Doebler et al., 1987; Davies et al., 1992).

Our findings provide in vivo confirmation of topographi-
cal associations between fornix fibers and pyramidal cell bodies
originating in the subiculum and CA1 subfields (Rosene and
Van Hoesen, 1977; Krayniak et al., 1979; Brodal, 1981; Thierry
et al., 2000; Aggleton et al., 2005; Cenquizca and Swanson,
2007). These findings suggest that microstructural degradation
of the fornix is closely related to region-specific hippocampal
cell loss in AD. Taken together with the observation that fornix–
hippocampus relationships were significant in MCI and AD but
not CN, these results strongly support the hypothesis that neu-
ronal loss and axonal injury are not independent processes, but
specifically related pathologies in the AD degenerative process.
This hypothesis has been previously supported by data suggest-
ing that axonal alterations may precede beta amyloid and even
promote development of senile plaques in the cortex (Stokin
et al., 2005). Other evidence suggests that, instead, axonal injury
may be a downstream result of increased beta amyloid at the
synapse (Muresan and Muresan, 2009). Independent of etiol-
ogy, further evidence strongly suggests that axonal myelin break-
down occurs at the earliest or even preclinical stage of AD and
has marked negative effects on neuronal survival (Han et al.,
2002; Bartzokis et al., 2003; Bartzokis, 2004; Braak et al., 2006).
Our findings support this evolving evidence suggesting shared
pathogenesis between axonal and neuronal degeneration in AD.
However, we caution that temporal relationships among AD
pathology development, gray matter atrophy, and white matter
degeneration clearly cannot be established by our cross-sectional
study.

Regression analyses suggested that both hippocampal atro-
phy and fornix microstructural degradation were associated with
episodic memory decline. These results are compatible with the
established notion that, not only the hippocampus itself, but also
the pathway from the hippocampus to the mammillary bod-
ies and anterior thalamic nuclei, via the fornix (the so called
extended hippocampal–diencephalic system), is critical for the
efficient encoding and subsequent recall of new episodic informa-
tion (Aggleton and Brown, 1999). However, when hippocampal
and fornix measures were included in the same regression model,
the association between fornix FA and episodic memory was no
longer significant, whereas the association between hippocam-
pal measures and episodic memory remained. This finding may
favor the impact of gray matter degeneration (as measured by
hippocampal volume) over white matter degeneration in the AD
process, while it could also be explained by a model in which
white matter injury occurs earlier, but hippocampal atrophy, once
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FIGURE 4 | Demonstrative maps showing both anatomical

fornix–hippocampus relationship and statistical association between

fornix and hippocampus alteration on the same 3D template

hippocampus–fornix surface. (A) Statistical p-value (corrected for
multiple comparison) maps for cognitively normal (CN) vs. Alzheimer’s
disease (AD) differences of both regional fornix fractional anisotropy (FA)

and hippocampal thickness; (B) the statistical fornix ROI with significant
CN vs. AD FA differences and p-value map for hippocampal regions
associated with mean FA of the statistical fornix ROI; and (C) the statistical
hippocampal ROI with significant CN vs. AD thickness differences and
p-value map for fornix regions associated with mean thickness of the
statistical hippocampal ROI.

FIGURE 5 |Three-dimensional maps for the association of regional

hippocampal atrophy with fornix microstructural alteration by

Alzheimer’s disease (AD). (A) Statistical p-value (corrected for
multiple comparisons) map and (B) R2 map for the results of regression

analyses including mean fornix fractional anisotropy (FA) as a
independent variable and each hippocampal surface point radial
distance as a dependent variable, and age and gender as covariates.
(Also see Figure 4B).

present, explains more of the variance. Fornix FA was also associ-
ated with executive function; this may be a reflection of structural
or functional links between the fornix and prefrontal circuitry
critical to executive function, as suggested in other mammalian
studies (Thierry et al., 2000; Cenquizca and Swanson, 2007). Alter-
natively, reduced FA in the fornix may be a sign of more advanced

disease and therefore associated with reduced executive function.
Independent of exact cause for this association, these findings
support the notion of AD as a syndrome of neuronal disconnec-
tion (De Lacoste and White, 1993) where widely dispersed neural
systems are affected (Seeley et al., 2009). Axonal integrity is impor-
tant to the fidelity of these systems and, therefore, may serve as a
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Table 2 | Multiple regression models explaining cognitive functions with hippocampus volume and fornix fractional anisotropy (FA).

Independent variables of each model Semantic memory Episodic memory Executive function Spatial function

Beta p-Value Beta p-Value Beta p-Value Beta p-Value

Hippocampus vol. 0.118 0.099 0.300 <0.001 0.110 0.132 0.079 0.310

Age −0.076 0.283 −0.113 0.118 −0.117 0.104 −0.132 0.090

Education 0.559 <0.001 0.328 <0.001 0.494 <0.001 0.446 <0.001

Gender −0.137 0.051 0.189 0.008 0.059 0.406 −0.055 0.474

R2 (p-value) of model 0.328 (<0.001) 0.255 (<0.001) 0.261 (<0.001) 0.208 (<0.001)

Fornix FA 0.065 0.417 0.252 0.002 0.217 0.006 0.119 0.170

Age −0.075 0.345 −0.050 0.538 −0.017 0.826 −0.089 0.298

Education 0.570 <0.001 0.332 <0.001 0.494 <0.001 0.467 <0.001

Gender −0.121 0.079 0.194 0.006 0.041 0.540 −0.058 0.435

R2 (p-value) of model 0.332 (<0.001) 0.221 (<0.001) 0.273 (<0.001) 0.229 (<0.001)

Fornix FA 0.011 0.900 0.126 0.156 0.154 0.049 0.084 0.371

Hippocampus vol. 0.115 0.124 0.264 0.001 0.065 0.393 0.059 0.472

Age −0.071 0.387 −0.054 0.518 −0.044 0.590 −0.092 0.307

Education 0.559 <0.001 0.333 <0.001 0.500 <0.001 0.451 <0.001

Gender −0.138 0.051 0.185 0.010 0.054 0.440 −0.061 0.429

R2 (p-value) of model 0.328 (<0.001) 0.265 (<0.001) 0.276 (<0.001) 0.212 (<0.001)

p < 0.05.

new avenue for therapeutic development (Bartzokis et al., 2004a,b;
Bartzokis, 2011).

Our study is not without limitation. First, all subjects were clin-
ically diagnosed. While the diagnosis of AD dementia is generally
quite accurate at specialized centers such as ours, a substantial
number of individuals with amnestic MCI may in fact lack indica-
tion of early AD pathology (Forsberg et al., 2008). Second, this is a
cross-sectional study, so definite causal inferences between fornix
and hippocampal alterations are not possible. Third, we focused
only on the hippocampal output system via the fornix, but the
entorhinal cortex is where neurofibrillary tangles accumulate first
in the AD degenerative process (Gomez-Isla et al., 1996) and is the
main input source of the hippocampus. The influence of pathol-
ogy in this input system on regional hippocampal degeneration
needs to be further clarified.

CONCLUSION
We found fornix microstructural alteration in MCI and AD
patients that was closely associated with the hippocampus atrophy
in the CA1 and medial subiculum where AD-specific neuronal loss
and atrophy is marked. This region-specific relationship between
fornix and hippocampal alterations indicates that cortical neu-
ronal damage and subcortical axonal defects in AD are likely to be
closely linked with each other, possibly reflecting a suggested path-
ogenic interaction between the two (Bartzokis, 2011), although
this needs to be clarified through longitudinal studies.
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