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Dopamine plays an important modulatory role in the central nervous system, helping to
control critical aspects of motor function and reward learning. Alteration in normal dopamin-
ergic neurotransmission underlies multiple neurological diseases including schizophrenia,
Huntington’s disease, and Parkinson’s disease. Modulation of dopamine-regulated signaling
pathways is also important in the addictive actions of most drugs of abuse. Our stud-
ies over the last 30 years have focused on the molecular actions of dopamine acting on
medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched
phosphoproteins, particularly dopamine and adenosine 3′:5′-monophosphate-regulated
phosphoprotein of 32 kDa (DARPP-32), regulator of calmodulin signaling (RCS), and ARPP-
16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly
or indirectly, regulates the activity of one of the three major subclasses of serine/threonine
protein phosphatases, PP1, PP2B, and PP2A, respectively. For example, phosphorylation
of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to
potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to
the nucleus.The discovery of DARPP-32 and its emergence as a critical molecular integra-
tor of striatal signaling will be discussed, as will more recent studies that highlight novel
roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.
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INTRODUCTION
The neuronal circuitry of the mammalian basal ganglia (also
referred to as caudate–putamen or neostriatum) is generally well
understood. Major inputs in the form of glutamatergic excitatory
monosynaptic inputs derive from the cerebral cortex and thala-
mus, with axospinous synapses terminating on the dendrites of
the local cells, the vast majority of which are represented by the
medium-sized spiny neurons (MSN, representing approx. 95% of
total striatal neurons), which also represent the origin of the major
efferent projections. These GABAergic inhibitory striatal neurons
have both dense populations of local collaterals as well as efferent
striatonigral and striatopallidal GABAergic fibers terminating on
local neurons in either the substantia nigra pars reticulata (the
direct efferent pathway) or on local neurons in the external globus
pallidus (the indirect pathway). Two major modulatory systems
regulate these circuits, the most important being the nigrostri-
atal dopaminergic (DA) fibers originating in the pars compacta of
the substantia nigra, and a less predominant serotonergic pathway
originating in the raphe nuclei (Anden et al., 1966; Steinbusch,
1981; Bjorklund and Lindvall, 1984). Local intrastriatal modula-
tions are most prominently mediated through giant cholinergic
cells present within the striatum itself, which represent approxi-
mately 2% of total cell number but have major axonal connections

that radiate throughout the neostriatal neuropil (Bolam et al.,
1984; Zhou et al., 2002).

In addition to the classical neostriatal circuitry and cytol-
ogy mentioned above, the nucleus accumbens, an adjacent brain
region, was determined to represent a ventral part of the neos-
triatum in the 1970s. The nucleus accumbens has generally iden-
tical cellular populations and transmitters, with major glutamate
inputs from hippocampus, amygdala, prefrontal cortex and thal-
amus, major afferent DA and serotoninergic modulatory inputs,
and efferent GABAergic outputs predominantly terminating in
the ventral pallidum and rostral substantia nigra (Walaas and
Fonnum, 1979, 1980).

Given the role of the basal ganglia in control of motor func-
tion and reward learning, and the disruption of dopaminergic
neurotransmission in diseases including schizophrenia, Hunting-
ton’s disease, and Parkinson’s disease, a major effort has been
made to identify the molecular mechanisms that mediate and
modulate neurotransmission within this brain region. Here we
review aspects of DA signaling mechanisms which operate post-
synaptically in MSNs, and how they serve to integrate striatal
inputs. A major influence on these studies has been the charac-
terization of phosphoproteins regulated by DA and protein kinase
A (PKA) in MSNs (Nairn et al., 1985; Greengard et al., 1999;

Frontiers in Neuroanatomy www.frontiersin.org August 2011 | Volume 5 | Article 50 | 1

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/editorialboard
http://www.frontiersin.org/Neuroanatomy/about
http://www.frontiersin.org/Neuroanatomy/10.3389/fnana.2011.00050/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=17382&d=1&sname=SvenWalaas&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=34626&d=1&sname=HughHemmings&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=31902&d=1&sname=AngusNairn&name=Science
mailto:angus.nairn@yale.edu
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Walaas et al. cAMP signaling and striatal phosphoproteins

Svenningsson et al., 2004, 2005). In particular, the discovery of
a family of substrates for PKA in MSNs has not only advanced our
knowledge of dopamine-regulated signaling in the central ner-
vous system, but has provided a framework for other signaling
pathways in the nervous system, and in non-neuronal cells. Here
we discuss the discovery of these proteins, and describe their roles
as integrators of the multiple signaling pathways that converge on
MSNs.

HISTORICAL OVERVIEW OF DA SIGNALING IN STRIATAL
MSNs
Approximately 30 years ago, the existence of a DA-containing
input to the caudate/putamen was generally accepted based
on histofluorescence, neurochemical, and immunohistochemical
studies (Bjorklund and Lindvall, 1984; Bjorklund and Dunnett,
2007; Iversen and Iversen, 2007). However, essentially nothing
was known about the neurobiological mechanisms that trans-
duced DA inputs into neurophysiological responses. Early stud-
ies demonstrated that stimulation of DA cells in the mesen-
cephalon gave monosynaptic EPSPs in the caudate nucleus (Kitai
et al., 1976), but the receptor mechanisms involved were essen-
tially unknown. It was unlikely that DA represented a primary
ionotropic neurotransmitter that directly regulated ion channel
conductances. Rather, studies performed in the superior cer-
vical ganglion (Kebabian and Greengard, 1971; Kebabian and
Calne, 1979) indicated the presence in nervous tissue of DA
receptors capable of generating cAMP, and more specific stud-
ies in rodent brain (Kebabian et al., 1972; Clement-Cormier
et al., 1974) demonstrated that this DA receptor was indeed
enriched in the neostriatum. However, the remaining cAMP cas-
cade [cAMP-dependent protein kinase (PKA), protein substrates
for this enzyme, as well as phosphoprotein phosphatases] was
essentially unknown.

DISCOVERY OF THE PHOSPHOPROTEIN SUBSTRATES FOR PKA IN MSNs
A preliminary analysis of acid-soluble phosphoprotein substrates
for PKA in different regions of rat brains, performed early in
1980, demonstrated that one set of widely distributed phospho-
proteins (subsequently designated the synapsins) were present in
all brain regions examined, but that a novel protein substrate
for PKA of apparent molecular mass of 32 kDa also was present

but only in dorsal and ventral striatal regions, and essentially
absent from the adjacent lateral septum or the more distant
hippocampus or neocortex (Walaas and Greengard, 1984). Analy-
sis of brain slices from the neostriatum containing intact local
MSNs demonstrated that incubation with DA induced a sig-
nificant increase in the state of phosphorylation of this 32 kDa
protein, which was given the name“dopamine and adenosine 3′:5′-
monophosphate-regulated phosphoprotein of 32 kDa” (DARPP-
32; Walaas et al., 1983a). Subsequently, characterization of this
phosphoprotein was pursued in a first set of neurochemical, pro-
tein purification, and immunohistochemical studies (Hemmings
Jr. et al., 1984b; Ouimet et al., 1984; Walaas and Greengard,
1984).

The success of these early studies led to a more comprehen-
sive analysis of the anatomy of brain protein phosphorylation
systems, where it became clear that the major population of
region-specific PKA substrate proteins were highly enriched in
the basal ganglia, particularly in the neostriatum (Walaas et al.,
1983b,c). Major striatal phosphoproteins present in addition to
DARPP-32 had apparent molecular masses (as determine by SDS-
polyacrylamide gel electrophoresis, SDS-PAGE) of 21 kDa (des-
ignated ARPP-21 or regulator of calmodulin signaling, RCS, see
below), 39 kDa (Walaas and Greengard, 1993), 90 kDa (Walaas
et al., 1989); now known to be Rap1GAP (McAvoy et al., 2009),
and ARPP-16 (Horiuchi et al., 1990). Further studies therefore
concentrated on striatum and DA, where anatomy, disease state,
neuro-, and psychopharmacological properties were reasonably
well known, but where the neurobiological and physiological
responses to the effects of DA mediated through protein phospho-
rylation were relatively unknown. Largely based on their physical
properties, DARPP-32, RCS, and ARPP-16 were relatively straight-
forward to purify from bovine striatum, and subsequent studies
have revealed that each of these proteins is highly enriched in
MSNs (Figure 1) and that in different ways they serve to mediate
dopamine actions through regulation of serine/threonine protein
phosphatases.

DARPP-32
BIOCHEMICAL PROPERTIES
Following its identification in rat striatum as an acid-soluble phos-
phoprotein (Walaas et al., 1983a), DARPP-32 was purified from

FIGURE 1 | Localization of DARPP-32, RCS, and ARPP-16 in rat brain.

DARPP-32 (left, sagittal section, positive immunoreactivity black), RCS
(middle, coronal section, positive immunoreactivity white; caudate/putamen
(CP), and nucleus accumbens (A); inset at right shows RCS enrichment in

nucleus accumbens (left of dashed line) in more rostral section), ARPP-16
(right, sagittal section, immunoreactivity white). Simple domain diagrams of
each protein with their amino acid number and site of PKA phosphorylation
are shown below the respective immunolocalization panels.
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bovine caudate, based on its stability in acidic extraction condi-
tions (Hemmings Jr. et al., 1984b). The bovine protein contains 202
amino acids with a predicted molecular weight of 22,614 (Williams
et al., 1986; Kurihara et al., 1988; Figure 2). Physicochemical analy-
sis indicated that the protein has little secondary structure and
exists as an elongated monomer (Hemmings Jr. et al., 1984b).
The N-terminal 40 amino acids of DARPP-32 are highly related
to a corresponding region of protein phosphatase inhibitor-1, a
protein originally described in skeletal muscle (Huang and Glins-
mann, 1976). DARPP-32 and inhibitor-1 are phosphorylated by
PKA at a conserved threonine residue (Thr34 in DARPP-32, Thr35
in inhibitor-1; note that amino acid numbering is for the mouse
protein, unless otherwise indicated), with phosphorylation con-
verting each protein into a potent inhibitor of PP1 (see further
discussion below). A notable feature of the amino acid sequence of
DARPP-32 is the presence of a highly acidic central region contain-
ing 24 glutamic or aspartic acid residues in a total of 32 residues.
The precise function of this region is not known, although it con-
tains a phosphorylation site for the CK2 protein kinase (Ser97),
and a nuclear export sequence, that are important in control of
the nucleo-cytoplasmic localization of DARPP-32 (see below).
Comparison of the DARPP-32 amino acid sequence from differ-
ent species indicates some heterogeneity at the C-terminus of the
protein, a region that may be subject to variable phosphorylation
(see below).

Fluorescence (Neyroz et al., 1993) and NMR (Lin et al.,
2004; Dancheck et al., 2008; Marsh et al., 2010) spectroscopy
have shown that, consistent with initial physicochemical stud-
ies, DARPP-32 has little secondary structure when studied in free
solution. While the protein has all the features of a so-called
“intrinsically disordered protein,” there is a propensity for some
α-helical content between residues 22 and 29 located N-terminal
to the PKA phosphorylation site, and between residues 92 and
109, the region containing Ser97 and the nuclear export signal
sequence (Dancheck et al., 2008; Marsh et al., 2010). Moreover,
either fluorescence anisotropy or NMR studies of DARPP-32 pep-
tides that contained paramagnetic spin labels in various positions
(Dancheck et al., 2008), indicated that the central region of the

protein (residues ∼80–115) can exist as a compact core, while both
the N-terminal domain including Thr34, and the C-terminus, are
much more mobile. Phosphorylation by either PKA or CK2 has
no marked effect on the secondary or tertiary structure of the
protein.

Intrinsically disordered proteins have the ability to make exten-
sive interactions with their interacting partners. Such disordered
proteins allow multiple structural states that facilitate interactions
with different binding sites at once, an important property of
network hub proteins that interact with multiple binding sites
and integrate signals from various pathways (Mittag et al., 2010).
However, upon binding to targets like PP1, elements of DARPP-
32 may assume a more stable structure as has been found for
inhibitor-2 and spinophilin, two other regulators of PP1 (Ragusa
et al., 2010; Dancheck et al., 2011). As will be discussed below, the
major target for DARPP-32 is PP1. DARPP-32 also interacts with
the multiple kinases and phosphatases that regulate its phospho-
rylation, including PKA which it can also regulate. DARPP-32 is
imported into and exported from the nucleus (see below), and a
recent study has identified DARPP-32 as being able to interact with
the tra2-beta1 splicing factor (Benderska et al., 2010). Therefore,
DARPP-32 may have other direct protein binding partners. The
intrinsically disordered feature of DARPP-32 may be critical for
these various types of interaction.

EXPRESSION PROFILE
A number of detailed immunocytochemical studies have indicated
that DARPP-32 is localized primarily in brain regions enriched in
dopaminergic nerve terminals (Ouimet et al., 1984, 1998; Foster
et al., 1987, 1988; Ouimet and Greengard, 1990). Thus, DARPP-32
is highly expressed within the caudatoputamen, nucleus accum-
bens, olfactory tubercle, bed nucleus of the stria terminalis, and
portions of the amygdaloid complex. DARPP-32 is a cytosolic pro-
tein and immunoreactivity is present throughout neuronal cell
bodies and dendrites (Ouimet et al., 1984, 1998; Ouimet and
Greengard, 1990; Glausier et al., 2010). In brain regions known to
receive projections from these nuclei, nerve terminals are strongly
immunoreactive for DARPP-32. These target areas include the

FIGURE 2 | Domain organization of DARPP-32. DARPP-32 is
phosphorylated at Thr34 by PKA (and PKG, not shown), at Thr75 by Cdk5, at
Ser97 by CK2, and at Ser130 by CK1. Thr34 is preferentially dephosphorylated
by PP2B (calcineurin); Thr75 is preferentially dephosphorylated by PP2A;
Ser97 is also preferentially dephosphorylated by PP2A (not shown); Ser130 is
dephosphorylated by PP2C. Phosphorylation of Thr34 converts DARPP-32 into
a potent inhibitor of PP1. A PP1 docking motif and phosphorylation of Thr34
are required for binding and inhibition of PP1. Phosphorylation of Thr75

converts DARPP-32 into an inhibitor of PKA, reducing its ability to
phosphorylate DARPP-32 and other substrates. Phosphorylation of Ser130
increases phosphorylation of Thr34 through inhibition of PP2B and potentiates
dopaminergic signaling via the cAMP/PKA/DARPP-32/PP-1 pathway. In
contrast, phosphorylation of Thr75 acts to inhibit dopaminergic signaling via
this pathway. Phosphorylation of Ser97 in conjunction with a nuclear export
signal (NES) act to export DARPP-32 from the nucleus and maintain the
cytoplasmic localization of the protein observed under basal conditions.
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globus pallidus, ventral pallidum, entopeduncular nucleus, and
the pars reticulata of the substantia nigra (Walaas and Ouimet,
1989). No immunoreactivity is detected in neuronal cell bodies
or dendrites of dopaminergic neurons. In a phylogenetic survey,
DARPP-32 was identified in dopaminoceptive brain regions from
representative members of the amniote vertebrate classes (birds
and reptiles), while none was identified in dopaminoceptive brain
regions from representative members of the anamniote vertebrate
classes (bony fishes and amphibians) or in nervous tissue from rep-
resentative members of several invertebrate classes (Hemmings Jr.
and Greengard, 1986).

In non-striatal regions, many neurons are weakly immunore-
active for DARPP-32 and some of these are found in areas that
apparently lack a dopaminergic input (Ouimet et al., 1984, 1992;
Glausier et al., 2010). For example, weakly labeled neuronal cell
bodies and dendrites are found throughout the neocortex, pri-
marily in layer VI, and in the Purkinje neurons of the cerebellum.
DARPP-32 immunoreactivity is also present in certain glial cells,
especially in the median eminence, arcuate nucleus, and medial
habenula.

DARPP-32 EXPRESSION IN NON-NEURONAL CELLS/TISSUES
While most work has focused on the function of DARPP-32 in neu-
rons, especially in the neostriatum, DARPP-32 is also expressed in
non-neuronal cells and tissues. DARPP-32 has been identified at
low levels in several peripheral tissues, including choroid plexus,
parathyroid cells, adrenal chromaffin cells, posterior pituitary
gland, pineal gland, and superior cervical sympathetic ganglion
(Hemmings Jr. and Greengard, 1986). Several studies have eluci-
dated a function for DARPP-32 in the kidney, where it plays a role
in regulation of the Na+/K+-ATPase by dopamine (Meister et al.,
1989; Eklof et al., 2001). DARPP-32 is expressed at high levels in
the renal medulla, specifically in the thick ascending limb of Henle.
DARPP-32 has also been found in brown adipose tissue from pigs
(Meister et al., 1988) and cow (Stralfors et al., 1989), where it likely
has the same function as inhibitor-1 which is expressed instead of
DARPP-32 in adipose tissue from other mammals. In addition to
the brain, DARPP-32 is also expressed in the ciliary epithelium of
the eye (Stone et al., 1986), neurohypophysis, parathyroid gland
(Meister et al., 1991), choroid plexus, and peripheral nervous tis-
sues such as superior cervical ganglion and adrenal gland, most of
which are associated with dopamine signaling (Hemmings Jr. and
Greengard, 1986).

Unexpectedly, DARPP-32 expression has been found to be
associated with a number of different cancers including gastric,
adenocarcinoma, esophageal, and breast (El-Rifai et al., 2002; Ebi-
hara et al., 2004; Varis et al., 2004). The precise role of DARPP-32
is unclear with some studies suggesting a causal role in cell prolif-
eration, a protective role, or a role in drug resistance (Hansen
et al., 2006, 2009; Hong et al., 2007). An interesting compo-
nent of these studies has been the discovery of the expression
of a truncated form of DARPP-32 (termed t-DARPP-32) which
is missing the amino acids encoded by exon 1 (the region that
contains Thr34 and inhibits phosphatase PP1 activity), and which
contains an alternatively spliced exon followed by amino acids
encoded by exons 2–7. t-DARPP-32 is expressed in cancer cells
where it may mediate resistance to anti-cancer drugs (Belkhiri

et al., 2008a,b; Gu et al., 2009; Hamel et al., 2010; Vangamudi et al.,
2010).

DARPP-32 PHOSPHORYLATED AT Thr34 BY PKA REGULATES PP1
Biochemical and subsequent structure–function studies have
shown that residues 5–40 of DARPP-32, in conjunction with phos-
phorylation of Thr34 by PKA, comprise a domain that binds to
and inhibits the activity of PP1, a serine/threonine protein phos-
phatase that plays a major role in dephosphorylation in eukary-
otic cells (Hemmings Jr. et al., 1984a, 1990; Huang et al., 1999).
There are at least two sub-domains within residues 5–40 that are
critical for enabling phospho-Thr34-DARPP-32 to function as a
potent “pseudosubstrate-like” inhibitor of PP1 (Figure 2). A short
basic/hydrophobic sequence between residues 7 and 11 (KKIQF)
in DARPP-32 represents a conserved PP1 docking motif. While
the exact sequence of the motif is not conserved, the basic and
hydrophobic features are found in as many as 200 proteins that
interact with PP1 at a conserved site in a mutually exclusive man-
ner (Bollen et al., 2010). X-ray crystallography studies have shown
that the PP1 docking motif interacts with the surface of PP1
at a position on the back of the enzyme (relative to the metal-
containing active site positioned at front center; Goldberg et al.,
1995; Egloff et al., 1997). Amino acids in PP1 that interact with
the basic/hydrophobic docking motif are distinct from PP2A and
PP2B (calcineurin), two related serine/threonine protein phos-
phatases that have very similar overall structure to PP1 (Watanabe
et al., 2001).

Phosphorylation of Thr34 by PKA (and also PKG) converts
the protein into a potent inhibitor of PP1 with an IC50 of
∼1 nM (Hemmings Jr. et al., 1984a; Huang et al., 1999). Phospho-
Thr34-DARPP-32 is specific for PP1, and is unable to inhibit
the closely related enzymes PP2A and PP2B, or the structurally
distinct PP2C. While dephospho-DARPP-32 exhibits virtually no
inhibitory activity (at least ∼106-fold less), the docking motif can
interact with PP1 in the absence or presence of phosphorylation of
Thr34 indicating the importance of cooperative two-site interac-
tion to the high inhibitory potency (Desdouits et al., 1995a; Huang
et al., 1999). DARPP-32 levels in MSNs have been estimated to be
∼50 μM or higher (Greengard et al., 1999), and while the striatum
also expresses high levels of the three PP1 isoforms found in mam-
malian tissues (da Cruz e Silva et al., 1995), the total concentration
is likely significantly less that that of DARPP-32. Phosphoryla-
tion of Thr34 is basally low and can be stimulated ∼3- to 5-fold
in response to activation of PKA (see below). Thus, even small
increases in DARPP-32 phosphorylation are expected to result in
substantial inhibition of PP1.

While the exact structural details of how phospho-Thr34-
DARPP-32 inhibits PP1 activity are not yet known, biochemical
and modeling studies suggest that once docked via residues 7–
11, phospho-Thr34 is positioned close to or in the active site,
but in a conformation that is not easily dephosphorylated (Gold-
berg et al., 1995; Huang et al., 1997, 1999). It is possible that four
arginine residues that precede Thr34, and are important for phos-
phorylation by PKA, interact electrostatically with residues that
contribute to the acidic groove of PP1, one of three grooves (acidic,
hydrophobic, and C-terminal) that emanate from the active site
(Goldberg et al., 1995). However, site-directed mutagenesis has
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failed to demonstrate any significant role of the acidic side-chains
within the acidic groove (Goldberg et al., 1995; Huang et al., 1997).

DARPP-32 PHOSPHORYLATED AT Thr75 BY Cdk5 REGULATES PKA
Thr75 of DARPP-32 is phosphorylated by Cdk5, a cyclin-
dependent kinase family member, which is basally active in post-
mitotic neurons through association with its non-cyclin cofactor,
p35 (Bibb et al., 1999). As a result, Thr75 is basally phosphory-
lated to a relatively high level in striatal neurons (∼0.25 mol/mol;
Bibb et al., 1999). Phosphorylation of Thr75 by Cdk5 has a
major inhibitory effect on the phosphorylation of Thr34 by PKA.
Phosphorylation of Thr75 inhibits the phosphorylation of exoge-
nous substrates such as ARPP-16 and RCS, in vitro, supporting
the hypothesis that phospho-Thr75-DARPP-32 acts generally as
a PKA inhibitor. It is also possible that some of the effects of
phospho-Thr75-DARPP-32 on PKA-mediated Thr34 phosphory-
lation result from an intramolecular effect that renders Thr34
a poorer substrate for PKA (Figure 2). As discussed in more
detail below, phosphorylation of Thr75 acts in a negative feed-
back manner to limit the phosphorylation of Thr34 by PKA.
However, this negative feedback can be relieved indirectly by PKA-
regulated dephosphorylation of Thr75 through a process that
involves activation of PP2A by PKA (Nishi et al., 2000). Thus
in many instances in intact cell preparations, there is a reciprocal
relationship between the states of phosphorylation of Thr34 and
Thr75.

PHOSPHORYLATION OF DARPP-32 BY CK1 AND CK2
Biochemical studies in vitro have shown that Ser97 of DARPP-
32 is phosphorylated by CK2, while Ser130 is phosphorylated by
CK1, and that both of these sites are phosphorylated to high sto-
ichiometry in vivo (Girault et al., 1989; Desdouits et al., 1995b,c).
Earlier studies in vitro indicated that phosphorylation of DARPP-
32 at Ser97 increased the efficiency of phosphorylation of Thr34 by
PKA (Girault et al., 1989). However, it is not clear if this is a major
mechanism in vivo, since more recent studies have shown convinc-
ingly that phosphorylation of Ser97 by CK2 is required for nuclear
export of DARPP-32, a process that ensures that under basal con-
ditions, DARPP-32 is localized to the cytoplasm (Stipanovich et al.,
2008; Figure 2; see further discussion below).

Studies both in vitro and in vivo have shown that phospho-
rylation of Ser130 by CK1 decreases the efficiency of dephos-
phorylation of Thr34 by calcineurin (PP2B), an effective phos-
phatase in dephosphorylating Thr34 (Hemmings Jr. et al., 1984a;
King et al., 1984). Thus phosphorylation of Ser130 helps to
maintain Thr34 phosphorylation levels, and thereby to potenti-
ate dopamine/D1/PKA signaling (Figure 2; see below for further
discussion).

In addition to Thr34, Thr75, Ser97, and Ser130, a mass spectro-
metric analysis has identified phosphorylation of either Ser45 or
Ser46 and Ser192 in mouse striatum in vivo (Jin et al., 2005).
Ser45/46 are probably phosphorylated by CK2 (Girault et al.,
1989), although the function is not known. Ser192 is close to
the C-terminus of mouse DARPP-32 and the serine and sur-
rounding residues are not conserved in other species. The rele-
vant kinase or the function of this phosphorylation site is also
unknown.

DEPHOSPHORYLATION OF DARPP-32
Characterization of the phosphatases involved in the dephospho-
rylation of the various sites in DARPP-32 have also been important
in revealing mechanisms that control DARPP-32 function (Sven-
ningsson et al., 2004). Thr34 is efficiently dephosphorylated by the
Ca2+-dependent phosphatase calcineurin (PP2B), which enables
glutamate to negatively regulate the inhibition of PP1, and antag-
onize the effects of dopamine (Nishi et al., 1997, 2005). Different
heterotrimeric forms of PP2A play important roles in regulation
of DARPP-32 dephosphorylation (Nishi et al., 2000, 2002). PP2A
containing the B56δ subunit can be activated by phosphoryla-
tion by PKA (Ahn et al., 2007a) leading to dephosphorylation
of both Thr75 and Ser97. Dephosphorylation of Thr75 relieves
Cdk5-mediated inhibition of PKA and acts as an important pos-
itive feedback to stimulate Thr34 phosphorylation and inhibi-
tion of PP1 (Nishi et al., 2000). Dephosphorylation of Ser97 by
PP2A plays an important role in controlling the nuclear export
of DARPP-32 (Stipanovich et al., 2008). Ca2+-dependent activa-
tion of the PR72-containing heterotrimer of PP2A also plays an
important role in controlling dephosphorylation of Thr75 (Ahn
et al., 2007b), and possibly also Thr34 (Nishi et al., 1999, 2002)
and Ser97. Finally, Ser130 dephosphorylation appears to be exclu-
sively controlled by PP2C, where it acts as part of a phosphatase
cascade whereby the level of phosphorylation of Ser130 regu-
lates the ability of calcineurin to dephosphorylate Thr34, and
hence control the level of inhibition of PP1 (Desdouits et al.,
1995b,c).

REGULATION OF DARPP-32 PHOSPHORYLATION
A major effort has been made to investigate the regulation of the
various phosphorylation sites in DARPP-32 in order to reveal
down-stream signaling pathways of DA. An important compo-
nent of these studies was the availability of phospho-specific
antibodies to the four main phosphorylation sites in DARPP-32-
Thr34, Thr75, Ser97, and Ser137. While initial focus was on the
phosphorylation of Thr34, the site that directly influences PP1
activity, a large amount of information is now known about the
phosphorylation of the other sites, especially Thr75 and Ser97.
Extensive studies have shown the regulation of DARPP-32 phos-
phorylation by neurotransmitters including dopamine, serotonin,
glutamate, and GABA, as well as antipsychotic drugs and drugs
of abuse (reviewed in detail by Svenningsson et al., 2004; Sven-
ningsson et al., 2005, and in an accompanying article, Nishi
et al.). Thus a key feature of DARPP-32 is to integrate the sig-
nals from diverse neurotransmitter inputs, ultimately to control
the activity of PP1 and thereby its diverse down-stream targets
(see below).

An important aspect of DARPP-32 regulation is the fact that
the protein is expressed in all MSNs at the same level, yet it has
become increasingly clear that direct and indirect pathway MSNs
are functionally distinct in terms of the expression patterns of large
numbers of proteins, including different DA receptor subtypes, the
latter controlling opposing types of intracellular signals (Heiman
et al., 2008; Valjent et al., 2009; Surmeier et al., 2010). Here we will
review some recent studies of functional distinctions in DARPP-32
phosphorylation in the two principal sub-populations of striatal
MSNs.
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Cell-type specific analysis of signal transduction in MSNs has
been difficult to address due to the anatomical and morphologi-
cal similarities of these cells. Traditional biochemical studies have
the limitation that they examine a mixed population of cells and
results represent only an average of signaling events. To over-
come these limitations and to study DARPP-32 phosphorylation
selectively in striatonigral (D1-MSNs) and striatopallidal (D2-
MSNs) neurons, BAC transgenic mice were generated that express
both C-terminal Flag-tagged DARPP-32 under the control of the
D1R promoter and C-terminal Myc-tagged DARPP-32 under the
control of the D2R promoter (Bateup et al., 2008). Immunoflu-
orescence studies confirmed the non-overlapping distribution of
the two forms of tagged DARPP-32 in the D1 and D2-MSNs.
Using the Flag and Myc tags, DARPP-32 from either D1R or D2R-
expressing neurons was then selectively immunoprecipitated and
phosphorylation in whole animals and brain slices analyzed in a
cell-type specific manner.

Cocaine blocks the dopamine transporter thereby increas-
ing the availability of dopamine at the synapse. Using the
tagged DARPP-32 mice, acute cocaine treatment was found
to increase Thr34-DARPP-32 phosphorylation and decrease
Thr75-DARPP-32 phosphorylation in D1-MSNs while Thr34-
DARPP-32 phosphorylation was decreased and Thr75-DARPP-
32 phosphorylation was increased in D2-MSNs. Adenosine A2A

receptors are highly expressed in the striatum and selectively local-
ized to striatopallidal D2-MSNs. Acute treatment with the A2AR
antagonist caffeine increased Thr75-DARPP-32 phosphorylation
in D2-MSNs with little effect on Thr34-DARPP-32 phospho-
rylation. Together, these results uncover important biochemical
differences between D1-MSNs and D2-MSNs and demonstrate
the significant advantages of using a cell-type targeted approach.
It is otherwise difficult to identify opposing changes in phospho-
rylation in D1- and D2-MSNs which would cancel each other out
in whole tissue homogenates.

DOWN-STREAM TARGETS FOR DARPP-32/PP1
As a result of the pleiotropic actions of PP1 on many cellu-
lar substrates, DARPP-32 is able to control diverse down-stream
targets that range from ion channels and ligand-gated neurotrans-
mitter receptors, to intracellular signaling cascades that control
gene transcription. These in turn are coupled to long-term alter-
ations in synaptic plasticity, and ultimately to control of behavior
(see detailed reviews in Svenningsson et al., 2004, 2005). Initial
studies of DARPP-32 function relied on biochemical approaches,
but the availability of DARPP-32 knockout mice (Fienberg et al.,
1998), and more recently “knockin” mice in which single phos-
phorylation sites were mutated to alanine (Svenningsson et al.,
2003; Valjent et al., 2005; Zachariou et al., 2006; Zhang et al.,
2006; Borgkvist et al., 2007; Stipanovich et al., 2008; Bertran-
Gonzalez et al., 2009), has directly established a critical role
for DARPP-32 in neuronal function. DARPP-32 is required for
normal responses to dopamine, as well as for the actions of
drugs that influence dopamine function, including antipsychotic
drugs and many drugs of abuse. DARPP-32 is also required for
the actions of other neurotransmitters such as serotonin (Sven-
ningsson et al., 2002a,b, 2003) or adenosine (Lindskog et al.,
2002).

As an example of these studies, an important role for DARPP-
32 has been found in the regulation of activity of the extracellular
signal-regulated kinase (ERK), an enzyme that is critical for long-
term synaptic plasticity in MSNs (Valjent et al., 2005). Many drugs
of abuse exert their addictive effects by increasing extracellular DA
in the nucleus accumbens, where they likely alter the plasticity of
corticostriatal glutamatergic transmission. In particular, psychos-
timulant drugs and other drugs of abuse activate ERK in D1-MSNs
in dorsal and ventral striatum, through the combined action of
glutamate NMDA and D1-dopamine receptors. Notably, activa-
tion of ERK by various drugs, including d-amphetamine, cocaine,
nicotine, morphine, or �9-tetrahydrocannabinol, was attenuated
in DARPP-32 null mice. Moreover, the effects of d-amphetamine
or cocaine on ERK activation in the striatum were prevented in
knockin mice in which Thr34 was mutated to alanine. Regulation
by DARPP-32 was found to occur at multiple levels, both upstream
of ERK and at the level of striatal-enriched tyrosine phosphatase
(STEP). Altered behavioral responses to psychostimulants were
also prevented in the DARPP-32 mutant mice. Thus, activation of
ERK, via a multi-level control of protein phosphatases, functions
to integrate the coincident action of dopamine and glutamate con-
verging on MSNs, and is critical for long-lasting effects of drugs
of abuse.

While most studies have focused on the biochemical actions of
DARPP-32 and behavioral consequences in the dorsal and ventral
striatum, DARPP-32 also plays a role in other brain regions includ-
ing cortex, hippocampus, and hypothalamus. For example, in hip-
pocampus and cortex, DARPP-32 phosphorylation is regulated by
serotonin, and biochemical and behavioral studies with DARPP-
32 knockout mice implicate DARPP-32 in the actions of serotonin
and anti-depressant drugs (Svenningsson et al., 2002a,b). In hypo-
thalamus, Thr34 of DARPP-32 is phosphorylated in response to
progesterone, and the actions of progesterone on sexual recep-
tivity were attenuated in DARPP-32 knockout mice (Mani et al.,
2000). Recent genetic studies also implicate DARPP-32 in pre-
frontal cortical processes linked to general intelligence, learn-
ing, and cognition (Frank et al., 2007, 2009; Kolata et al., 2010;
Doll et al., 2011; Frank and Fossella, 2011). Other studies have
shown a role for DARPP-32 in non-neuronal cells and tissues (see
above).

As discussed above, DARPP-32 is found in all MSNs, where its
phosphorylation is differentially controlled by the selective expres-
sion of different neurotransmitter receptors, including D1 and D2
dopamine receptors (Svenningsson et al., 2004). To address the
specific role of DARPP-32 in different sub-populations of MSNs,
studies have been carried out recently to selectively knockout
the protein in either striatonigral (D1-MSNs) or striatopallidal
(D2-MSNs) medium spiny neurons (Bateup et al., 2010). Loss
of DARPP-32 in D1-MSNs decreased both basal and cocaine-
induced locomotion and also abolished dyskinetic behaviors in
response to l-DOPA, a drug used to treat Parkinson’s disease.
Loss of DARPP-32 in D2-MSNs increased locomotor activity and
strongly reduced the cataleptic response to the antipsychotic drug
haloperidol. Interestingly, LTP was disrupted in both D1- and
D2-MSNs. These results highlight the selective contributions of
DARPP-32 in different MSN populations, and reinforce the need
for highly specific control of gene expression when carrying out
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functional analysis of proteins in the striatum or other parts of the
central nervous system.

REGULATION OF NUCLEAR TRAFFICKING OF DARPP-32
As discussed above, signaling pathways important for the tran-
scriptional effects of dopamine involve PKA and ERK, and clearly
also involve DARPP-32. However, the precise mechanisms of
the transfer of information from the cytoplasm to the nucleus
of striatal neurons are still poorly characterized. Recent studies
have found that phosphorylation/dephosphorylation of Ser97 of
DARPP-32 is crucial for control of the nucleo-cytoplasmic distri-
bution of DARPP-32 (Stipanovich et al., 2008; see also accompa-
nying article by Girault et al., for further details). As mentioned
above, previous studies of DARPP-32 had suggested it to be largely
a cytoplasmic protein, regulating the phosphorylation state of
cytoplasmic or plasma membrane-associated targets. However,
some earlier studies hinted that the protein might also be present in
the nucleus (Ouimet and Greengard, 1990). Immunohistochemi-
cal studies led to the observation that Thr34-phospho-DARPP-32
immunoreactivity was strong in the nuclei of mice treated acutely
with cocaine, d-amphetamine, or morphine, and this was con-
firmed with an antibody that recognized total DARPP-32. Subse-
quent biochemical studies of DARPP-32 in culture and using mice
bearing a Ser97Ala point mutation identified a nuclear export
motif adjacent to Ser97 that was controlled by phosphorylation
of Ser97 (Figure 2). Ser97 of DARPP-32 is phosphorylated to
high levels under typical basal conditions in vivo. Nuclear accu-
mulation was found to be mediated through a signaling cascade
involving dopamine D1 receptors and cAMP-dependent activa-
tion of a specific heterotrimeric form of protein phosphatase
PP2A that acts to dephosphorylate DARPP-32 at Ser97, leading
to inhibition of its nuclear export. Other studies have clarified the
mechanism of activation of PP2A by PKA, which involves phos-
phorylation of the B56δ subunit of the PP2A heterotrimer (Ahn
et al., 2007a).

Further studies by Stipanovich et al. (2008) showed that
translocation of the active phospho-Thr34-DARPP-32 to the
nucleus was accompanied by inhibition of nuclear PP1 and marked
stimulation of the phosphorylation level of Ser10 of histone H3,
a key component of the nucleosomal response. Notably, drugs
of abuse, as well as food reinforcement learning, promote nuclear
accumulation of DARPP-32,but this did not occur in mice express-
ing Ser97Ala-DARPP-32, which remained preferentially nuclear.
Moreover, behavioral studies in mice indicated that mutation of
Ser97 profoundly altered a number of responses to drugs of abuse,
emphasizing the functional importance of this signaling cascade.

MODELING OF DARPP-32/PP1 SIGNAL TRANSDUCTION
The extensive studies of DARPP-32-dependent signaling have
provided significant insight into modes of signal transduction
machinery used by neurons to provide a coordinated set of appro-
priate physiological responses to multiple diverse stimuli including
neurotransmitters or drugs of abuse. In a broader context, a large
proportion of studies in the biological sciences are now devoted to
elucidating such signaling pathways, which are far more complex
than had been anticipated and for which it is often impossi-
ble to intuitively gage the relative importance of the different

components involved. As a result, alternative approaches including
mathematical modeling are necessary to understand the func-
tions of these complex signaling pathways. In this regard, several
recent studies have been carried out that use the DARPP-32/PP1
signaling network as a model (Fernandez et al., 2006; Barbano
et al., 2007; Lindskog, 2008; Nakano et al., 2010). While the mod-
els employ different components and use different approaches,
a number of common features emerge. As more details emerge
of the DARPP-32 network, these approaches are likely to become
more important, and be predictive of the in vivo state of striatal
neuron signaling.

In one study, a mathematical tool was developed that can elu-
cidate biological network properties by analyzing global features
of the network dynamics without relying on detailed informa-
tion about the concentrations of signaling components or rate
constants for the reaction pathways that link these components
(Barbano et al., 2007). The conclusions from this study were that
the network topology appears to serve to stabilize the net state
of DARPP-32 phosphorylation in response to variation of the
input levels of the neurotransmitters dopamine and glutamate,
despite significant perturbation to the concentrations and levels
of activity of the intermediate chemical species. A notable compo-
nent of the stability of the DARPP-32 network was the positive-
and negative-feedback modulatory phosphorylation pathways of
DARPP-32 involving CK1, CK2, and Cdk5.

Two other studies modeled overlapping components of the
DARPP-32 network, but attempted to estimate component con-
centrations and rate constants based on experimental data (Fer-
nandez et al., 2006; Lindskog, 2008). In particular the study by
Fernandez and colleagues presented a comprehensive number
of parameters, and incorporated three of the four phosphoryla-
tion sites in DARPP-32 (Thr34, Thr75, and Ser130), whereas the
Lindskog model was more limited in the number of components
and incorporated only Thr34 and Thr75. Notably, the Fernandez
model confirmed an important role of Cdk5 and Thr75 phospho-
rylation, but suggested less of a role for PKA-dependent activation
of PP2A. The model also analyzed the pattern of inputs from cal-
cium and cAMP, and investigated the effects of mutation of the key
phosphorylation sites in silico. The Lindskog model also empha-
sized the important role of phosphorylation of Thr75 by Cdk5,
its role in inhibiting PKA and the dephosphorylation of Thr75 by
PP2A following activation of PKA.

In a more recent study, elements of the DARPP-32 network have
been incorporated into a model of synaptic plasticity in a dendritic
spine from a MSN (Nakano et al.,2010). The model includes inputs
from NMDA, AMPA and mGluR glutamate receptors, dopamine
D1 receptors, and voltage-gated Ca2+ channels, with the output
being AMPA receptor trafficking to the post-synaptic membrane.
This model included DARPP-32 phosphorylated at Thr34, Thr75,
and Ser130, and also relied largely on experimentally derived para-
meters. In contrast to the Fernandez et al. (2006) study, the study
by Nakano and colleagues demonstrated a robust bi-stable behav-
ior for the PKA/PP2A/Thr75 element of the model, and suggested
that this could play an important role in the switch between long-
term potentiation and long-term depression in striatal neurons.
Together these models provide viable hypotheses for experimental
testing.
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DARPP-32 AND SCHIZOPHRENIA/DISEASE
The critical role of DARPP-32 in integrating dopaminergic, sero-
tonergic, and glutamatergic signaling in dopaminoceptive neu-
rons has suggested the possible involvement of DARPP-32 in
the pathophysiology of neuropsychiatric diseases. A potential
role for DARPP-32 signaling in psychogenesis was demonstrated
using a mouse model of schizophrenia and mutations affect-
ing DARPP-32 signaling. Phosphorylation of DARPP-32 by and
behavioral responses to diverse psychotomimetics were strongly
attenuated in mice with genetic deletion of DARPP-32 or with spe-
cific phospho-null mutations in the phosphorylation sites Thr34,
Thr75, and Ser130 (Svenningsson et al., 2003). This study showed
that phosphorylation of DARPP-32 at multiple sites involved in
its regulation of PP1 and PKA signaling is increased by psy-
chotomimetic drugs that target dopaminergic (amphetamine),
serotonergic (LSD), and glutamatergic (ketamine) signaling, and
that phosphorylation of DARPP-32 is crucial to their behavioral
actions.

In human studies, biochemical and neuropathological evidence
has implicated altered DARPP-32 function in both the positive
(psychotic) and negative (cognitive dysfunction) symptoms of
schizophrenia. DARPP-32 protein levels were reduced in post-
mortem samples of dorsolateral prefrontal cortex obtained from
14 schizophrenic subjects compared to matched controls (Albert
et al., 2002). This brain region that has been implicated in the pre-
frontal cognitive–affective dysfunction observed in schizophrenia,
and signaling in this area is subject to dopaminergic and seroton-
ergic modulation. Control experiments showed that this effect was
specific for DARPP-32 compared to two synaptic phosphoproteins
and was not secondary to neuroleptic drug use. An indepen-
dent study reported reduction in DARPP-32 protein expression
detected by immunoblotting and immunocytochemistry in post-
mortem dorsolateral prefrontal cortex samples from schizophrenic
and bipolar patients compared to controls (Ishikawa et al., 2007).
Reduced DARPP-32-immunoreactive cell density has been found
in postmortem samples of the superior temporal gyrus from schiz-
ophrenic patients, a brain region associated with structural and
functional abnormalities in schizophrenia (Kunii et al., 2011). In a
small flow cytometric analysis of DARPP-32 expression in periph-
eral immune cells, reduced levels of DARPP-32 were detected in
CD4+ T lymphocytes and CD56+ NK cells isolated from schiz-
ophrenic patients compared to controls (Torres et al., 2009). In
contrast, analysis by real time PCR of the expression of 17 genes
associated with dopamine signaling in dorsolateral prefrontal cor-
tex samples found increased DARPP-32 expression in patients with
schizophrenia or bipolar disorder compared to matched controls
(Zhan et al., 2011).

Analysis of DARPP-32 mRNA expression by in situ hybridiza-
tion found no change in postmortem dorsolateral prefrontal or
anterior cingulate cortex (Baracskay et al., 2006) or thalamus
(Clinton et al., 2005) samples from schizophrenic patients com-
pared to controls. This suggests that changes in protein expression
are translational or post-translation rather than transcriptional.
However a small underpowered study reported preliminary evi-
dence for reduced DARPP-32 mRNA expression and differences
in single nucleotide polymorphisms (SNPs) in postmortem pre-
frontal cortex samples between schizophrenic patients who died by

suicide compared to those who died from other causes (Feldcamp
et al., 2008). Studies in rodents have confirmed that neurolep-
tic medications do not affect DARPP-32 protein or mRNA levels
(Grebb et al., 1990; Baracskay et al., 2006; Souza et al., 2008).

A systematic search for mutations in the DARPP-32 gene
(PP1R1B) in Chinese schizophrenic patients identified a number
of coding and non-coding mutations. However follow-up SNP and
haplotype studies of additional schizophrenic patients and con-
trols showed no association of any of the variants with the disease
(Li et al., 2006). An analysis of five different SNPs in the PP1R1B
gene of 520 Chinese schizophrenic patients and 320 controls (Hu
et al., 2007), as well as a similar analysis of four SNPs in 384
Japanese schizophrenic subjects and 384 controls (Yoshimi et al.,
2008), found no association of any of the variants with the disease.
However a traditional genetic approach involving sequencing of
the PP1R1B gene in postmortem human brain from white and
African American subjects identified common non-coding single
nucleotide variants, mostly within a seven SNP haplotype, that
were associated with differences in mRNA expression, and neos-
triatal volume, activation and functional connectivity with the
prefrontal cortex (Meyer-Lindenberg et al., 2007). Moreover, the
haplotype was associated with a risk for schizophrenia in a pre-
liminary family based association study. Interestingly, the PP1R1B
gene is located at 17q12, near a region implicated in the risk for
development of schizophrenia (Lewis et al., 2003).

In summary, although there are some inconsistent findings,
studies have reported reductions in DARPP-32 protein expression
in human brain regions associated with schizophrenic pathology.
This change is not correlated with reduced mRNA expression or
specific genetic mutations, and is not associated with neuroleptic
treatment. It is most likely due to effects of the disease on protein
translation or post-translational modification of DARPP-32, or to
selective neuron loss. Further studies will be required to deter-
mine the mechanisms involved, the functional implications, and
the potential for therapeutic intervention.

ARPP-21 (RCS)
BIOCHEMICAL PROPERTIES
Regulator of calmodulin signaling (RCS) is a small, heat-stable,
acidic protein of 88 residues, with a calculated molecular mass of
9561 for the bovine protein (Hemmings Jr. and Greengard, 1989;
Williams et al., 1989). RCS is phosphorylated by PKA at a single
serine residue (Ser55, Figure 1; Hemmings Jr. et al., 1989). To date
no other phosphorylation sites have been identified. Studies using
striatal slices have found that Ser55 of RCS is phosphorylated in
response to activation of PKA by D1 receptor agonists, while acti-
vation of D2 receptors leads to decreased phosphorylation (Tsou
et al., 1993; Caporaso et al., 2000). Moreover, exposure of mice to
the psychostimulants methamphetamine or cocaine also increased
Ser55 phosphorylation (Caporaso et al., 2000). In vitro, phospho-
RCS is effectively dephosphorylated by PP1 and PP2A, but not by
PP2B or PP2C (Hemmings Jr. and Greengard, 1989), but studies
using DARPP-32 knockout mice suggest little involvement of PP1
in vivo (Caporaso et al., 2000).

The protein is predicted to have little secondary or tertiary
structure, and like DARPP-32 and ARPP-16, is likely to be an
intrinsically disordered protein. The amino acid sequence gives

Frontiers in Neuroanatomy www.frontiersin.org August 2011 | Volume 5 | Article 50 | 8

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Walaas et al. cAMP signaling and striatal phosphoproteins

no insight into its potential function, and RCS has no similarity to
any other protein except for a thymocyte-specific variant, termed
thymus-specific cyclic AMP-regulated phosphoprotein (TARPP),
that is alternatively spliced from the RCS gene (Kisielow et al.,
2001). TARPP protein is highly expressed in immature thymocytes,
where it may have a role in thymocyte development. However,
TARPP is expressed at very low levels in brain.

EXPRESSION PROFILE
Extensive immunocytochemical analysis has shown that within
the basal ganglia, DARPP-32, RCS, and ARPP-16 are all highly
expressed in the MSNs that are the targets for mesolimbic and
nigrostriatal dopamine systems (Ouimet et al., 1984, 1989; Girault
et al., 1990; Figure 1). While DARPP-32, RCS, and ARPP-16 are all
enriched in these brain regions, the precise localizations of these
proteins are not identical. Studies in rat have revealed that RCS
immunostaining is more intense in the nucleus accumbens than
in the caudatoputamen (Ouimet et al., 1989). RCS, like DARPP-
32 and ARPP-16, is a cytoplasmic protein that does not appear to
be enriched in any particular sub-cellular compartment. Within
the caudatoputamen, RCS immunoreactivity is strongest in the
medial portion of rostral sections of the nucleus accumbens. In
contrast to DARPP-32, for which most MSNs in the striatum were
immunoreactive, RCS staining was not present in all MSNs. The
distribution of DARPP-32 and RCS are also distinct in cortical
regions, including the frontal cortex where RCS is found in layers I
and II, whereas DARPP-32 is more concentrated in deeper layers.
Thus, RCS and DARPP-32 may subserve overlapping but distinct
roles in signal transduction processes that are specific to one or
another population of neurons present within different regions of
the basal ganglia.

REGULATION OF CALMODULIN BY RCS
A yeast two-hybrid system, used to study potential protein-
protein interactions, identified the ubiquitous Ca2+-binding pro-
tein calmodulin (CaM) as a binding partner for ARPP-21 (Rakhilin
et al., 2004). The interaction between ARPP-21 and CaM was con-
firmed using a variety of biochemical approaches. Notably, phos-
phorylation of ARPP-21 by PKA resulted in increased affinity of
the protein for CaM. Phosphorylated, but not dephosphorylated,
ARPP-21 effectively inhibited the activities of the CaM-dependent
protein phosphatase, calcineurin, and a CaM kinase (CaMKI). The
inhibitory activity of phospho-RCS appears to result from seques-
tration of CaM, thereby preventing CaM binding to these targets.
Although CaM is expressed in very high concentrations in most
cell types (possibly >100 μM), the level of CaM is significantly
lower than that of all of its targets. Thus the amount of free CaM
is limited and phosphorylation of RCS would be expected to influ-
ence CaM-dependent signaling by regulating its availability. Based
on these properties, ARPP-21 was renamed RCS.

As mentioned above, in MSNs, calcineurin plays a critical role in
dephosphorylation of Thr34 of DARPP-32. For example, in striatal
slices D2-receptor agonists activate calcineurin leading to dephos-
phorylation of Thr34 of DARPP-32 (Nishi et al., 1999). Consistent
with the role of RCS to suppress calcineurin activity, the effect of
the D2-receptor agonist, quinpirole, on Thr34 dephosphorylation,

was greater in striatal neurons from RCS knockout mice (Rakhilin
et al., 2004).

Previous studies had found that calcineurin is a potent regulator
of L-type Ca2+ channels in MSNs (Hernandez-Lopez et al., 2000).
Mobilization of intracellular Ca2+ stores by activation of either D2
dopaminergic or M1 muscarinic receptors leads to activation of
calcineurin and suppression of L-type Ca2+ channel currents. Fol-
lowing on from this earlier work, studies using neurons from RCS
knockout mice showed that the protein plays an important role
in modulation of L-type Ca2+ current by D2 dopaminergic or by
M1 muscarinic receptors through its PKA-mediated suppression
of calcineurin (Rakhilin et al., 2004).

ROLE OF RCS IN TRANSCRIPTIONAL CONTROL BY MEF2
The myocyte enhancer factor 2 (MEF2) transcription factor has
been found to play an important role in the behavioral responses
to repeated cocaine administration, and to be also involved in
the effects of this psychostimulant on the dendritic spine mor-
phology of MSNs in nucleus accumbens and dorsal striatum
(Flavell et al., 2006; Shalizi et al., 2006). MEF2 activity is stim-
ulated by glutamatergic synaptic activity, which increases Ca2+
influx via L-type voltage-sensitive Ca2+ channels (LT-VSCCs) and
activation of Ca2+/calmodulin (Ca2+/CaM)-dependent signaling
pathways. Ca2+/CaM then stimulates calcineurin to dephospho-
rylate MEF2, including two inhibitory Cdk5 sites, to promote
MEF2 activation. Recent studies showed that cocaine suppresses
striatal MEF2 activity in part through a mechanism involving
cAMP, RCS, and calcineurin (Pulipparacharuvil et al., 2008).
Reduced MEF2 activity in the nucleus accumbens in vivo was
found to be required for the cocaine-induced increases in den-
dritic spine density. Surprisingly, increased MEF2 activity in the
accumbens, which blocked the cocaine-induced increase in den-
dritic spine density, enhanced sensitized behavioral responses to
cocaine. Together, these findings implicate MEF2 as a key regu-
lator of structural synapse plasticity and sensitized responses to
cocaine and suggest that reducing MEF2 activity (and increasing
spine density) in the nucleus accumbens may be a compensatory
mechanism to limit long-lasting maladaptive behavioral responses
to cocaine. The fact that RCS plays a role in the regulation of
MEF2 dephosphorylation suggests that it likely is involved in the
processes whereby psychostimulants can increase spine density in
MSNs.

FUNCTIONAL ROLE OF RCS IN ANXIETY AND MOTIVATION
Regulator of calmodulin signaling expression is high in the dor-
sal striatum, nucleus accumbens, and amygdala, suggesting that
the protein is involved in limbic–striatal function. RCS knock-
out mice have been recently created and examined in terms of
behavioral models dependent on these brain areas (Davis et al.,
in revision). While RCS knockout mice showed normal acquisi-
tion of a food-motivated instrumental response, they exhibited
a lower breakpoint when tested on responding on a progressive
ratio schedule of reinforcement. Moreover, RCS knockout mice
displayed decreased exploration in both the open arms of an
elevated plus maze and in the center region of an open field,
suggesting an enhanced anxiety response. Notably, biochemical
studies revealed a reduction in the levels of DARPP-32 and of the
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GluR1 glutamate receptor in the striatum of the knockout mice.
As DARPP-32 and GluR1 are important in the acquisition and
maintenance of reward-mediated behavior, the altered expression
of these proteins might be involved in the behavioral deficits found
in RCS knockout mice.

ROLE OF RCS IN STRIATAL SIGNALING
By binding CaM and inhibiting calcineurin, phospho-RCS has the
ability to amplify signaling mediated by D1-dopamine receptors
and other PKA-mediated GPCRs, and to attenuate signaling medi-
ated by competing D2 dopamine receptors, M1 muscarinic recep-
tors and other PLC-activating GPCRs. The ability of phospho-RCS
to inhibit calcineurin is analogous to that of phospho-DARPP-32
to inhibit PP1. Working in concert, these two signal transduction
mechanisms serve to amplify the cellular consequences of PKA
activation in MSNs (Figure 3). Notably, through its ability to con-
trol the dephosphorylation of Thr34 of DARPP-32 by calcineurin,
the actions of RCS may in part be mediated through its ability
to regulate DARPP-32 signaling (Figure 3). The observation that
DARPP-32 expression is reduced in striatum in RCS knockout
mice, further supports the view that RCS function may in part be
dependent on DARPP-32. Altogether the various results indicate
that RCS plays an important role in integration of key neurotrans-
mitter inputs into MSNs, placing it in a potentially pivotal position
to regulate striatal function in health and disease through bind-
ing to CaM and affecting the activation of multiple CaM targets,
particularly calcineurin.

FIGURE 3 | Interactive roles of DARPP-32, RCS, and ARPP-16 in

regulation of signal transduction in striatal MSNs. The efficacy of
phosphorylation by PKA of numerous PKA/PP1 substrates is increased by
PKA phosphorylation of DARPP-32, which inhibits PP1. In an analogous
manner, the efficacy of phosphorylation by PKA of numerous PKA/PP2B
substrates is increased by PKA phosphorylation of RCS, which inhibits
PP2B. In contrast, ARPP-16 appears to be basally phosphorylated by
MAST3 kinase, leading to inhibition of the action of PP2A on selective
substrates including Thr75 of DARPP-32 (a site that acts basally to attenuate
PKA’s ability to phosphorylate Thr34 of DARPP-32; not shown, see
Figure 2). PKA may modulate the ability of MAST to phosphorylate
ARPP-16 or influence the effect of ARPP-16 on PP2A. RCS and ARPP-16 in
different ways may act to control DARPP-32’s ability to inhibit PP1.

ARPP-16
BIOCHEMICAL PROPERTIES
Initial biochemical studies indicated that ARPP-16 and a related
protein, ARPP-19, are very basic, heat- and acid-stable monomers
without known enzymatic activity (Horiuchi et al., 1990). The
molecular weights predicted from cDNA cloning (10,653 and
12,353 Da, respectively for the bovine proteins) are significantly
lower than their respective SDS-PAGE mobility (16 and 19 kDa).
Thus like DARPP-32 and RCS, this is indicative of elongated asym-
metric structure, although notably ARPP-16 migrates with an
apparent molecular weight that is smaller than RCS, yet the pro-
tein is slightly longer in terms of amino acid content (Figure 1).
As with DARPP-32 and RCS, this combination of biochemical
properties is common for small non-enzymatic intracellular regu-
latory proteins. NMR studies have confirmed that ARPP-19 (and
by implication ARPP-16) are intrinsically unstructured proteins
(Huang et al., 2001).

Based on comparison of amino acid sequences, ARPP-16 and
ARPP-19 are members of an evolutionarily conserved protein
family with multiple isoforms (Dulubova et al., 2001; Figure 4).
ARPP-16 and ARPP-19 are derived from the same gene by alterna-
tive splicing, with ARPP-19 having an additional 16 amino acids at
its N-terminus. The amino acid sequences of ARPP-16 and ARPP-
19 are remarkably conserved in various species including human,
bovine, and rodents, although frog and chicken ARPP-19 contain
a few differences. ARPP-19 is closely related to alpha-endosulfine
(or ENSA), a protein originally identified as a putative endogenous
ligand of the sulfonylurea receptor (Heron et al., 1998; see below).
In addition, open reading frames predicted from genomic or EST
sequences suggest the existence of other ARPP-16/19 homologs.
One of these is more closely related to ENSA, and may be a splice
variant of the ENSA gene.

ARPP-16 and ARPP-19 are encoded by three exons. Exon 1
(13.4 kb upstream) encodes the N-terminal extension found in
ARPP-19, while the other two exons encode ARPP-16. The ARPP-
16/19 gene is located on Chr15 (in human). There is a sequence
related to that of ARPP-16/19 on Chr5 but this may be a pseudo-
gene since it is not spliced, and though very similar in DNA
sequence, is not identical to the Chr15 sequences, and encodes

FIGURE 4 | Domain organization of ARPP-16/19/ENSA family

members. ARPP-16 and ARPP-19 are generated by alternative splicing with
ARPP-19 containing an additional 16 amino acids at the N-terminus. ENSA is
generated from a distinct gene, and contains a 20-amino acid N-terminal
region distinct from ARPP-19. Within the conserved domains of the three
proteins (blue), ARPP-16 and ARPP-19 are identical and ENSA is highly
homologous. MAST kinases (or Gwl in non-mammalian systems)
phosphorylate a common serine residue in a conserved central domain,
while PKA phosphorylates a conserved site at the C-terminus.
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a slightly different amino acid sequence. With respect to ENSA, a
similar situation occurs. The correct spliced gene is found on Chr1
and a likely pseudogene is found on Chr14 (in human).

Comparison of the various related amino acid sequences reveals
that ARPP-16 represents the core structure, with the other iso-
forms containing additional and distinct N- or C-termini. ENSA
differs slightly from ARPP-16 within the core structure (16 out
of 96 amino acids are changed; Dulubova et al., 2001). In addi-
tion, homologs of ARPP-16/19 have been identified in Drosophila,
Schistosoma mansoni, Caenorhabditis elegans, and yeast genomes.
Two regions are conserved in all species, the first of which contains
a motif of eight residues, KYFDSGDY, that includes a novel phos-
phorylation site (see further discussion below) and the second of
which encompasses the site phosphorylated by PKA in mammalian
species and presumably in other organisms. PKA phosphorylates
ARPP-16 at Ser88 (Ser104 in ARPP-19). In mouse striatal slices,
the phosphorylation of both ARPP-16 and ENSA isoforms was
found to be increased following stimulation of adenylyl cyclase
by forskolin (Dulubova et al., 2001). Treatment of striatal slices
with a specific D1-agonist (SKF81297) also increased phospho-
rylation of ARPP-16 and ENSA. In contrast, treatment with a
specific D2-agonist (quinpirole) decreased both the basal level
and the D1-stimulated phosphorylation of both ARPP-16 and
ENSA.

EXPRESSION PROFILE
Given the criteria for the protein screen that led to its discov-
ery, enrichment of ARPP-16 in the basal ganglia was already
known. Subsequent work by immunoblotting of specific brain
regions and peripheral organs in addition to immunocytochem-
istry and in situ hybridization studies confirmed that ARPP-16 is
found mainly in the striatonigral neurons in the dorsal striatum,
as well as the nucleus accumbens, amygdala, and frontal cortex
(Girault et al., 1990; Brene et al., 1994). Isoform-specific anti-
bodies have been used to show that both ARPP-19 and ENSA
isoforms are present in rat brain cytosol, and comigrate within
the 19-kDa region. However, ENSA is much more abundant in
rodent striatum compared to ARPP-19. In contrast, ARPP-19 was
found to be the major isoform in all cell lines analyzed. Since the
core ARPP-16 sequence is common to all the related isoforms,
there is not an antibody available that only recognizes ARPP-16.
However, as expected from earlier work, ARPP-16 was detected
by immunoblotting only in brain with high enrichment in the
striatum. The phylogenic distribution of ARPP-16 has also been
described (Girault et al., 1990). Interestingly, by immunoblot-
ting, ARPP-16 was found in the striatum (or paleostriatum in
non-mammalian eukaryotes) and frontal cortex of monkey, rat,
mouse, cow, rabbit, and canary; whereas, it was not present in
pigeon, amphibians, fish, or Aplysia. Immunoblotting from mouse
tissue samples taken at various points in development revealed
that ARPP-16 is present at its highest levels from 3 to 8 postna-
tal weeks when expression plateaus, whereas ARPP-19/ENSA are
found at their highest level at embryonic day 16 and decline with
development (Girault et al., 1990).

The molecular mechanism involved in the alternative splicing
of ARPP-16 in striatal neurons is not presently known. Hyman
and colleagues found that ania-6, a novel cyclin that associates

with RNA polymerase II, is induced by dopamine or cocaine in
the striatum (Berke et al., 2001; Nairn and Greengard, 2001). Two
splice forms of ania-6 are differentially regulated in striatal neu-
rons in response to glutamate, dopamine, and BDNF (Sgambato
et al., 2003). The regulatory pathways included both ERK and
CaM kinase(s). Therefore, it is possible that regulation of expres-
sion of ARPP-16, as well as other alternatively spliced genes in
striatal neurons, may be sensitive to modulation of these different
intracellular pathways.

POTENTIAL FUNCTIONS OF ARPP-16
As with DARPP-32 and RCS, the initial analysis of the amino acid
sequence of ARPP-16 did not reveal any obvious function. One
study showed a reduction in total protein level of ARPP-19 in
the temporal lobe from postmortem samples of individuals with
Down’s syndrome as well as reduced ARPP-19 in the cerebellum
of patients with Alzheimer’s disease (Kim et al., 2001). Several
studies have identified possible functions for both ARPP-19 and
ENSA. A role for ARPP-19 in nerve growth factor-dependent stabi-
lization of the mRNA for growth-associated protein-43 (GAP-43)
was suggested (Irwin et al., 2002). However, the specific interac-
tion of ARPP-16 or ARPP-19 with GAP-43 mRNA has not been
confirmed by follow-up studies (Andrade and Nairn, unpublished
results). A role for ARPP-19, as well as ENSA, in interacting with
α-synuclein has also been suggested (Woods et al., 2007; Boettcher
et al., 2008). While this interaction appears to be possible in vitro,
its physiological relevance remains to be established.

ENSA was originally named after studies that identified it as a
possible endogenous regulator of the KATP-coupled sulfonylurea
receptor, which is targeted by the class of antidiabetic drugs, the
sulfonylureas (Virsolvy-Vergine et al., 1992, 1996; Peyrollier et al.,
1996). Further studies found that recombinant ENSA was able
to compete with [3H]-glibenclamide (a sulfonylurea) in receptor
binding assays as well as to increase insulin release in MIN6 cells,
a pancreatic β-cell line (Heron et al., 1998). However, it is unlikely
that ENSA, a cytosolic protein, could fulfill such a role in vivo
(Gros et al., 2002).

REGULATION OF THE SERINE/THREONINE PROTEIN PHOSPHATASE
PP2A BY ARPP-16 FAMILY MEMBERS
The homolog of ARPP-19 in S. cerevisiae, YNL157W, has an
unknown function, although reduced fitness in minimal media
has been shown in null strains (Giaever et al., 2002). No significant
phenotype was observed with deletion of the ARPP-19 homolog,
K10C3.2, in C. elegans (Rogers et al., 2008). However, mutant
ENSA in Drosophila oocytes exhibit marked meiotic maturation
(Von Stetina et al., 2008). Moreover, mice null for ARPP-16/19
exhibit embryonic lethality (Horiuchi and Nairn, unpublished),
suggestive of a critical function for the protein(s).

Two recent studies of mitosis in Xenopus oocytes have unex-
pectedly revealed a critical functional role for ARPP-19 and ENSA
in control of the G2/M phase of the cell cycle (Gharbi-Ayachi
et al., 2010; Mochida et al., 2010). Both of these studies were
focused on indentifying substrates for a kinase, termed Great-
wall (Gwl), that was known to provide a link between Cdk1, the
cyclin-dependent controller of mitosis, and the inhibition of pro-
tein phosphatase 2A (PP2A; Virshup and Kaldis, 2010). Through
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activation by Cdk1, Gwl was thought to regulate PP2A as part of a
positive feed-back mechanism designed to increase the phospho-
rylation of mitotic substrates for Cdk1. Using proteomic screens
for Gwl substrates, one study identified ARPP-19 (Gharbi-Ayachi
et al., 2010), while the other identified ENSA (Mochida et al.,
2010), as the major targets for Gwl in oocytes. Gwl phosphorylates
the serine residue in the conserved KYFDSGDY domain (Ser62 in
ARPP-19, Ser67 in ENSA, Ser46 in ARPP-16), resulting in the bind-
ing of ARPP-19 or ENSA to PP2A, and subsequent inhibition of
PP2A activity.

A similar role for ARPP-19 or ENSA in regulation of mito-
sis in mammalian cells is implicated by preliminary studies in
HeLa cells (Gharbi-Ayachi et al., 2010), and by other studies which
have revealed a critical role for the mammalian homolog of Gwl,
termed microtubule-associated serine/threonine kinase-like (for
MASTL) in cell cycle control (Voets and Wolthuis, 2010). Notably,
biochemical studies of ARPP-16 have found that it can interact
directly with the core AC dimer of PP2A (the A scaffolding and
C catalytic subunits; Andrade et al., in preparation). Additional
studies have found that Ser46 of ARPP-16 is phosphorylated to
very high levels under basal conditions in striatal tissue. It is
likely that the MAST3 isoform, which is related to MASTL and
Gwl, phosphorylates ARPP-19 at Ser46 since this isoform is highly
expressed in striatum (Garland et al., 2008). Moreover, in vitro,
ARPP-16 phosphorylated by MAST kinase inhibits a number of
different PP2A heterotrimeric complexes. Finally, phosphoryla-
tion of several PP2A substrates is increased in striatal tissue from
conditional knockout mice in which ARPP-16 has been deleted
in forebrain, including Thr75 of DARPP-32 (see Figure 3). These
studies suggest that while MAST/Gwl/ARPP-16/19/ENSA signal-
ing serves to regulate PP2A in post-mitotic neurons as well as
at mitosis, the way this process is used is distinct, with PP2A
being basally inhibited in MSNs, while PP2A is transiently inhib-
ited by ARPP-19/ENSA during mitosis. MAST/ARPP-16 signaling
in MSNs is also distinct from the directionality of regulation of
DARPP-32 and RCS, where stimulation of PKA converts them
from inactive proteins, into inhibitors of PP1, or PP2B (via CaM
sequestration), respectively. The precise role of phosphorylation
of ARPP-16 by PKA in terms of regulation of PP2A remains to be
determined.

SUMMARY AND FUTURE DIRECTIONS
The studies of DARPP-32, RCS, and ARPP-16 over the last three
decades has provided a wealth of understanding of the intracel-
lular signaling pathways that mediate the effects of dopamine in
striatal neurons. Perhaps the most striking feature of the func-
tion of these proteins is that they all act in one way or another
to control the activity of three of the four major subclasses of
serine/threonine protein phosphatases. Presumably, in MSNs this
is a reflection of the temporal and possibly spatial requirements
for intracellular signaling responding to dopamine and other neu-
rotransmitter inputs that coordinate with dopamine action. As
perhaps best exemplified by the ability of DARPP-32 to control
the activation of ERK-dependent signaling at multiple levels first
in the cytosol and then in the nucleus, the DARPP-32/PP1 pathway
seems designed to be able to couple weak or strong inputs to spe-
cific cellular responses. In this respect, DARPP-32/PP1 may be an

important component of a logical “AND gate” that serves to cou-
ple the actions of drugs abuse to coincident activation of DA and
glutamate receptors and subsequently to regulation of adaptive
changes in ERK signaling in the nucleus (Girault et al., 2007).

It is of interest that while DARPP-32, RCS, and ARPP-16 all
act to control protein phosphatase activity they work in different
ways. Both DARPP-32 and RCS are inactive until phosphory-
lated by PKA. DARPP-32 is a very potent direct pseudosubstrate
inhibitor of PP1, while RCS works indirectly to regulate cal-
cineurin. Phospho-ARPP-16 appears to act basally as an inhibitor
of PP2A, and PKA likely modulates this action. Common to all
three proteins are that they are intrinsically disordered proteins, a
property that allows for great flexibility in terms of how they can
interact with their targets. At least in the case of DARPP-32 and
ARPP-16, they are regulated by multiple protein kinases, and thus
act as regulatory hubs to integrate the actions of various neuro-
transmitters, and to allow for both positive and negative feedback
processes to act on the regulation of the phosphatase targets.

While extensive immunocytochemical analysis has shown that
all three proteins are highly expressed in MSNs, their precise
localizations are not identical. For example, RCS is more highly
expressed in nucleus accumbens in more rostral regions. Thus,
while these three PKA targets likely function in an integrated
manner in MSNs to coordinate dopaminergic signaling, they
may also contribute to distinct actions of dopamine in sub-
populations MSNs. While detailed studies have only been carried
out for DARPP-32, it appears that all three proteins are expressed
in both D1- and D2-MSNs. As a consequence, their regulation
by cAMP/PKA signaling is likely to be distinct in these two
major populations of striatal neurons. In D1-MSNs, increased
cAMP would act to increase phosphorylation by PKA, while
in D2-MSNs activation of D2 receptors would act to decrease
phosphorylation by PKA. Extensive studies of DARPP-32 have
identified a complex network of both positive and negative feed-
back processes that involve regulation of multiple sites by var-
ious kinases and phosphatases. The flexibility of these complex
signaling processes may be required to allow the divergent reg-
ulation of DARPP-32 in D1- and D2-MSNs. It is also likely that
DARPP-32, RCS, and ARPP-16 are themselves part of a more com-
plex interacting signaling system, since both RCS and ARPP-16
can influence DARPP-32 phosphorylation at different sites (see
Figure 3).

Despite the wealth of information concerning the regulation
and function of DARPP-32, RCS, and ARPP-16, there are still out-
standing questions. There is no detailed structural information
about how the proteins interact with their targets, and additional
X-ray crystallography and NMR studies are required. While there
is some knowledge concerning the function of PP1 in the nucleus,
the precise targets for nuclear DARPP-32 remain to be identified.
To date most of the functional analysis of DARPP-32, RCS, and
ARPP-16 has been restricted to their actions in MSNs of striatum,
but it is likely that even at lower levels of expression in other brain
regions, they play important roles in neuronal signaling.
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