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et al., 2007, 2008). On closer analysis, this is true in orientation 
column data as well (Hetherington and Swindale, 1999; Ringach 
et al., 2002). If there is a generic minicolumn functionality, then 
it must be compatible with varying degrees of tuning correlation 
amongst the minicolumn’s cells.

I propose that the minicolumn does have a generic functional-
ity (given shortly), but one that only becomes clear when seen in 
the context of the function of the higher-level, subsuming unit, 
namely, the macrocolumn, which has been demonstrated anatomi-
cally (Goldman and Nauta, 1977; Lübke et al., 2003; Egger et al., 
2008) and functionally (Mountcastle, 1957; Woolsey and Van der 
Loos, 1970; Hubel and Wiesel, 1974; Albright et al., 1984). I propose 
that the function of a macrocolumn (e.g., hypercolumn, segregate, 
barrel) is to store sparse distributed representations of its overall input 
patterns, and to act as a recognizer of those patterns. By “overall 
input” pattern, I mean the macrocolumn’s overall input at a given 
moment, including not only its bottom-up (BU) inputs from thala-
mus or lower cortical areas, but also its top-down (TD) inputs from 
higher cortical areas and its horizontal (H) inputs, which I propose 
carry temporal (sequential) context information (recurrently) from 
the representations previously active in the same and nearby macro-
columns. Thus, an “overall input pattern” can equally well be termed, 
a “context-dependent input”. Thus, it is in fact the macrocolumn 
whose generic functionality is appropriately characterized as rec-
ognition; i.e., recognition of a class determined by the history of 
context-dependent inputs to which it has been exposed.

INTRODUCTION
The columnar organization of neocortex at the minicolumnar 
(20–50 µm) and macrocolumnar (300–600 µm) scales has long 
been known (see Mountcastle, 1997; Horton and Adams, 2005 for 
reviews). Minicolumn-scale organization has been demonstrated on 
several anatomical bases (Lorente de No, 1938; DeFelipe et al., 1990; 
Peters and Sethares, 1996). There has been substantial debate as to 
whether this highly regular minicolumn-scale structure has some 
accompanying generic dynamics or functionality. See Horton and 
Adams (2005) for a review of the debate. However, thus far no such 
generic function for the minicolumn – i.e., one that would apply 
equally well to all cortical areas and species – has been determined.

One basis upon which a functionality for the minicolumn has 
been suggested is possession of highly similar receptive fi eld char-
acteristics, or tuning, by the cells comprising the minicolumn, e.g., 
V1 orientation columns (Hubel and Wiesel, 1962, 1968) and mini-
column-sized regions innervating cutaneous zones (Favorov and 
Diamond, 1990). The reasoning here appears to be that because a 
group of cells all have very similar tuning to a particular feature, 
α, e.g., an edge at a particular orientation, they form a unit whose 
function is to recognize α. However, in searching for a possible 
generic minicolumn function, we need not limit ourselves to con-
sidering only recognition functions. Furthermore, possession of 
highly similar tuning cannot be a basis for a generic minicolumn 
functionality since in many cortical areas, the cells encountered 
along vertical penetrations can have quite variable tuning (cf. Sato 
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in  multiple codes (red-circled cells). In terms of the proposed 
model, the active neurons would be the winners in their respec-
tive minicolumns, as suggested in Figures 1C,D. Figure S1 in 
Supplementary Material provides another view of how the pro-
posed model maps onto cortex.

If the macrocolumn does indeed function as a SDC fi eld in 
the way suggested here, then we must answer two key questions 
regarding its dynamics.

1. How is any particular set of winners, one in each of the 70 
minicolumns, initially chosen in response to an input pattern 
and bound into a holistic code? That is, how are macrocolum-
nar codes learned?

2. How is a previously learned code reactivated in response to 
future presentations of the input pattern that it was initially 
chosen to represent? That is, how are stored macrocolumnar 
codes retrieved (reactivated)?

In the next section, I describe an algorithm, referred to as the 
code selection algorithm (CSA), which answers both questions. A key 
property of the CSA is that it causes similar inputs to be assigned 
to similar, i.e., more highly intersecting, codes. This property, 
which will be referred to as SISC (similar inputs map to similar 
codes), is very important in terms of computational effi ciency (see 
Discussion) and is possessed by most distributed coding schemes. 
However, the CSA achieves it in a novel, probabilistic fashion, which 
can be summarized as follows:

1. Determine the familiarity of a macrocolumn’s input. To 
a first approximation, an input’s familiarity is its maxi-
mum similarity to any input previously stored in the 
macrocolumn.

2. Set the amount of randomness (noise) in the process of 
selecting winners in the WTA modules in inverse proportion 
to the input’s familiarity.

3. Select the winners.

The algorithm’s rationale is described in detail in the next 
section, but broadly, the idea is as follows. When an input, α

1
, 

is familiar, we want to reactivate the code, β
1
, to which α

1
 was 

A distributed representation of an item of information is one in 
which multiple units collectively represent that item, and crucially, 
such that each of those units generally participates in the represen-
tations of other items as well. Distributed representations are also 
referred to as cell assemblies, population codes, or ensembles. In this 
paper, “representation” and “code” will be used interchangeably. A 
sparse distributed code (SDC) is one in which only a small fraction 
of the pool of available representing units is part of any particular 
code (Palm, 1982; Lynch et al., 1986; Kanerva, 1988).

If the macrocolumn stores SDCs, then there must be some mecha-
nism that enforces sparseness and this, I propose, is the generic func-
tion of the minicolumn. Specifi cally, I propose that small, physically 
localized pools of L2/3 pyramidals, e.g., ∼20 such cells, act as winner-
take-all (WTA) competitive modules (CMs). This implies that macro-
columnar codes should consist of about 60–80 active L2/3 cells, one 
per minicolumn: for simplicity, assume 70 minicolumns per macro-
column hereafter. Defi ned in this way, the minicolumn has a more 
fl exible relation to the ontogenetic column, the apical dendrite bun-
dle, the DBC horsetail, etc. For example, a given minicolumn might 
include L2/3 pyramidals from more than one apical dendrite bundle, 
consistent with the fi ndings of Yoshimura and Callaway (2005) of fi ne-
scale networks of preferentially interconnected L2/3 pyramidals.

There is increasing evidence for the use of SDC in the cortex 
and other brain structures; e.g., auditory cortex (Hromdka et al., 
2008), visual areas (Young and Yamane, 1992; Vinje and Gallant, 
2000; Waydo et al., 2006; Quian Quiroga et al., 2008), zebra fi nch 
neopallium (Hahnloser et al., 2002), olfactory structures (Jortner 
et al., 2007; Linster and Cleland, 2009; Poo and Isaacson, 2009), 
and hippocampus (Leutgeb et al., 2007). Particularly supportive 
of the proposed hypothesis is the Reid Lab’s calcium imaging 
data of rat V1 during stimulation by drifting square-wave grat-
ings (Ohki et al., 2005). Their movie (http://reid.med.harvard.
edu/movies.html) shows sparse collections of L2/3 cells extending 
over an approximately macrocolumn-sized region synchronously 
turning on and off in response to particular grating orienta-
tions. Figures 1A,B (two frames from the movie) show distinct 
sets of cells, i.e., codes, responding to bars moving left and right, 
respectively, and emphasize that individual units may participate 

FIGURE 1 | Calcium (tangential) images of L2/3 of rat visual cortex showing 

sparse sets of cells activating in unison (see movie link in text) in response 

to leftward (A) and rightward (B) drifting gratings. From Ohki et al. (2005). Red 
circles highlight some cells common to both codes. (C,D) Sketch of proposed 

sparse distributed coding concept, which could plausibly give rise to data like 
(A) and (B). Note different scales. Red borders emphasize intersections between 
codes. N.b.: To make the sketches look more like the calcium images, black is 
used for inactive units and white for active: this is reversed in subsequent fi gures.
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previously assigned. The cells comprising β
1
 will have had their 

synapses (from the cells comprising α
1
) increased during learning. 

Thus, if α
1
 is presented again, the cells of β

1
 will have the highest 

synaptic input summations in their respective WTA modules. 
In this case, winners should be chosen on the deterministic basis 
of these summations: no noise should be present in the winner 
selection process. On the other hand, increasingly novel inputs 
should be assigned to increasingly distinct codes, i.e., codes having 
progressively smaller intersection with existing codes. This can be 
achieved by increasing the noisiness of the winner selection proc-
ess in each WTA module, which can be achieved by suppressing 
the infl uence of the deterministic synaptic inputs (which refl ect 
prior learning) relative to baseline random (spontaneous) activity. 
By adjusting parameters that control the global (i.e., across the 
whole macrocolumn) noise level, we can modulate the expected 
intersection between the set of cells which have the maximal input 
summations in their respective WTA modules and the set of win-
ners that are actually chosen, thus implementing SISC.

Many experimental and theoretical studies implicate neuromod-
ulators, notably norepinephrine (NE) and acetylcholine (ACh), in 
functionality similar to the above, which can be described generally 
as modulating signal-to-noise ratio (SNR). Doya (2002) proposed 
that NE levels control the amount of noise in a process of choosing 
output actions. However, Doya’s model assumes a localist repre-
sentation of the choices, which precludes possession of the SISC 
property (see Discussion). In addition, increased ACh has been 
shown to selectively increase the strength of afferent relative to 
intrinsic inputs in piriform cortex (Hasselmo and Bower, 1992) 
and other brain structures (see Hasselmo, 2006 for review). These 
ACh fi ndings have been summarized as showing that increased 
ACh adjusts network dynamics to favor encoding new memories 
compared to retrieving old memories, which fi ts well with the pro-
posed CSA functionality. Following the model description, I offer a 
speculative mapping of my proposed model onto neural circuitry 
and discuss evidence for novelty-contingent noise modulation by 
both NE and ACh. However, the specifi cs of this mechanism are 
a subject of ongoing research and likely will involve interactions 
between neuromodulatory systems (cf. Briand et al., 2007).

Any discussion of columnar function of course centrally con-
cerns cortical circuitry, and more specifi cally, the putative canoni-
cal cortical microcircuit (Rockland and Pandya, 1979; Douglas 
et al., 1989; Douglas and Martin, 1991). I therefore want to fi nish 
the Introduction with the following point. We have made huge 
progress in understanding many of the components of corti-
cal  microcircuitry – a tiny sample of which includes (DeFelipe 
et al., 1990; Larkum et al., 2001; Beierlein et al., 2003; Schubert 
et al., 2003; Zhu et al., 2004; Feldmeyer et al., 2006; Fukuda et al., 
2006; Krieger et al., 2007; Egger et al., 2008; Hirata and Castro-
Alamancos, 2008; Berger et al., 2009; Murayama et al., 2009; Symes 
and Wennekers, 2009; Briggs, 2010; and see Thomson et al., 2002; 
Bannister, 2005; Silberberg et al., 2005 for reviews). Nevertheless, 
we remain far from any sort of comprehensive and consensual 
understanding of how cortical columnar circuitry manipulates, 
i.e., stores and retrieves, specifi c items of information. In the main, 
only very broad conclusions regarding information processing are 
asserted in the experimental literature, e.g., horizontal  connections 
between fast-spiking L4 interneurons and pyramidals are involved 

in  formation of L4 assemblies and sharpening of tuning (Sun et al., 
2006); that both the populations of L4 pyramidals and of L5A 
pyramidals have transcolumnar connectivity patterns allowing 
them to act as integrators of information coming in from multiple 
vibrissae in parallel, or in close sequence (Schubert et al., 2007); 
that the receptive fi elds of barrel-related L2/3 pyramids are dynamic 
and thus may refl ect learning to recognize spatiotemporal patterns 
of vibrissae defl ections (Brecht et al., 2003); that WTA competi-
tion occurs in the supra- and infragranular layers (Douglas and 
Martin, 2004); and that local (∼100 µm) L2/3-to-L2/3 connections 
might serve to synchronize fi ring of L2/3 cell assemblies (Lübke and 
Feldmeyer, 2007); etc. I believe the hypothetical model described 
herein to be a signifi cant contribution because it goes beyond broad 
conclusions and offers a mechanistic explanation of how specifi c 
informational items are learned and retrieved and in so doing, 
proposes a generic function for the minicolumn, i.e., that it func-
tions as a WTA module in support of manipulating SDCs at the 
next higher, i.e., macrocolumnar, scale.

RESULTS: MODEL DESCRIPTION
Figure 2 shows the functional architecture of a simplifi ed version 
of the model. In particular, it was stated in the Introduction that 
sparse macrocolumnar codes are chosen in response to a macro-
column’s overall input, which includes its BU, H, and TD inputs. 
However, illustrations of the model in operation in that general 
case become rather complex, particularly since the H (and TD) 
weights carry temporal information, which necessitates show-
ing the model at multiple successive time steps while processing 
spatiotemporal patterns. More importantly, the core elements of 
the hypothesis – which are: (a) that the macrocolumn stores SDCs 
consisting of one winning L2/3 cell per minicolumn; and (b) that 
the SISC property is achieved by modulating the amount of ran-
domness (noise) present in the winner selection process in inverse 
proportion to input familiarity – can be clearly and more simply 
described for the BU-only case (i.e., where inputs are purely spa-
tial patterns). Therefore, the model description in this paper will 
be limited to the BU-only case. However, the generalized model 
(with BU, H, and TD inputs) and the accompanying general-
ized version of the CSA are given in Figures S2 and Table S1 in 
Supplementary Material.

In Figure 2, the input fi eld, F1, is comprised of 12 binary units 
and can be considered analogous to a specifi c thalamic nucleus, 
though topographical organization is not assumed. The cod-
ing fi eld, F2, consists of Q = 4 WTA CMs, each containing K = 3 
binary units. Complete (all-to-all) BU connectivity from F1 to F2 
is assumed for simplicity. These BU weights (synapses) are binary, 
initially 0, and are permanently set to a weight of 1 the fi rst time the 
pre- and postsynaptic units are co-active (i.e., Hebbian learning).

MODEL DYNAMICS: THE CODE SELECTION ALGORITHM
The model’s core algorithm, the CSA, determines which cells are 
chosen to represent an input, during both learning and retrieval. A 
single iteration of the algorithm involves two rounds of competi-
tion in the CMs of F2. The fi rst round is a hard WTA competition 
(represented by boxes labeled “Max” in Figure 2). The purpose of 
the fi rst round is to compute a global familiarity measure, G, of the 
input pattern. G then drives a global modulation of the F2 unit 
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activation function (Figure 2: purple arrows) in preparation for 
the second competitive round, which is a soft WTA competition, 
the intent of which is that:

1. as G goes to 1 (indicating a completely familiar input), the pro-
bability that the unit with the highest input summation in a 
CM wins approaches 1, and

2. as G goes to 0 (indicating a completely novel input), all units 
in a CM become equally likely to win (regardless of their input 
summations).

This policy ensures, statistically, the SISC property. The steps of 
the CSA are as follows.

1. Each F2 unit i computes its raw input summation, u(i).

u i w j ij n
( ) ( , )= ∑ ∈α

 
(1)

where α
n
 is the current input (F1) pattern. Because unit activa-

tions are binary, we can simply sum the weights, w(j,i), which 
are also binary.

2. Normalize u(i) to [0..1], yielding V(i).

V i u i S( ) ( )=  
(2)

 S is the number of active units in the input pattern. V(i) is a local 
measure of support, or likelihood, that F2 unit i should be acti-
vated. It refl ects how well unit i’s receptive fi eld (RF), specifi ed 
by its afferent weight vector, matches the current input vector.

3. (Round 1 competition) The maximum V(i), V̂x, is found in 
each of the Q CMs.

ˆ max ( )V V ix i Cx
= { }∈  

(3)

where x indexes the CMs and i indexes the units in a CM, C
x
.

4. Average the Q V̂x values, yielding G, a global measure of the 
familiarity of the current input.

G V Qxx
Q

≡ =∑ ˆ
1  

(4)

5. The expansivity, η, of the probabilistic activation function 
(which is implemented via steps 6–8) is set as an increasing 
nonlinear function of G (Eq. 5, expressed as a table).

G 0.0 0.2 0.4 0.6 0.8 1.0

η 0 0 0.2 5 12 100  

(5)

η corresponds to sigmoid height (in Eq. 6). The idea is to increase 
the range of relative win likelihoods, ψ(i) (defi ned in step 6) over 
any given CM’s units as G goes to 1. This in turn, serves to non-
linearly exaggerate the difference in the fi nal win probabilities 
(Eq. 7) between F2 units with low and high V values. The specifi c 
parameters of any instance of the G-to-η mapping will determine 
the specifi cs of the relation between input similarity and code 
similarity, i.e., the expected code intersection as a function of 
input similarity. The specifi c η values in Eq. 5 were chosen to 
yield the ρ-distributions in the examples of Figures 3 and 4.

6. The V values of all units in all CMs are then passed through 
the sigmoidal activation function (Eq. 6) whose shape/scale 
refl ects G. Again, particular parameter values affect the 
relation of input similarity to code similarity (and there-
fore, storage capacity): values of λ = 28 and φ = −5 produce 
the V-to-ψ mappings in Figure 4. As noted above, within 
each CM, the output variable, ψ(i), can be viewed as a rela-
tive likelihood that unit i should be chosen winner. The 
ψ- distributions in each CM are normalized to fi nal proba-
bilities in step 7.

FIGURE 2 | Functional architecture. The input fi eld (F1) consists of binary 
feature detectors: a particular input consisting of fi ve active features is 
shown. The coding fi eld, F2, is proposed as a macrocolumn analog. It 
consists of winner-take-all competitive modules (CMs) proposed as analogous 
to minicolumns. Each CM has K = 3 binary units. Bottom-up connectivity is 

all-to-all: gray lines signify initially 0 weights. The familiarity (G) of the input 
is proposed to be computed via a subcortical, neuromodulator-
based mechanism, which then modulates the F2 unit activation 
function parameters (e.g., sigmoid height) contingent on G (purple arrows). 
See text.
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ψ η
λ φ( )

( )
i

e
V i

=
+

+− +( )1
1

 

(6)

 When G = 1 (perfectly familiar), η is maximized (in Eq. 5), which 
maximizes relative and total (once normalized, via Eq. 7) prob-
abilities of winning for units with the maximum V value in their 
respective CMs. In contrast, when G = 0 (completely novel), η = 0, 
which collapses the sigmoid to the constant function, ψ = 1, thus 
making all units in a CM equally likely to win. This causes the 
expected intersection of the code being chosen in the current 
instance with any previously assigned code to be at chance level. 
In general, this modulation of the sigmoid activation function 
tends toward code completion in proportion to the familiarity of 
the input and code separation in proportion to its novelty.

7. Transform relative likelihood distribution (ψ) in each CM to 
true probability distribution (ρ).

ρ ψ
ψ∈

( )
( )

( )
i

i

kk
=

∑ CM  

(7)

8. (Round 2 competition) Choose an F2 code by drawing a win-
ner from the ρ-distribution (soft max) in each CM. Thus, 
choosing an F2 code is actually performed as Q separate 

draws. When G = 0, these draws are statistically independent, 
as in Figures 3 and 4D. As we consider increasingly familiar 
inputs, i.e., for G approaching 1 (and, assuming the model is 
still operating in a regime where crosstalk is suffi ciently low), 
the draws become increasingly correlated (dependent), as can 
be seen in going from Figure 4C to 4B to 4A.

Figure 3 graphically illustrates the operation of the CSA in the 
case of the model being presented with its fi rst input, α

1
. The gray 

arrows indicate that the BU signals propagating from the active F1 
units will be traversing connections with zero synaptic strength. 
This leads to unnormalized (u) and normalized (V) input summa-
tions of 0 for all 12 F2 units (steps 1,2). In step 3, the max V, V̂ , in 
each CM is found (ties broken at random). In step 4, G is computed 
as the average of the V̂  values: in this case all the V̂  are 0, so G = 0. 
In step 5, the value, G = 0, maps to η = 0, which causes the activa-
tion function of the F2 units to collapse to the constant function, 
ψ = 1. In step 6, each F2 unit applies this activation function to its 
V value, yielding the uniform relative likelihood distribution in 
each CM. In step 7, the relative likelihood function in each CM 
is normalized to a true probability (ρ) distribution, which in this 
case, is again uniform. Finally, in step 8, a winner is drawn in each 
CM, resulting in a random F2 code, e.g., β

1
.

FIGURE 3 | Graphic illustration of the CSA. Circled numbers refer to algorithm 
steps in text. Here, I show the case of the fi rst input, α1, presented to the 
model. The algorithm detects that α1 is completely unfamiliar, i.e., G is computed 

to be 0, and sets the F2 activation function to a constant function (red line), 
which makes the choice of winner in each CM completely random, and thus, the 
overall F2 code, β1, also completely random.
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Figure 4 demonstrates that the CSA realizes the SISC  property 
by considering four possibilities (A–D) for the second input 
presented to the model of Figure 3. These four inputs, α

2
–α

5
, 

range from being identical to α
1
 (completely familiar) to hav-

ing zero overlap with α
1
 (completely unfamiliar). To save space, 

the panels of Figure 4 use an abbreviated version of the format 
of Figure 3. Most noticeably, the intermediate variable, ψ (rela-
tive likelihood), is not shown. However, the transform from V 
through to ρ should still be clear. Black BU connections are ones 
that were increased to one when α

1
 was learned (Figure 3). The 

overall message of Figure 4 is as follows. Working from Figure 4A 
to 4D, the inputs have progressively lower similarity (intersec-
tion) with α

1
: F1 units not in common with α

1
 are shown in green. 

As G drops, the sigmoid expansivity drops (note the changing 
ψ scale). Thus, the ρ-distributions become progressively fl atter, 

which in turn results in F2 codes, β
2
–β

5
, having progressively 

smaller intersection with β
1
. F2 units not in common with β

1
 

also shown in green.
Figure 4A shows the case of presenting a completely familiar 

input again, and is thus a recognition test trial, demonstrating 
retrieval. This leads, via CSA steps 3 and 4, to G = 1, which yields, 
via steps 5 and 6, the expansive nonlinear V-to-ψ mapping shown 
(red sigmoid). This nonlinearity is applied to every F2 unit, yield-
ing the highly peaked ρ-distributions shown. Finally, one unit is 
drawn in each CM. The probability of drawing the correct unit 
in any single CM is approximately 98%. Of course, what’s crucial 
in this case, i.e., when the input is completely familiar (G = 1), is 
that the entire correct F2 code is reactivated. In this case, that prob-
ability is (0.98)4 ≈ 92%. Thus, the familiarity, G, which depends 
on the entire F2 layer and is thus global information, infl uences 

FIGURE 4 | The CSA and the SISC property. Green F1 (F2) units denote units not in common with α1 (β1). Green arrow sprays represent signals propagating via 
naïve (w = 0) weights. See text.
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the local activation functions so as to produce the desired overall 
result, in this case, reactivation of the code (memory trace), β

1
, of 

the familiar input pattern, α
1
. The explanations of the remaining 

panels follow that of Figures 3 and 4A. In going from Figure 4B 
to 4D, one can readily see decreasing intersection with α

1
, decreas-

ing u and V values, decreasing G, decreasing sigmoid expansivity, 
progressively fl atter ρ-distributions, and ultimately, decreasing 
intersection with β

1
.

Given a desired probability, R, of correctly reactivating an 
entire code (i.e., of choosing the correct unit in each CM), when 
G = 1, given values for Q and K, we could compute the needed 
value of η. However, the macrocolumn model is a  content-
addressable associative memory and in actual usage, multiple 
sparse codes will be stored in superposition. Any thorough 
analysis of the model’s expected retrieval error must include 
the effect of overlap between the stored codes (i.e., cross-talk): 
this infl uences the shapes of the ρ-distributions and thus, the 
expected retrieval accuracy for any given number of stored codes. 
Such an analysis will be conducted empirically and reported in 
a separate paper.

Before leaving Figure 4, I underscore three important points. 
First, while the ρ-distributions become fl atter as G decreases, the 
units comprising the code of the most similar previously learned 
input (here, α

1
) remain most likely to win in their respective CMs. 

If we simply deterministically chose the unit with maximum V(i) in 
each CM, we would have chosen the same F2 code, β

1
, in response 

to all four inputs, α
2
–α

5
. Thus, the computation of a quantity, 

G, which depends on all the CMs is essential to achieving the 
SISC property. It constitutes a channel through which informa-
tion transfers between all F2 units throughout the whole macro-
column. As noted earlier, the full model also assumes direct “H” 
connections between F2 units, analogous to the horizontal matrix 
of L2/3 (see Figure S2 in Supplementary Material). These also 
mediate communication, but of the prior code active in the mac-
rocolumn, not of the simultaneous state of all F2 units throughout 
the macrocolumn.

Second, learning is single-trial and involves only one iteration 
of the CSA. This is largely facilitated by the fact that when a given 
input-code association, α

j
–β

j
, is learned, each of β

j
’s F2 units simul-

taneously has its afferent weight from all of α
j
’s F1 units increased. 

The effect of these simultaneous correlated potentiations allows 
a rapid, even single-trial, formation of an association, even if the 
individual synaptic potentiations are small, consistent with the 
recent characterization of thalamocortical learning described in 
Bruno and Sakmann (2006).

Third, Figure 4A shows that recognizing an exact instance of a 
previous input also requires only one iteration of the CSA. Although 
this example does not directly show it, this holds for recognition of 
non-exact matches as well. Evidence for this will be presented in a 
separate work. That both learning and recognition require only a 
single CSA iteration is especially signifi cant since, as can readily be 
seen, none of the CSA steps involves iterations over stored codes: 
thus, the time it takes for the CSA to either store a new input or 
retrieve the closest matching stored input remains constant as the 
number of stored codes increases. This does not imply that an 
infi nite number of codes can be stored: of course, the model has 
fi nite storage capacity. This capacity will be characterized in future 

research, but should be similar to other sparse associative memories 
(Willshaw et al., 1969; Palm, 1982; Moll and Miikkulainen, 1995; 
Knoblauch et al., 2010).

PROSPECTIVE MAPPING TO CORTICAL CIRCUITRY
There remain huge gaps in our knowledge of the intrinsic physi-
ological, synaptic, morphological, and connectional properties of 
all classes of cortical cell and of functional relationships between 
cortical and sub-cortical structures. Nevertheless, Figure 5 shows 
a possible neural realization of the model’s WTA CM, i.e., minicol-
umn, and dynamics (CSA). I have attempted to respect known con-
straints but the realization is admittedly speculative and ongoing 
modifi cations will undoubtedly be required. Figures 5A–E show 
the critical events transpiring in a single minicolumn at fi ve points 
in time during the CSA’s computational cycle. Note that due to space 
limitations Figure 5 cannot depict the true extents of the various 
axonal and dendritic systems of the cells involved. Figure S3 in 
Supplementary Material provides a more global context showing 
these extents.

Figure 5A shows the initial CSA steps 1 and 2 when the L2/3 
pyramidals (here only two cells, but in reality, ∼20) integrate their 
inputs. While the CSA explanation in the prior section included 
only the BU inputs, all three input classes are included here:

• BU inputs (labeled “2”) are mediated via L4 (Rockland and 
Pandya, 1979)

• TD inputs (“1”) are mediated via L2/3 apical tufts (Rockland 
and Drash, 1996)

• H inputs (“3”) are mediated via the horizontal matrix of L2/3 
(Gilbert and Wiesel, 1989; Feldmeyer et al., 2006)

All three input vectors arrive in parallel and collectively give 
rise to postsynaptic potentials (PSPs) in the L2/3 pyramidals. 
The three (normalized) inputs are combined multiplicatively; see 
the generalized version of the CSA (Table S1 in Supplementary 
Material). The chandelier cells (represented by a single red unit 
labeled “C”) are fi ring at this time, preventing the L2/3 pyramids 
from fi ring.

In Figure 5B, the chandeliers shut off (grayed out) and the L2/3 
pyramid with the highest PSP (cell 2) is assumed to be the fi rst to 
spike (CSA step 3). This winning cell, and more specifi cally, its PSP 
value (V in Eq. 2), represents this minicolumn’s local judgment of 
how similar the macrocolumn’s closest-matching stored input is to 
the current overall (i.e., BU, H, and TD) input. The output of cell 2 
is then communicated to some locus where it is averaged with the 
round 1 winners from the other ∼70 minicolumns of the macrocol-
umn, yielding G (CSA step 4). As noted in the Introduction, the func-
tionality related to G seems most consistent with the phenomenology 
of neuromodulatory systems, especially ACh and NE. Support for 
this speculation is given in the following sub-section. Note that the 
communication of cell 2’s PSP value is hypothesized to be mediated 
via L5, one of whose pyramidal cells is seen integrating here (light 
green); this is based loosely on evidence that L5 cells, specifi cally L5B 
pyramidals, almost exclusively target pontine areas (with collaterals 
to thalamus) (Deschênes et al., 1994; Krieger et al., 2007).

L2/3 pyramidals are the primary source of BU signals to higher 
cortical areas (Rockland and Pandya, 1979; and see Thomson et al., 
2002; Brecht et al., 2003; Schubert et al., 2003; Bannister, 2005; 
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Helmstaedter et al., 2007; Lübke and Feldmeyer, 2007; Petersen, 
2007; Egger et al., 2008; Lefort et al., 2009 for wider background 
on cortical columnar circuitry relevant to the current proposal). 
In addition, as stated earlier, the horizontal L2/3-to-L2/3 con-
nections are proposed to communicate this macrocolumn’s fi nal 
hypothesis regarding its total input pattern in the current CSA 
cycle recurrently back to the same (and surrounding) macrocol-
umns on the next CSA cycle. Hence, it is crucial that since that 
fi nal hypothesis is not present until the second round of competi-
tion completes (Figure 5E), the output pathways carrying those 
signals must be closed (red “x”s on paths “4” and “5”). Though 
not depicted here, one possible mechanism for selectively pre-
venting horizontal signaling in L2/3 is activation of the double 
bouquet cells (DeFelipe et al., 1990, 2006; Peters and Sethares, 
1997). Their “horsetail” axons, being interdigitated, nearly one-
to-one with minicolumns would allow them to make contact with 
a substantial portion of the horizontally (and obliquely) oriented 
dendritic and axonal processes, in L2/3, and thus prevent passage 
of horizontal signals.

In Figure 5C, the L5 pyramidal mediating the winning L2/3 
cell’s PSP value has reached threshold and sends that output to the 
sub-cortical averaging locus (path “6”). In addition, the winning 
cell itself has activated the local basket cell network (electrically 
coupled, cf. Brown and Hestrin, 2009), represented by the unit 
labeled “B”, which rapidly deactivates and re-polarizes (resets) the 
L2/3 pyramidals (grayed out). This reset need not be back to a 
completely even baseline: some remnant of the relative PSP dis-
tribution prior to basket cell activation might remain, biasing the 
second round of competition.

In Figure 5D, the result of the subcortical computation of G 
is returned to the macrocolumn (path “7”) in the form of neuro-
modulator release (purple cloud surrounding the L2/3 pyramidals). 
This release modifi es the activation functions of the L2/3 pyrami-
dals, as described earlier. Note that this neuromodulatory “cloud” 
actually extends across a broad, i.e., macrocolumnar (or wider), 
expanse of L2/3, not just within a single minicolumn as this fi gure 
may suggest. The chandeliers are again fi ring to prevent any L2/3 
from fi ring as the second round of integration occurs. The basket 
cells are inactive, allowing this integration to take place.

In Figure 5E, the chandeliers again deactivate. The L2/3 pyramidal 
with the highest PSP is the fi rst to spike. In general, the pyramidal cell 
winning on this second round of competition may differ from the 
fi rst round winner. In particular, the probability that the second round 
winner is the same as the fi rst round winner increases with G. The set 
of L2/3 winners, one per minicolumn, across the whole macrocolumn 
represents that macrocolumn’s fi nal decision (hypothesis) as to identity 
of its current overall (TD, H, and BU) input. Thus, the output of the 
winning L2/3 cell in each minicolumn is now communicated to:

1. Lower cortical regions via L5 and its backprojections to the 
lower regions’ L1 (labeled “8”) (Rockland and Drash, 1996).

2. L2/3 pyramids in the same and neighboring macrocolumns 
via the local horizontal L2/3 matrix (“5”) (Gilbert and Wiesel, 
1989; Feldmeyer et al., 2006), thus delivering temporal context 
information (recurrently) to the local region to be integrated 
on the next CSA cycle.

3. The L4 layer of higher cortical regions (“4”) (Rockland and 
Pandya, 1979).

FIGURE 5 | Hypothetical minicolumnar circuit. (A–E) Depict critical events 
transpiring in a single minicolumn at fi ve points in time during the CSA’s 
computational cycle, which I propose corresponds to one gamma cycle: 

approximate timings relative to start of CSA cycle are shown across top. The 
units labeled “C” (“B”) represent the local chandelier (basket cell) populations, 
respectively; See text for detailed explanation.
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Note that the output of the winning L2/3 cell should be  prevented 
from recurring to the local basket network at this time so as to allow 
the integration period to occur at the beginning of the next com-
putational cycle; hence, the red “x” on the link to basket cell.

I reiterate that the above possible cortical realization of the pro-
posed SDC model is highly speculative. It clearly lacks numerous 
details, especially regarding processing in the intermediate process-
ing stages, e.g., L4, and output processing involving L5 (and L6). 
Nevertheless, it is a starting point and can be falsifi ed, especially as 
experimental methods mature. For example, the many timing rela-
tionships in the circuit can be tested. We still have decidedly little in the 
way of hard constraints on the time courses of activation of the many 
cell types involved in cortical (and hippocampal) circuits, though 
progress is being made (Klausberger et al., 2003, 2004; Silberberg et al., 
2005; Silberberg and Markram, 2007; Klausberger and Somogyi, 2008; 
Otsuka and Kawaguchi, 2009; Woodruff et al., 2009).

Moreover, the proposed theory’s key assumption that the L2/3 
pyramidals are the core repository of information in cortex and that 
the codes laid down in L2/3 are the context-dependent memories of 
our experiences, is subject to challenge. Specifi cally, the anatomy of 
the L5 thick tufted cells suggests that they too have access to BU (via 
L4), TD (via their apical tufts in L1), and H (via an extensive intra-
L5 horizontal network, Schubert et al., 2007) inputs, and therefore 
that L5 might store the most detailed and context-dependent codes 
in cortex, a view supported by fi ndings such as (de Kock et al., 2007). 
In the end, for the purpose of this “hypothesis and theory” paper, I 
believe the architecture and algorithm (CSA) to be more important 
than the specifi cs of any particular neural realization.

Support for neuromodulator-based implementation of familiarity-
contingent noise
In this section, I consider evidence relating to six model 
predictions:

a} Signals generated in the macrocolumn [i.e., the V̂x  (Eq. 3)] can 
infl uence neuromodulatory systems (brown links in Figure 2). 
Strictly interpreted, Figure 2 suggests that the model can only 
be true of cortical areas that have direct projections to the acti-
vation function modulator (AFM), hypothesized to be instan-
tiated in midbrain neuromodulator source areas, e.g., basal 
forebrain (BF, source of ACh) and locus coeruleus (LC, source 
of NE). Relatively few cortical areas project directly to BF or LC. 
Direct cortical afferents to BF arise mainly from prepyriform, 
anterior insula, orbitofrontal, entorhinal and medial temporal 
areas (Mesulam and Mufson, 1984). Direct cortical afferents to 
LC arise from dorsal prefrontal cortex (Arnsten and Goldman-
Rakic, 1984), medial prefrontal cortex (Jodo et al., 1998).
While direct projections are limited, a much larger fraction 
of cortex may be able to infl uence the hypothesized AFM via 
multi-synaptic pathways involving thalamus and other sub-
cortical structures, especially via pathways interconnecting BF, 
LC, and other neuromodulator source areas. For example, BF 
cholinergic neurons are excited by LC (Jones et al., 2004), which 
allows dorsal and medial prefrontal areas indirect infl uence on 
BF. Similarly, LC receives input from the Raphe nuclei (reviewed 
in Samuels and Szabadi, 2008) which would allow further exten-
sion of the sphere of cortical infl uence upon the AFM.

This is a subject of ongoing research. However, it is clearly 
 possible that my macrocolumnar model applies only to the 
smaller set of cortical areas suggested above. There is some merit 
to this idea. After all, there would be some advantage to deferring 
the decision as to the overall familiarity/novelty of the current 
input (moment) to the very highest cortical levels, which are in 
position to make the most informed decisions. In this case, once 
G is computed, it is then broadcast pan-cortically, i.e., to all levels 
of the hierarchy, allowing the local choice of code to proceed 
accordingly, i.e., with a level of randomness appropriate to G. 
Figure S2 in Supplementary Material illustrates this view.

b} There exists some neuromodulatory signal, η (Eq. 5), which cor-
relates with the detection of familiarity, and/or inversely with 
the detection of novelty. Such correlations have been shown 
for both ACh (Miranda et al., 2000, 2003) and NE (Sara et al., 
1994; Vankov et al., 1995).

c} The signal η can physically reach cortex (purple arrows in 
Figure 2). LC projects to all of cortex (Foote and Morrison, 
1987; Berridge and Waterhouse, 2003; Samuels and Szabadi, 
2008). BF projects to almost all cortical areas (reviewed in 
Briand et al., 2007). The amount of randomness to be added 
to the winner selection process is a global parameter, which 
applies non-specifi cally to all the minicolumns. This is consi-
stent with volume transmission believed to be used by neuro-
modulatory systems (Descarries et al., 1997; see Sarter et al., 
2009 for discussion of the complexities of the evidence regar-
ding volume transmission).

d} The signal η determines (Eqs 6–8) the amount of noise (ran-
domness) in the selection (activation) of cortical (i.e., macro-
columnar) codes. Controlling the noisiness of a process of 
choosing a winner from a competing group of neurons can 
be achieved by some combination of two actions: (i) increa-
sing the spike probability of cells with high input summa-
tions relative to those with low summations and (ii) lowering 
the spike probability of low-input cells relative to high-input 
cells. Both of these actions can be achieved by uniformly (i.e., 
to all competing cells in a WTA module) modulating intrin-
sic cell properties such as excitability. Numerous studies 
have demonstrated both excitatory and suppressive effects 
on target cell responses (both principal neurons and inter-
neurons) for both ACh (Kawasaki and Avoli, 1996; Shalinsky 
et al., 2002; Cobb and Davies, 2005; Tateno et al., 2005; 
Isakova and Mednikova, 2007; Lawrence, 2008; Eggermann 
and Feldmeyer, 2009) and NE (Foote et al., 1975; Kawaguchi 
and Shindou, 1998; Harley and Helen, 2007; Moxon et al., 
2007). It is not my intention here to argue for a precise rea-
lization of this mechanism. As suggested in many reviews 
(Berridge and Waterhouse, 2003; Lucas-Meunier et al., 2003; 
Sara, 2009), the landscape of this research is very complex 
and we are far from a comprehensive understanding of the 
how the various neuromodulatory systems affect high-level 
cognitive processing either alone or in concert (Briand et al., 
2007). Nevertheless, the large and varied body of evidence 
at least admits the possibility that one or more of these neu-
romodulators could implement the familiarity-contingent 
AFM mechanism (CSA steps 5–8; see Doya, 2002, p. 502, for 
similar speculation).
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e} Decreased η, i.e., increased noise, leads to greater code  separation 
(decreased intersection). Recently, Goard and Dan (2009) 
showed that increased BF stimulation decreased the corre-
lation amongst a population of rat V1 cells. This decreased 
correlation essentially shows increased separation between 
population codes, which in the model proposed here, would 
manifest as decreased intersection between sparse codes.

f} Disabling of the brain’s ability to produce high noise, i.e., causing 
η to be permanently high, should reduce the ability to learn new 
inputs, while sparing or having much less effect on recognition of 
known items. Looking at Figure 4, if the AFM was “stuck” in 
the highly expansive sigmoid condition (low noise), all four 
inputs, α

2
–α

5
, would have high probability of mapping to the 

same code, β
1
. This would prevent the model from being able 

to distinguish them in future presentations. However, in gene-
ral, inputs that were mapped to unique codes prior to such a 
disabling event will reliably activate those codes on future pre-
sentations. In accord with this, Browning et al. (2010) found 
that severely diminishing cholinergic inputs to inferotemporal 
cortex severely reduced macaques’ performance on a visual 
episodic memory task, while having little effect on a DNMS 
task. McGaughy et al. (2005) found a similar effect: cholinergic 
deafferentation of entorhinal cortex reduced performance on 
DNMS tasks involving novel odors but not familiar odors.

DISCUSSION
I have described a theoretical model of cortical function that 
explains the functional relationship between the minicolumn and 
macrocolumn. Specifi cally:

a} The macrocolumn (in any of its forms) is proposed to store 
information in the form of SDCs, and

b} The minicolumn (specifi cally, its L2/3 pool of pyramidals) is 
proposed to operate as a WTA CM, the purpose of which is to 
enforce the sparseness of the macrocolumnar code.

Two key motivations for this model are the computational advan-
tages of SDC and the increasingly strong evidence for SDC in the 
brain, cited in the Section “Introduction”. One important advantage 
of SDC over a localist code is that the number of unique items that 
can be stored can be far larger than the number of representing units. 
For example, the 12 F2 units of the model in Figure 2 allow 34 = 81 
unique codes, though in realistic systems, e.g., with less than complete 
connectivity leading to and from a coding fi eld like F2, the number 
of those codes that can safely (i.e., while maintaining retrieval error 
rates below some acceptable criterion) be assigned will be substantially 
lower than 81. Nevertheless, if the number of input items that will need 
to be distinguished is not known a priori, SDC is more fl exible.

A second computational advantage of SDC is that, if used in 
conjunction with an appropriate storage/retrieval algorithm it pos-
sesses the SISC property. I demonstrated, with the small but statisti-
cally reasonable example of Figures 3 and 4, that the CSA yields the 
SISC property. The SISC property strongly differentiates SDC from 
localist models: it is not even defi ned for a localist model since every 
code is formally disjoint with every other code. Hence, there is no 
structural way to represent degrees of similarity in a localist code. 
If there is no way to represent a measure, e.g., similarity, structur-
ally, then whenever that measure is required – e.g., when the closest 

matching stored item in a database (i.e.,  macrocolumn) to an input 
must be returned – it must be computed, which takes time and 
energy. In contrast, when items’ codes are stored in physically over-
lapped fashion such that the degree of code overlap represents item 
similarity, as is the case for the proposed model, the most closely 
matching stored item will be returned immediately, i.e., without 
requiring any serial search through the stored items. Figure S4 in 
Supplementary Material shows test retrievals of the four unique 
codes stored in the model of Figures 3 and 4, demonstrating pos-
session of this immediate access property for this small example. 
Empirical proof of this property based on larger scale simulations 
is currently being developed.

I consider the representation and the CSA to be the most impor-
tant contributions of this paper because of the computational 
advantages just described. However, I believe the suggestion that 
the minicolumn’s generic function is to act as a WTA CM is also 
important. Saying only that a group of L2/3 units forms a WTA 
CM places no a priori constraints on what their tuning functions or 
receptive fi elds should look like. This is what gives that functional-
ity a chance of being truly generic, i.e., of applying across all areas 
and species, regardless of the observed tuning profi les of closely 
neighboring units. Indeed, a recent calcium imaging study of mouse 
auditory cortex by Rothschild et al. (2010) shows highly heteroge-
neous small-scale (even immediately adjacent cells) tuning even 
though the large-scale tuning is tonotopic. Experimental methods 
are only now just reaching the point where this hypothesis might be 
directly testable, e.g., modifying calcium imaging methods to have 
millisecond temporal granularity; see Ohki and Reid (2007).

In a sense, the main point of this paper is that a generic minico-
lumnar function becomes apparent as soon as we postulate that what 
the cortex, i.e., a macrocolumn, generally does is store and retrieve 
(access) SDCs of specifi c context-dependent inputs. As noted in the 
Section “Introduction”, the experimental literature contains little in 
the way of proposals linking the formation and retrieval of specifi c 
SDCs (i.e., of specifi c input items, especially of temporal context-
dependent items) to the cortical microcircuitry. My proposed model 
goes beyond broad conclusions and offers a mechanistic explanation 
of how specifi c informational items are learned and retrieved and in 
so doing, proposes a generic function for the minicolumn, i.e., that 
it functions as a WTA module in support of manipulating SDCs at 
the next higher, i.e., macrocolumnar, scale.

There have been several recent models linking formation/retrieval 
of specifi c items to cortical circuitry and which describe specifi c roles 
for the minicolumn (Kupper et al., 2007; George and Hawkins, 2009; 
Litvak and Ullman, 2009; Schrader et al., 2009). However, all of these 
models use localist representations and therefore would not possess 
the advantages of SDC described above. The Cortext model (Kupper 
et al., 2007; Schrader et al., 2009) assumes that each minicolumn in a 
hypercolumn represents one particular input feature. On each com-
putational cycle, a WTA process runs within each hypercolumn, such 
that exactly one minicolumn wins, which would be strongly at odds 
with the calcium image data (Ohki et al., 2005). A second problem 
is that the assumption that whole minicolumns compete with each 
other implies that any given hypercolumn (at any level of the corti-
cal hierarchy) can  represent only ∼70 unique features (equivalence 
classes), which seems severely restrictive, especially for hypercolumns 
at higher cortical levels, e.g., IT. The Litvak and Ullman (2009) model 
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followed by fornix transection. Cereb. 
Cortex 20, 282–293.

Bruno, R. M., and Sakmann, B. (2006). 
Cortex is driven by weak but syn-
chronously active thalamocortical 
synapses. Science 312, 1622–1627.

Cobb, S. R., and Davies, C. H. (2005). 
Cholinergic modulation of hippoc-
ampal cells and circuits. J. Physiol. 
562, 81–88.

Dayan, P., and Yu, A. J. (2006). Phasic 
norepinephrine: a neural interrupt 
signal for unexpected events. Netw. 
Comput. Neural Syst. 17, 335–350.

DeFelipe, J., Ballesteros-Yáñez, I., Inda, 
M. C., and Muñoz, A. (2006). Double-
bouquet cells in the monkey and 
human cerebral cortex with special 
reference to areas 17 and 18. Prog. 
Brain Res. 154 (Pt. 1), 15–32.

also postulates that the L2/3 pool of neurons in a minicolumn imple-
ments a max function. However, their model proposes that each single 
minicolumn (specifi cally, its L2/3 pool) is partitioned into several 
disjoint groups (“cliques”) of cells, each representing a different item. 
Since any particular cell can participate in only one clique, this con-
stitutes a localist code. George and Hawkins (2009) also assume that 
minicolumns represent informational items in a localist fashion. 
Note however that both George and Hawkins (2009) and Litvak and 
Ullman (2009) explicitly mention moving to a more general combi-
natorial code, a.k.a. SDC, as a future research direction.

A core principle of the proposed model is this notion of control-
ling the amount of noise in the process of choosing (activating) 
a macrocolumnar code as an inverse function of input similarity. 
Doya (2002) uses the same principle, referred to as “Boltzmann 
selection”, to modulate the amount of noise in the process of choos-
ing amongst output action actions. Doya specifi cally hypothesizes 
that NE controls the noise whereas I can assert only that it is some 
neuromodulator-based mechanism. In Doya’s model, as NE levels 
increase, the action with the greatest expected reward is chosen with 
probability approaching 1. This is suggested as corresponding to the 
“exploitation” end of the exploitation–exploration continuum. As 
NE levels drop to 0, all actions become equally probable, i.e., “explo-
ration”, which is appropriate if no single action has a particular high 
expected reward, which generally correlates with the condition of 
novelty, i.e., of being in a novel environment wherein it is harder 
to anticipate the outcome of known actions. The analogy to high 
expected reward in my model is a highly familiar input (G ≈ 1) in 
which case we want the stored code for that familiar input to be 
reactivated with probability approaching 1; the condition where 
no action has a high expected reward is analogous to low familiar-
ity, i.e., where no stored input is very similar to the current input, 
in which case we want to lay down a new memory trace for the 
novel input. Despite the similarities, Doya’s model also assumes a 
localist representation of the choices and, like the other models just 
mentioned, cannot realize the advantages of SDC.

I have identifi ed several avenues of active and future research at 
various points in the text and as noted in the previous section, the 
prospective neural realization is highly speculative and very incom-
plete. Several additional questions/issues for future research are:

1. Is the current proposal that the L2/3 cells engage in two rounds 
of competition in each computational (putatively, gamma) 
cycle plausible?

2. For simplicity, I have described the model in the simplest 
case of having only one internal coding fi eld (F2) and pro-
cessing only purely spatial input patterns. However the core 
model was originally developed for the spatiotemporal pat-
tern (sequence) case (Rinkus, 1996) and was generalized some 
time ago to have an arbitrarily deep hierarchy of coding fi elds 
(Rinkus and Lisman, 2005). See Figure S2 in Supplementary 
Material. How do these generalized versions of the model map 
to neural structures?

3. Is there evidence that chandeliers become active twice as fre-
quently as baskets, as the proposed realization predicts? Is 
there evidence for the converse?

4. Although not elaborated herein, the proposed mini-/macro-
column model is easily generalized to allow substantial over-
lap between minicolumns (see Figure S5 in Supplementary 
Material) and multiple winners in a minicolumn on each 
computational cycle. These degrees of freedom need to be 
explored.

5. We know of the fast, phasic, time scales of operation for NE 
(Rajkowski et al., 2004) and DA (Schultz, 1998) and of slightly 
slower but still phasic mode for ACh (Gulledge and Kawaguchi, 
2007), but these have been proposed as signaling other mea-
sures besides pure novelty (Redgrave et al., 1999; Bouret and 
Sara, 2005; Dayan and Yu, 2006). How might all these signals 
conspire to implement a pure novelty signal?

ACKNOWLEDGMENTS
This work was partially supported by NIH Grant, 5 T32 NS07292. 
I thank John Lisman as well the reviewers for many valuable sug-
gestions and insights that have greatly abetted the development 
of these ideas.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at 
http://www.frontiersin.org/neuroscience/neuroanatomy/
paper/10.3389/fnana.2010.00017/

REFERENCES
Albright, T. D., Desimone, R., and Gross, 

C. G. (1984). Columnar organiza-
tion of directionally selective cells 
in visual area MT of the macaque. J. 
Neurophysiol. 51, 16–31.

Arnsten, A. F. T., and Goldman-Rakic, P. 
S. (1984). Selective prefrontal cortical 
projections to the region of the locus 
coeruleus and raphe nuclei in the rhe-
sus monkey. Brain Res. 306, 9–18.

Bannister, A. P. (2005). Inter- and intra-
laminar connections of pyramidal 
cells in the neocortex. Neurosci. Res. 
53, 95–103.

Beierlein, M., Gibson, J. R., and Connors, 
B. W. (2003). Two dynamically dis-
tinct inhibitory networks in layer 4 
of the neocortex. J. Neurophysiol. 90, 
2987–3000.

Berger, T. K., Perin, R., Silberberg, G., 
and Markram, H. (2009). Frequency-
dependent disynaptic inhibition in 
the pyramidal network: a ubiquitous 
pathway in the developing rat neocor-
tex. J. Physiol. 587, 5411–5425.

Berridge, C. W., and Waterhouse, B. D. (2003). 
The locus coeruleus- noradrenergic 
system: modulation of behavioral state 
and state-dependent cognitive processes. 
Brain Res. Rev. 42, 33.

Bouret, S., and Sara, S. J. (2005). Network 
reset: a simplifi ed overarching the-
ory of locus coeruleus noradrena-
line function. Trends Neurosci. 28, 
574–582.

Brecht, M., Roth, A., and Sakmann, B. 
(2003). Dynamic receptive fields 
of reconstructed pyramidal cells in 
layers 3 and 2 of rat somatosensory 

barrel cortex. J. Physiol. (Lond.) 553, 
243–265.

Briand, L. A., Gritton, H., Howe, W. M., 
Young, D. A., and Sarter, M. (2007). 
Modulators in concert for cogni-
tion: modulator interactions in the 
prefrontal cortex. Prog. Neurobiol. 
83, 69–91.

Briggs, F. (2010). Organizing principles of 
cortical layer 6. Front. Neural Circuits. 
4:3. doi: 10.3389/neuro.04.003.2010.

Brown, S. P., and Hestrin, S. (2009). Cell-
type identity: a key to unlocking the 
function of neocortical circuits. Curr. 
Opin. Neurobiol. 19, 415–421.

Browning, P. G. F., Gaffan, D., Croxson, 
P. L., and Baxter, M. G. (2010). Severe 
scene learning impairment, but intact 
recognition memory, after choliner-
gic depletion of inferotemporal cortex 

http://www.frontiersin.org/neuroscience/neuroanatomy/paper/10.3389/fnana.2010.00017/


Frontiers in Neuroanatomy www.frontiersin.org June 2010 | Volume 4 | Article 17 | 12

Rinkus Mini-macrocolumnar sparse distributed coding model

Simulations of signal fl ow in a func-
tional model of the cortical column. 
Neurocomputing 70, 1711–1716.

Larkum, M. E., Zhu, J. J., and Sakmann, 
B. (2001). Dendritic mechanisms 
underlying the coupling of the den-
dritic with the axonal action poten-
tial initiation zone of adult rat layer 
5 pyramidal neurons. J. Physiol. 533, 
447–466.

Lawrence, J. J. (2008). Cholinergic control 
of GABA release: emerging parallels 
between neocortex and hippocampus. 
Trends Neurosci. 31, 317–327.

Lefort, S., Tomm, C., Floyd Sarria, J. C., 
and Petersen, C. C. H. (2009). The 
excitatory neuronal network of the 
C2 barrel column in mouse primary 
somatosensory cortex. Neuron 61, 
301–316.

Leutgeb, J. K., Leutgeb, S., Moser, M.-B., 
and Moser, E. I. (2007). Pattern sepa-
ration in the dentate gyrus and CA3 
of the hippocampus. Science 315, 
961–966.

Linster, C., and Cleland, T. A. (2009). 
Glomerular microcircuits in the 
olfactory bulb. Neural Netw. 22, 
1169–1173.

Litvak, S., and Ullman, S. (2009). 
Cortical circuitry implementing 
graphical models. Neural Comput. 
21, 3010–3056.

Lorente de No, R. (1938). “The cerebral 
cortex: architecture, intracortical 
connections, motor projections,” in 
Physiology of the Nervous System, ed. J. 
F. Fulton (London: Oxford University 
Press), 274–301.

Lübke, J., and Feldmeyer, D. (2007). 
Excitatory signal fl ow and connectiv-
ity in a cortical column: focus on barrel 
cortex. Brain Struct. Funct. 212, 3–17.

Lübke, J., Roth, A., Feldmeyer, D., and 
Sakmann, B. (2003). Morphometric 
analysis of the columnar innervation 
domain of neurons connecting layer 
4 and layer 2/3 of juvenile rat barrel 
cortex. Cereb. Cortex 13, 1051–1063.

Lucas-Meunier, E., Fossier, P., Baux, G., 
and Amar, M. (2003). Cholinergic 
modulation of the cortical neuronal 
network. Pfl ugers Arch. 446, 17–29.

Lynch, G., Shepherd, G. M., Black, I. B., 
and Killackey, H. P. (1986). Synapses, 
Circuits, and the Beginnings of Memory. 
Cambridge, MA: MIT Press.

McGaughy, J., Koene, R. A., Eichenbaum, 
H., and Hasselmo, M. E. (2005). 
Cholinergic deafferentation of the 
entorhinal cortex in rats impairs encod-
ing of novel but not familiar stimuli in 
a delayed nonmatch-to-sample task. J. 
Neurosci. 25, 10273–10281.

Mesulam, M.-M., and Mufson, E. J. 
(1984). Neural inputs into the nucleus 
basalis of the substantia innominata 
(Ch4) in the rhesus monkey. Brain 
107, 253–274.

Hubel, D. H., and Wiesel, T. N. (1968). 
Receptive fi elds and functional archi-
tecture of monkey striate cortex. J. 
Physiol. 195, 215–243.

Hubel, D. H., and Wiesel, T. N. (1974). 
Uniformity of monkey striate cortex: 
a parallel relationship between fi eld 
size, scatter, and magnifi cation factor. 
J. Comp. Neurol. 158, 295–305.

Isakova, A., and Mednikova, Y. (2007). 
Comparative roles of acetylcholine 
and noradrenaline in controlling 
the spontaneous activity of cortical 
neurons. Neurosci. Behav. Physiol. 
37, 689.

Jodo, E., Chiang, C., and Aston-Jones, 
G. (1998). Potent excitatory influ-
ence of prefrontal cortex activity on 
noradrenergic locus coeruleus neu-
rons. Neuroscience 83, 63–79.

Jones, B. E., Descarries, L., Krnjevic, K., 
and Steriade, M. (2004). Activity, 
modulation and role of basal forebrain 
cholinergic neurons innervating the 
cerebral cortex. Prog. Brain Res. 145, 
157–169.

Jortner, R. A., Farivar, S. S., and Laurent, G. 
(2007). A simple connectivity scheme 
for sparse coding in an olfactory sys-
tem. J. Neurosci. 27, 1659–1669.

Kanerva, P. (1988). Sparse Distributed 
Memory. Cambridge, MA: MIT Press.

Kawaguchi, Y., and Shindou, T. (1998). 
Noradrenergic excitation and inhi-
bition of GABAergic cell types in 
rat frontal cortex. J. Neurosci. 18, 
6963–6976.

Kawasaki, H., and Avoli, M. (1996). 
Excitatory effects induced by carba-
chol on bursting neurons of the rat 
subiculum. Neurosci. Lett. 219, 1–4.

Klausberger, T., Magill, P. J., Marton, L. 
F., Roberts, J. D. B., Cobden, P. M., 
Buzsaki, G., and Somogyi, P. (2003). 
Brain-state- and cell-type- specifi c  fi ring 
of  hippocampal interneurons in vivo. 
Nature 421, 844–848.

Klausberger, T., Marton, L. F., Baude, 
A., Roberts, J. D. B., Magill, P. J., and 
Somogyi, P. (2004). Spike timing of 
dendrite-targeting bistratified cells 
during hippocampal network oscilla-
tions in vivo. Nat. Neurosci. 7, 41–47.

Klausberger, T., and Somogyi, P. (2008). 
Neuronal diversity and temporal 
dynamics: the unity of hippocampal 
circuit operations. Science 321, 53–57.

Knoblauch, A., Palm, G., and Sommer, F. 
T. (2010). Memory capacities for syn-
aptic and structural plasticity. Neural. 
Comput. 22, 289–341.

Krieger, P., Kuner, T., and Sakmann, B. 
(2007). Synaptic connections between 
layer 5B pyramidal neurons in mouse 
somatosensory cortex are independ-
ent of apical dendrite bundling. J. 
Neurosci. 27, 11473–11482.

Kupper, R., Knoblauch, A., Gewaltig, M.-O., 
Körner, U., and Körner, E. (2007). 

and widespread intercolumnar net-
work. J. Neurosci. 26, 3434–3443.

George, D., and Hawkins, J. (2009). 
Towards a mathematical theory of 
cortical micro-circuits. PLoS Comput. 
Biol. 5, e1000532. doi: 10.1371/journal.
pcbi.1000532.

Gilbert, C., and Wiesel, T. (1989). Columnar 
specifi city of intrinsic horizontal and 
corticocortical connections in cat visual 
cortex. J. Neurosci. 9, 2432–2442.

Goard, M., and Dan, Y. (2009). Basal fore-
brain activation enhances cortical cod-
ing of natural scenes. Nat. Neurosci. 
12, 1444–1449.

Goldman, P. S., and Nauta, W. J. H. (1977). 
Columnar distribution of cortico-
 cortical fi bers in the frontal associa-
tion, limbic, and motor cortex of the 
developing rhesus monkey. Brain Res. 
122, 393–413.

Gulledge, A. T., and Kawaguchi, Y. (2007). 
Phasic cholinergic signaling in the 
hippocampus: functional homology 
with the neocortex? Hippocampus 17, 
327–332.

Hahnloser, R. H. R., Kozhevnikov, A. A., 
and Fee, M. S. (2002). An ultra-sparse 
code underlies the generation of neu-
ral sequences in a songbird. Nature 
419, 65.

Harley, C. W., and Helen, E. S. (2007). 
Norepinephrine and the dentate gyrus. 
Prog. Brain Res. 163, 299–318.

Hasselmo, M. E. (2006). The role of acetyl-
choline in learning and memory. Curr. 
Opin. Neurobiol. 16, 710–715.

Hasselmo, M. E., and Bower, J. M. (1992). 
Cholinergic suppression specifi c to 
intrinsic not afferent fi ber synapses 
in rat piriform (olfactory) cortex. J. 
Neurophysiol. 67, 1222–1229.

Helmstaedter, M., de Kock, C. P. J., 
Feldmeyer, D., Bruno, R. M., and 
Sakmann, B. (2007). Reconstruction 
of an average cortical column in silico. 
Brain Res. Rev. 55, 193.

Hetherington, P. A., and Swindale, N. V. 
(1999). Receptive fi eld and orientation 
scatter studied by tetrode recordings in 
cat area 17. Vis. Neurosci. 16, 637–652.

Hirata, A., and Castro-Alamancos, M. A. 
(2008). Cortical transformation of wide-
fi eld (multiwhisker) sensory Responses. 
J. Neurophysiol. 100, 358–370.

Horton, J. C., and Adams, D. L. (2005). 
The cortical column: a structure with-
out a function. Philos. Trans. R. Soc. 
Lond., B, Biol. Sci. 360, 837–862.

Hromdka, T., DeWeese, M. R., and Zador, 
A. M. (2008). Sparse representation of 
sounds in the unanesthetized auditory 
cortex. PLoS Biol. 6, e16. doi: 10.1371/
journal.pbio.0060016.

Hubel, D. H., and Wiesel, T. N. (1962). 
Receptive fi elds, binocular  interaction 
and functional architecture in the 
cat’s visual cortex. J. Physiol. 160, 
106–154.

DeFelipe, J., Hendry, S. H. C., Hashikawa, 
T., Molinari, M., and Jones, E. G. 
(1990). A microcolumnar structure 
of monkey cerebral cortex revealed by 
immunocytochemical studies of dou-
ble bouquet cell axons. Neuroscience 
37, 655–673.

de Kock, C. P. J., Bruno, R. M., Spors, H., 
and Sakmann, B. (2007). Layer- and 
cell-type-specific suprathreshold 
stimulus representation in rat primary 
somatosensory cortex. J. Physiol. 581, 
139–154.

Descarries, L., Gisiger, V., and Steriade, M. 
(1997). Diffuse transmission by acetyl-
choline in the CNS. Prog. Neurobiol. 
53, 603–625.

Deschênes, M., Bourassa, J., and Pinault, 
D. (1994). Corticothalamic projections 
from layer V cells in rat are collater-
als of long-range corticofugal axons. 
Brain Res. 664, 215–219.

Douglas, R. J., and Martin, K. A. (1991). A 
functional microcircuit for cat visual 
cortex. J. Physiol. 440, 735–769.

Douglas, R. J., and Martin, K. A. C. (2004). 
Neuronal circuits of the neocortex. 
Annu. Rev. Neurosci. 27, 419–451.

Douglas, R. J., Martin, K. A., and 
Witteridge, D. (1989). A canonical 
microcircuit for neocortex. Neural. 
Comput. 1, 480–488.

Doya, K. (2002). Metalearning and 
neuromodulation. Neural Netw. 15, 
495–506.

Egger, V., Nevian, T., and Bruno, R. M. 
(2008). Subcolumnar dendritic and 
axonal organization of spiny stellate 
and star pyramid neurons within a 
barrel in rat somatosensory cortex. 
Cereb. Cortex 18, 876–889.

Eggermann, E., and Feldmeyer, D. (2009). 
Cholinergic fi ltering in the recurrent 
excitatory microcircuit of cortical 
layer 4. Proc. Natl. Acad. Sci. U.S.A. 
106, 11753–11758.

Favorov, O., and Diamond, M. (1990). 
Demonstration of discrete place-
defi ned columns – segregates – in the 
cat SI. J. Comp. Neurol. 298, 97–112.

Feldmeyer, D., Lübke, J., and Sakmann, 
B. (2006). Effi cacy and connectivity 
of intracolumnar pairs of layer 2/3 
pyramidal cells in the barrel cortex of 
juvenile rats. J. Physiol. (Lond.) 575, 
583–602.

Foote, S. L., Freedman, R., and Oliver, A. 
P. (1975). Effects of putative neuro-
transmitters on neuronal activity in 
monkey auditory cortex. Brain Res. 
86, 229–242.

Foote, S. L., and Morrison, J. H. (1987). 
Extrathalamic modulation of corti-
cal function. Annu. Rev. Neurosci. 10, 
67–95.

Fukuda, T., Kosaka, T., Singer, W., 
and Galuske, R. A. W. (2006). Gap 
 junctions among dendrites of  cortical 
GABAergic neurons establish a dense 



Frontiers in Neuroanatomy www.frontiersin.org June 2010 | Volume 4 | Article 17 | 13

Rinkus Mini-macrocolumnar sparse distributed coding model

novelty and its rapid habituation 
in locus coeruleus neurons of the 
freely exploring rat. Eur. J. Neurosci. 
7, 1180–1187.

Vinje, W. E., and Gallant, J. L. (2000). 
Sparse coding and decorrelation in 
primary visual cortex during natural 
vision. Science 287, 1273–1276.

Waydo, S., Kraskov, A., Quian Quiroga, 
R., Fried, I., and Koch, C. (2006). 
Sparse representation in the human 
medial temporal lobe. J. Neurosci. 26, 
10232–10234.

Willshaw, D. J., Buneman, O. P., and 
Longuet-Higgins, H. C. (1969). Non 
holographic associative memory. 
Nature 222, 960–962.

Woodruff, A., Xu, Q., Anderson, S. A., 
and Yuste, R. (2009). Depolarizing 
effect of neocortical chandelier neu-
rons. Front Neural Circuits 3:15. doi: 
10.3389/neuro.04.015.2009.

Woolsey, T. A., and Van der Loos, H. (1970). 
The structural organization of layer IV 
in the somatosensory region (S I) of 
mouse cerebral cortex: the description 
of a cortical fi eld composed of discrete 
cytoarchitectonic units. Brain Res. 17, 
205–242.

Yoshimura, Y., and Callaway, E. M. (2005). 
Fine-scale specifi city of cortical net-
works depends on inhibitory cell 
type and connectivity. Nat. Neurosci. 
8, 1552–1559.

Young, M. P., and Yamane, S. (1992). 
Sparse population coding of faces in 
the inferotemporal cortex. Science 256, 
1327–1331.

Zhu, Y., Stornetta, R. L., and Zhu, J. 
J. (2004). Chandelier cells control 
excessive cortical excitation: charac-
teristics of whisker-evoked synaptic 
responses of layer 2/3 nonpyramidal 
and pyramidal neurons. J. Neurosci. 
24, 5101–5108.

Conflict of Interest Statement: The 
author declares that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential confl ict 
of interest.

Received: 03 December 2009; paper pend-
ing published: 12 January 2010; accepted: 
23 April 2010; published online: 02 June 
2010.
Citation: Rinkus GJ (2010) A cortical 
sparse distributed coding model link-
ing mini- and macrocolumn-scale func-
tionality. Front. Neuroanat. 4:17. doi: 
10.3389/fnana.2010.00017
Copyright © 2010 Rinkus. This is an open-
access article subject to an exclusive license 
agreement between the authors and the 
Frontiers Research Foundation, which 
permits unrestricted use, distribution, and 
reproduction in any medium, provided the 
original authors and source are credited.

Miranda, M. I., Ferreira, G., Ramirez-
Lugo, L., and Bermudez-Rattoni, F. 
(2003). Role of cholinergic system on 
the construction of memories: taste 
memory encoding. Neurobiol. Learn. 
Mem. 80, 211–222.

Miranda, M. I., Ramírez-Lugo, L., and 
Bermúdez-Rattoni, F. (2000). Cortical 
cholinergic activity is related to the 
novelty of the stimulus. Brain Res. 
882, 230–235.

Moll, M., and Miikkulainen, R. (1995). 
Convergence-Zone Episodic Memory: 
Analysis and Simulations. Technical 
Report AI95-227. Austin: Department 
of Computer Science, University of 
Texas at Austin.

Mountcastle, V. B. (1957). Modality and 
topographic properties of single neu-
rons of cat’s somatic sensory cortex. J. 
Neurophysiology. 20, 408–434.

Mountcastle, V. B. (1997). The columnar 
organization of the neocortex. Brain 
120, 701–722.

Moxon, K. A., Devilbiss, D. M., Chapin, 
J. K., and Waterhouse, B. D. (2007). 
Infl uence of norepinephrine on soma-
tosensory neuronal responses in the 
rat thalamus: a combined modeling 
and in vivo multi-channel, multi-
 neuron recording study. Brain Res. 
1147, 105–123.

Murayama, M., Perez-Garci, E., Nevian, 
T., Bock, T., Senn, W., and Larkum, 
M. E. (2009). Dendritic encoding of 
sensory stimuli controlled by deep 
cortical interneurons. Nature 457, 
1137–1141.

Ohki, K., Chung, S., Ch’ng, Y. H., Kara, 
P., and Reid, R. C. (2005). Functional 
imaging with cellular resolution 
reveals precise micro-architecture in 
visual cortex. Nature 433, 597–603.

Ohki, K., and Reid, R. C. (2007). Specifi city 
and randomness in the visual cortex. 
Curr. Opin. Neurobiol. 17, 401–407.

Otsuka, T., and Kawaguchi, Y. (2009). 
Cortical inhibitory cell types dif-
ferentially form intralaminar and 
interlaminar subnetworks with 
excitatory neurons. J. Neurosci. 29, 
10533–10540.

Palm, G. (1982). Neural Assemblies: An 
Alternative Approach to Artificial 
Intelligence. Berlin: Springer.

Peters, A., and Sethares, C. (1996). 
Myelinated axons and the pyrami-
dal cell modules in monkey primary 
visual cortex. J. Comp. Neurol. 365, 
232–255.

Peters, A., and Sethares, C. (1997). The 
organization of double bouquet cells 
in monkey striate cortex. J. Neurocytol. 
26, 779.

Petersen, C. C. H. (2007). The functional 
organization of the barrel cortex. 
Neuron 56, 339–355.

Poo, C., and Isaacson, J. S. (2009). Odor 
representations in olfactory cortex: 

“sparse” coding, global inhibition, and 
oscillations. Neuron 62, 850–861.

Quian Quiroga, R., Kreiman, G., Koch, 
C., and Fried, I. (2008). Sparse but 
not “grandmother-cell” coding in the 
medial temporal lobe. Trends Cogn. 
Sci. 12, 87–91.

Rajkowski, J., Majczynski, H., Clayton, E., 
and Aston-Jones, G. (2004). Activation 
of monkey locus coeruleus neurons 
varies with diffi culty and perform-
ance in a target detection task. J. 
Neurophysiol. 92, 361–371.

Redgrave, P., Prescott, T. J., and Gurney, K. 
(1999). Is the short-latency dopamine 
response too short to signal reward 
error? Trends Neurosci. 22, 146.

Ringach, D. L., Hawken, M. J., and Shapley, 
R. (2002). Receptive fi eld structure of 
neurons in monkey primary visual cor-
tex revealed by stimulation with natu-
ral image sequences. J. Vis. 2, 12–24.

Rinkus, G. (1996). A Combinatorial 
Neural Network Exhibiting Episodic 
and Semantic Memory Properties for 
Spatio-Temporal Patterns. Boston, MA: 
Boston University.

Rinkus, G., and Lisman, J. (2005). Time-
invariant recognition of spatiotempo-
ral patterns in a hierarchical cortical 
model with a caudal-rostral persistence 
gradient. In Society for Neuroscience 
Annual Meeting, Washington, DC.

Rockland, K. S., and Drash, G. W. (1996). 
Collateralized divergent feedback con-
nections that target multiple cortical 
areas. J. Comp. Neurol. 373, 529–548.

Rockland, K. S., and Pandya, D. N. (1979). 
Laminar origins and terminations of 
cortical connections of the occipital 
lobe in the rhesus monkey. Brain Res. 
179, 3–20.

Rothschild, G., Nelken, I., and Mizrahi, 
A. (2010). Functional organization 
and population dynamics in the 
mouse primary auditory cortex. Nat. 
Neurosci. 13, 353–360.

Samuels, E. R., and Szabadi, E. (2008). 
Functional neuroanatomy of the 
noradrenergic locus coeruleus: its 
roles in the regulation of arousal and 
autonomic function part I: princi-
ples of functional organisation. Curr. 
Neuropharmacol. 6, 235–253.

Sara, S. J. (2009). The locus coeruleus and 
noradrenergic modulation of cogni-
tion. Nat. Rev. Neurosci. 10, 211–223.

Sara, S. J., Vankov, A., and Hervé, A. (1994). 
Locus coeruleus-evoked responses in 
behaving rats: a clue to the role of 
noradrenaline in memory. Brain Res. 
Bull. 35, 457–465.

Sarter, M., Parikh, V., and Howe, W. 
M. (2009). Phasic acetylcholine 
release and the volume transmission 
hypothesis: time to move on. Nat. Rev. 
Neurosci. 10, 383–390.

Sato, T., Uchida, G., and Tanifuji, M. 
(2008). Cortical columnar organi-

zation is reconsidered in inferior 
temporal cortex. Cereb. Cortex 19, 
1870–1888.

Sato, T. R., Gray, N. W., Mainen, Z. F., and 
Svoboda, K. (2007). The functional 
microarchitecture of the mouse barrel 
cortex. PLoS Biol. 5, e189. doi: 10.1371/
journal.pbio.0050189.

Schrader, S., Gewaltig, M.-O., Körner, 
U., and Körner, E. (2009). Cortext: a 
columnar model of bottom-up and 
top-down processing in the neocortex. 
Neural Netw. 22, 1055–1070.

Schubert, D., Kötter, R., and Staiger, J. 
(2007). Mapping functional con-
nectivity in barrel-related columns 
reveals layer- and cell type-specific 
microcircuits. Brain Struct. Funct. 
212, 107–119.

Schubert, D., Kötter, R., Zilles, K., 
Luhmann, H. J., and Staiger, J. F. 
(2003). Cell type-specific circuits 
of cortical layer IV spiny neurons. J. 
Neurosci. 23, 2961–2970.

Schultz, W. (1998). Predictive reward 
signal of dopamine neurons. J. 
Neurophysiol. 80, 1–27.

Shalinsky, M. H., Magistretti, J., Ma, L., 
and Alonso, A. A. (2002). Muscarinic 
activation of a cation current and 
associated current noise in entorhinal-
 cortex layer-II neurons. J. Neurophysiol. 
88, 1197–1211.

Silberberg, G., Grillner, S., LeBeau, F. E. 
N., Maex, R., and Markram, H. (2005). 
Synaptic pathways in neural microcir-
cuits. Trends Neurosci. 28, 541–551.

Silberberg, G., and Markram, H. (2007). 
Disynaptic inhibition between 
neocortical pyramidal cells medi-
ated by Martinotti cells. Neuron 53, 
735–746.

Sun, Q.-Q., Huguenard, J. R., and Prince, 
D. A. (2006). Barrel cortex microcir-
cuits: thalamocortical feedforward 
inhibition in spiny stellate cells is 
mediated by a small number of fast-
spiking interneurons. J. Neurosci. 26, 
1219–1230.

Symes, A., and Wennekers, T. (2009). 
Spatiotemporal dynamics in the cor-
tical microcircuit: a modelling study of 
primary visual cortex layer 2/3. Neural 
Netw. 22, 1079–1092.

Tateno, T., Jimbo, Y., and Robinson, H. P. 
C. (2005). Spatio-temporal choliner-
gic modulation in cultured networks 
of rat cortical neurons: spontaneous 
activity. Neuroscience 134, 425–437.

Thomson, A. M., West, D. C., Wang, Y., 
and Bannister, A. P. (2002). Synaptic 
connections and small circuits involv-
ing excitatory and inhibitory neurons 
in layers 2–5 of adult rat and cat neo-
cortex: triple intracellular recordings 
and biocytin labelling in vitro. Cereb. 
Cortex 12, 936–53.

Vankov, A., Herve-Minvielle, A., and 
Sara, S. J. (1995). Response to 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


