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In small-brained mammals, such as opossums, the cortex is organized in fewer sensory and
motor areas than in mammals endowed with larger cortical sheets.The presence of multi-
modal fields, involved in the integration of sensory inputs has not been clearly characterized
in those mammals. In the present study, the corticocortical connections of the forepaw
representation in the somatosensory caudal (SC) area of the Didelphis aurita opossum
was studied with injections of fluorescent anatomical tracers in SC. Electrophysiological
mapping of S1 was used to delimit its respective rostral and caudal borders, and to guide
SC injections. The areal borders of S1 and the location of area SC were further confirmed
by myeloarchitecture. In S1, we found a well-delimited forepaw representation, although it
presented a crude internal topographic organization. Cortical projections to S1 originate in
somatosensory areas of the parietal cortex, and appeared to be mostly homotopic. Physio-
logical and connectional evidence were provided for a topographic organization in opossum
area SC as well. Most notably, corticocortical projections to the forepaw representation of
SC originated from somatosensory cortical areas and from cortex representing other sen-
sory modalities, especially the visual peristriate cortex. This suggests that SC might be
involved in multimodal processing similar to the posterior parietal cortex of species with
larger brains.
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INTRODUCTION
The anatomical and functional organization of cortical
somatosensory and motor systems can vary extensively in different
extant species. Comparative studies of large-brained mammals,
like primates, demonstrate that they have an expanded neocortex
and increased number of cortical fields (Kaas, 2004), including
a number of sensory and motor areas, and an enlarged pos-
terior parietal (PP) cortex subdivided in small fields in which
information from different sensory modalities is integrated to ori-
ent motor performance (Kaas, 2004, 2008; Fogassi and Luppino,
2005). In primates, primary and secondary sensory areas are typ-
ically unimodal. In contrast, PP cortex is intensely connected to
somatosensory, visual, motor, and premotor fields (Cavada, 2001;
Matelli and Luppino, 2001; Kaas, 2004). Such connections enable
PP fields to generate complex behaviors with the forearms and
hands that include aggressive, defensive, and reaching movements
following intracortical microstimulation (Cooke and Graziano,
2003; Cooke et al., 2003; Stepniewska et al., 2005, 2009).

On the other hand, in mammals with small brains the corti-
cal sheet is dominated by few sensory and motor fields (Krubitzer
et al., 1997; Catania et al., 1999, 2000; Catania, 2007) that include
primary and secondary sensory areas, as well as motor areas such
as primary motor area, M1 (Krubitzer and Hunt, 2007). Addition-
ally, in most mammals studied, at least a rudimentary PP cortex

has been identified between visual and somatosensory cortices
(Huffman et al., 1999; Slutsky et al., 2000; Padberg et al., 2005; Pad-
berg and Krubitzer, 2006), with few exceptions (Catania, 2007). In
species with small brains, since cortical space devoted to sensory
and motor integration is limited, part of the multimodal process-
ing seems to occur in primary sensory areas (e.g., Budinger et al.,
2006; Campi et al., 2007) and in cortical regions located at the
border separating those areas (Wallace et al., 2004). For instance,
in gerbils, primary auditory cortex (A1) seems to integrate sen-
sory information through direct cortical projections originating
from other sensory fields like somatosensory and visual cortices,
and from PP cortex as well (Budinger et al., 2006). Projections
from multisensory thalamic nuclei provide an additional anatom-
ical substrate for a role of primary auditory cortex in multimodal
integration (Budinger et al., 2006).

In our laboratory, we are especially interested in the neural
basis of hand dexterity from a phylogenetic (evolutionary) stand-
point (Padberg et al., 2007). The emergence of fine movements
that primates are able to perform with the hand must be partly
due to an increase in complexity of cortical circuits that were
originally present in more primitive animals endowed with much
smaller cortical sheets. Opossums of the genus Didelphis have been
regarded as good models for the study of brain evolution. They
are considered primitive because their body forms are similar to
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those of early marsupials (Kemp, 2005 cited by Kaas, 2011), and
they possess small lissencephalic brains, especially when related
to its body size (Beck et al., 1996), similar to a putative common
ancestor of the mammalian lineage (Jerison, 1990, 2007).

Opossums of the genus Didelphis are marsupials represented
by six different species with a wide geographic distribution over
the Americas (Wilson and Regard, 2005). Each Didelphis species
has its own geographic distribution, but the main aspects of
their anatomy and neurobiology are very much alike (Gardner,
1973; Rocha-Miranda and Lent, 1978; Cerqueira, 1985; Wilson
and Regard, 2005). Many of the neurobiological studies performed
in marsupials used different species of opossums from the genus
Didelphis. The first electrophysiological mappings of parietal cor-
tex of these marsupial species put in evidence two topographically
organized somatosensory fields displaying a complete representa-
tion of the contralateral body: a primary somatosensory area (S1)
and a second somatosensory area (S2; Lende, 1963; Magalhaes-
Castro and Saraiva, 1971; Pubols et al., 1976). In S1, there was a
contralateral representation of the body that was inverted, with
the tail located most medially, followed by the representation of
hindlimb, trunk, forelimb (including the forepaw), and face in a
medial to lateral progression. The representation of the body in
S2 was smaller than in S1 and was “upright” or mirror-reverted in
relation to that found in S1. Additionally, while receptive fields in
S1 were typically small and located on the contralateral part of the
body, in S2 receptive fields were large and sometimes bilateral (for
a review, see Karlen and Krubitzer, 2007).

However, a more recent account of the Didelphis virginiana
parietal cortex revealed that in addition to S1 and S2, there were
three other somatosensory areas, comprising a total of five dif-
ferent somatosensory fields (Beck et al., 1996). According to this
study, the parietal ventral area, or area PV, was confounded as part
of area S2 in previous studies,but it actually displayed its own topo-
graphically organized representation of the body surface (Beck
et al., 1996). The other two parietal fields corresponded to the
somatosensory rostral (SR) area and somatosensory caudal (SC)
area sharing respectively the rostral and caudal borders of area S1.
In anesthetized preparations, both SR and SC were typically unre-
sponsive to sensory stimulation (Beck et al., 1996). Nonetheless,
they were considered to be somatosensory fields because of their
strong connections with area S1 (Beck et al., 1996). In Didelphis
aurita, the region immediately caudal to area SC was identified
as visual peristriate cortex (PS), which comprised two or three
belt-like areas located anterior to the primary visual cortex (V1).
These belt-like areas received visuotopically organized connec-
tions from V1 and from the superior colliculus (Martinich et al.,
2000).

Despite the fact that the opossum brain has been studied for
quite a long time (e.g., Rocha-Miranda and Lent, 1978), there are
to our knowledge only two anatomical tracer studies describing
cortical connections of the somatosensory cortex in marsupials.
In the first study, performed in Didelphis virginiana, Beck et al.
(1996) made injections located in S1 (briefly described above),
but connections of other somatosensory fields, like the somatosen-
sory rostral and caudal fields, were not investigated. The second
anatomical tracer study was performed in the Australian marsu-
pial Trichosurus vulpecula, also known as the brush-tailed possum

(Elston and Manger, 1999). Similar to Didelphis virginiana, the
brush-tailed possum presented at least three somatosensory fields
that were topographically organized: S1, S2, and PV. A field caudal
to S1 was named PP cortex, in which neurons were responsive to
deep somatosensory stimulation and received ipsilateral projec-
tions from S1, S2, and PV. This cortical region was additionally
connected to other sensory and motor areas, such as the primary
and secondary visual areas, and motor cortex (Elston and Manger,
1999), and might be homologous to area SC described in Didelphis
virginiana.

Although precious for comparative studies, from a phyloge-
netic point of view data obtained in the brush-tailed possum may
not be ideal for reconstructing the organization of the primitive
brains of ancestral mammals. In this species the somatosensory
cortex presents barrel fields (Weller, 1972), a derived brain feature
(Krubitzer and Huffman, 2000) not shared with the other marsu-
pial species studied so far (e.g., Huffman et al., 1999, but see also
Beck et al., 1996). Opossum species from the genus Didelphis have
brains with conserved features, such as a small number of cortical
fields, and the absence of derived features such as clearly defined
barrel fields. Thus, these marsupials are considered important
models to infer the organization of primitive brains of mammalian
ancestors (Kaas, 2011).

Because information about connections and physiological
properties of SC area in opossum species is currently lacking, it is
not clear yet whether this cortical region is exclusively involved in
processing somatosensory information, similar to anterior parietal
caudal areas 1 and 2 of anthropoid primates; or if, alternatively,
opossum SC has a role in integrating sensory information of dif-
ferent modalities similar to PP cortical areas of other species.
Additionally, it is also possible that area SC in the opossum might
be primarily concerned in integrating somatosensory information
from the forelimb only and in processing converging information
from other sensory modalities, with special emphasis on the visual
connections with the representation of the inferior visual field,
which includes the visual space around the forepaw.

In order to further elucidate this point, the present study
characterizes the ipsilateral corticocortical connections of the rep-
resentation of the forepaw in area SC of the South American
Didelphis aurita opossum, using electrophysiological mapping to
guide injections of anatomical tracers. Our results confirm that
the representation of the forepaw in S1 has a gross topographic
organization that is not entirely ordered at a fine-grained level,
since an orderly progression of receptive fields is not observed
in rows of closely spaced recording sites. We also provide phys-
iological and connectional evidence for topographic organiza-
tion in opossum area SC. Additionally; we demonstrate that SC
receives information from other cortical fields besides the parietal
somatosensory areas, suggesting that it might be involved in mul-
timodal processing similar to the PP cortex of species with larger
brains.

MATERIALS AND METHODS
Cortical connections and topographic organization of areas S1 and
SC were investigated using neuroanatomical tracing techniques
in six Didelphis aurita opossums, male and female, weighting
from 1.4 to 2.8 kg (Table 1). Electrophysiological recording was
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Table 1 | Summary of neurotracer injections and electrophysiological recording cases.

Hemisphere Areas injected Tracer used Amount injected RF at the injected

site

Size of the injection

core (mm2)

Number of

recording sites

07-05 S1 DY crystal Wrist 1.3548 94

S1 FE 1.0 μl Inferior lip 0.0645

SC FR 0.6 μl D1–D2 0.1945

06-02 S1 FE 0.8 μl Non-responsive 0.0194 72

SC FR 0.5 μl – 0.0258

04-09 SC FR 0.6 μl Forepaw 0.0645 –

06-29 S1 DY crystal Finger II, III 0.9677 100

S1 FE 0.8 μl Pad V 0.0258

SC FR 0.8 μl – 0.2580

05-06 – No injection – – – 62

07-01 – No injection – – – 94

combined with myelin processing to provide identification of cor-
tical fields. All procedures were approved by the Commission of
Animal Care of the Institute of Biophysics Carlos Chagas Filho
(IBCCF) from the Federal University of Rio de Janeiro, Brazil
(CAUAP protocol # 053-06-2005); and were in accordance with
the guidelines published in the NIH Guide for the Care and Use
of Laboratory Animals (http://www.nap.edu/catalog/12910.html).
Animals were obtained from the IBCCF animal facility, under
the license of the Brazilian Institute of the Environment and
Renewable Natural Resources (IBAMA).

SURGICAL PROCEDURES
Somatosensory cortex mapping and neurotracer injections were
performed under aseptical conditions in anesthetized ani-
mals. Before surgical procedures, the opossums were medicated
with antibiotics (Pentabiótico Veterinário Pequeno Porte, FORT
DODGE, 0.58 mg/ml, I.M.), dexamethasone (Decadron, Pro-
drome, 4 mg/ml), and vitamin K (0.3 ml – Kanakion, Roche,
10 mg/ml).

Animals were anesthetized using two different protocols. For
injection of anatomical tracers, animals received a single dose
of 60 mg/kg of thiopental sodium (Thionembutal 0.5 g, Abbott).
After the recovery period of 10–12 days to allow tracer transport,
animals were submitted to a terminal mapping session in which
urethane was used as anesthetic (initial dose of 1.25 g/kg IP, plus
supplementary doses of 0.42 g/kg as needed). Anesthesia level was
closely monitored during the procedures. Atropine was injected
after anesthesia (Ariston; 0.25 mg/ml; I.M.). Body temperature was
maintained with a heating pad, and heart rate was monitored dur-
ing the surgery. Animals were initially placed in a stereotaxic frame.
The skin and temporal muscle were retracted, and a craniotomy
was performed to expose the cortex from the orbital fissure to the
occipital cortex. The dura-mater was cut and retracted, and the
brain surface was kept moist with saline. Photomicrographs of the
exposed neocortex were obtained using a digital camera coupled
to a microscope. The brightness and contrast of the images were
then adjusted using either Canvas software (Deneba Inc.) or Adobe
Photoshop (Adobe Systems, San Jose, CA, USA). The blood vessel
pattern obtained in this photograph was used to mark recording
and injection sites.

ELECTROPHYSIOLOGICAL MAPPING
Sites for injection of anatomical tracers were chosen after a short
electrophysiological mapping session in which the representation
of the forepaw in S1 was identified. The rostral and caudal borders
of area S1 at the same mediolateral level as the forepaw represen-
tation were also localized. A second more extensive and terminal
mapping session was performed after the survival period of 10–
12 days necessary for anatomical tracer transport. Later, electro-
physiological maps were combined with architectonic boundaries
obtained by myelin staining (see below).

Low impedance tungsten microelectrodes (Frederick Haer Inc.
e Micro Probe Inc., 0.8–1.2 MΩ) were lowered perpendicular to
the cortical surface at depths of 500–1000 μm. Each electrode pen-
etration site was marked at the photograph of the brain surface. For
each recording site, the body was stimulated with small probes or
a paint brush. Response intensity and location of receptive fields
were annotated and represented on schematic drawings of the
body. We characterized a response as “cutaneous” if neurons were
responsive to light touch on the skin or to displacement of hairs,
including vibrissae. On the other hand, if neurons were responsive
only to taps, deep tactile stimulation of the skin, and/or passive
manipulation of body segments (proprioception), the response
was labeled as “deep”. Some sites located at area SC were visually
stimulated with full field light flashes.

Neuronal activity was qualitatively evaluated along rows of
electrode penetration sites. Changes in intensity of background
activity from one site to the next were annotated and considered
as indicative of a physiological border.

ANATOMICAL TRACER INJECTIONS
We placed fluorescent anatomical tracers in electrophysiologically
identified representations of the forepaw or the forelimb within
S1. Tracer injection sites in SC were generally caudal to the fore-
limb representation in S1, at the same mediolateral level. In total,
five injections were made in S1 and four in SC. Connections were
identified by the use of fluorescent anatomical tracers, such as
fluororuby (FR, Invitrogen, Carlsbad, CA, USA), fluoroemerald
(FE, Invitrogen, Carlsbad, CA, USA), and diamidino-yellow (DY,
Sigma Aldrich). Injections of 10% FE and 10% FR (both in phos-
phate buffer, PB) were made with Hamilton syringes. The syringe
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was positioned at three depths between 500 and 1500 μm from the
cortical surface. A total injection volume of anatomical tracer rang-
ing from 0.4 to 1.0 μl was distributed between these three depths
during 10–20 min of injection. Alternatively, a single small undi-
luted DY crystal was inserted in the cortex to produce retrograde
label.

After the injections, the cortex was covered with a contact lens
with gelfoam on top. The craniotomy was then covered with a den-
tal acrylic cap that was molded to fit the skull opening. This cap
was fixed on the remaining skull with dental cement. The temporal
muscle and the skin were sutured back in place. The animals were
recovered and closely monitored for 10–12 days to allow the ret-
rograde transport of the tracers. At the end of the survival period,
the somatosensory cortex was submitted to an extensive mapping
session to provide details of the representation of the forepaw and
forearm (see above).

PERFUSION AND HISTOLOGICAL PROCESSING
Immediately before perfusion procedures, opossums were deeply
anesthetized with sodium pentobarbital (90 mg/ml/kg i.p.; Knoll,
RJ, Brazil). After the animal was rendered areflexive, a thoracotomy
was performed. Heparin was injected into the left ventricle to avoid
intravascular coagulation. Perfusion was made through the aorta
with approximately 300 ml of 0.9% saline buffer followed by the
same amount of 4% paraformaldehyde (PF) diluted in 0.1 M PB
(pH 7.4). Finally, solutions of 10% and 30% sucrose in PB were
perfused for cryoprotection.

After perfusion, the brain was removed from the skull. Cere-
bral hemispheres were separated from the diencephalon, which
was kept in a solution of 30% sucrose – 4% PF for a related study.
The injected neocortex was flattened by carefully placing the corti-
cal tissue in-between two glass slides overnight deepened in a 30%
sucrose solution. The next day, the neocortex was frozen in dry
ice, and then cut at 40 μm thickness. Adjacent cortical sections
were processed for myelin staining (Gallyas, 1979) or mounted
unstained for fluorescent microscopy analysis.

DATA ANALYSIS
Injection sites, retrogradely labeled neurons, blood vessels, and
cortical section contours were plotted using a fluorescent micro-
scope equipped with an x/y stage encoding system attached to
a computer (Orthoplan 2, MD-Plot 3.3 software – Minnesota
Datametrics Corporation).

The nomenclature used for the cortical subdivisions was
according to that of a previous study in Didelphis virginiana
opossum (Beck et al., 1996). Myeloarchitectonic subdivisions of
the neocortex were drawn using a histological slide projector.
The resultant drawing was overlapped with the electrophysiolog-
ical map obtained for that same hemisphere, using the position
of the injection sites (generally apparent as small pale ovals in
myelin-stained sections) as landmarks. The x/y plots with the rep-
resentation of cortical labeled cell bodies were superimposed with
the adjacent myelin section based in the blood vessel distribu-
tion, section contours, site of the injections, and other artifacts.
Composite drawings containing section contours, areal borders,
injection and recording sites, and distribution of labeled cells were
then made using Canvas X software (ACD-Systems). Labeled cells

in each resulting composite drawing were counted. The intensity
of corticocortical connections was then expressed as the percent-
age of labeled cells per cortical area in each injection case separately
(Table 2).

RESULTS
The primary goal of this study was to characterize, in the marsupial
opossum, the pattern of corticocortical connectivity of the forepaw
representation in primary and caudal somatosensory areas, S1
and SC. We combined electrophysiological mapping of Didelphis
aurita parietal cortex with injections of anatomical tracers and
myeloarchitecture of corresponding cortical tangential sections to
identify the location of areas S1, SR, and SC.

In our experiments, we first identified the S1 forepaw represen-
tation with a short mapping session consisting of 10–15 recording
sites. Anatomical tracers were then injected in the forepaw rep-
resentation in area S1 and at a corresponding mediolateral level
in area SC. In area SC, responses to forepaw stimulation were
recorded, although with different receptive field properties as those
of S1 (see below). The animal was recovered for about 2 weeks to
allow for tracer transport. After this period, the opossum was sub-
mitted to a more detailed mapping session and then perfused for
histological processing and analysis. The location of injection sites
were confirmed by identification of areal borders in myelin-stained
tangential sections of the cortex.

In this paper, we will first describe the topographic organiza-
tion of the forepaw representation in S1 in detail; and then, we
will show the ipsilateral corticocortical projections that converge
to SC. Additionally, we will describe the corticocortical projections
to S1 observed in one case. The thalamocortical projections that
resulted from our injections will be the subject of a subsequent
paper.

CORRELATION BETWEEN ELECTROPHYSIOLOGICAL RECORDINGS AND
MYELOARCHITECTURE IN THE OPOSSUM PARIETAL CORTEX
Neurons in S1 typically presented high spontaneous background
activity, responsiveness to light cutaneous stimulation or dis-
placement of hairs (Figure 1), and smaller receptive fields than
neurons in adjacent areas SC and SR, which were generally respon-
sive to deep stimulation or were non-responsive (Figure 1).
Borders between areas SR, S1, and SC, defined by electrophys-
iological mapping, were further confirmed by the pattern of
myelin staining (Figure 2A). Usually, the transition from S1

Table 2 | Quantification of ipsilateral corticocortical projections to SC.

Cortical area Case 07-05 Case 06-02 Case 04-09

S1 (%) 16.16 20.80 34.71

S2/PV (%) 9.30 19.97 23.97

SR (%) 6.67 4.44 3.51

SC (intrinsic; %) 40.25 23.01 20.87

Insular (%) 3.52 6.66 7.54

Frontal (%) 1.45 – 2.79

PS (%) 19.25 19.56 5.89

V1 (%) 0.44 0.14 0.72

A (%) 2.96 2.63 2.79
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FIGURE 1 | Quantification of electrophysiological responses in areas SR,

S1, and SC in five different cases. The total number of recorded sites in each
case is depicted inTable 1. In S1, although neurons responsive to cutaneous
stimulation predominated, in some sites neuronal responses could only be
elicited by deep or more intense stimuli (like deep pressure or limb

displacement). Sites with non-responsive neurons were also found in S1. In
SC and SR, sites with non-responsive neurons predominated, although
neurons responsive to cutaneous (light) stimulation could also be found.
Abbreviations: S1, primary somatosensory area; SC, somatosensory caudal
area; SR, somatosensory rostral area.

to SC was marked by a reduction in background activity and
absence of cutaneous responses (Figure 2). In one case in
which we obtained responses in area SC (see below), the bor-
der with area S1 was determined by reversions in the progres-
sion of receptive fields in anterior to posterior rows of recording
sites.

Recording sites were classified according to the responsiveness
of neurons as “cutaneous,”“deep,” or “non-responsive” (Figure 1).
In all cases, cutaneous responses predominated in area S1 (52%
of 266 sites in S1, n = 5 cases, Figure 1). Nevertheless, sites with
non-responsive neurons (19.2%), or responsive to “deep” stim-
ulation (28.8%), were also obtained in S1. Although sites with
non-responsive neurons predominated in SR and SC (79.4% of
68 sites in SR, 79.5% of 88 sites in SC, Figure 1), some respon-
siveness to stimulation of deep receptors (including responses to
passive limb movements, 16.2% in SR; 11.4% in SC) and some-
times to stimulation of cutaneous receptors (4.4% in SR, 9.1%
in SC) could be elicited from neurons in these areas (Figures 1
and 2).

Myelin histological processing of cortical sections (Figure 2A)
revealed that borders defined by electrophysiological mapping and
myeloarchitecture were generally coincident. S1 was identified as
a densely myelinated region in the parietal cortex. Immediately
rostral to S1 and caudal to the orbital fissure, we distinguished SR
as a weakly stained region. SC exhibited moderate myelin staining,
more intense than the one obtained in SR, but not as dark as S1.

Additional cortical architectonic subdivisions were evident in
myelin-stained sections. Similar to S1, the primary visual area
(V1), and the auditory cortex (A) were intensely stained for myelin
(Figure 2A). In frontal cortex, a rounded and intensely myelinated
region was usually identified, corresponding in location to area
F4 (Ebner, 1978). The peristriate cortex (PS) in Didelphis aurita
is located between V1 and the parietal cortex (Martinich et al.,
2000). This region was less intensely stained than the adjoining
areas V1 and SC (Figure 2A). In the peristriate cortex, irregular-
ities of myelin staining (Figure 2A) seemed to occupy the same
position as the cytochrome oxidase modules previously described
in this species (Martinich et al., 1990).
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FIGURE 2 | Correlation between myeloarchitecture and the

electrophysiological map in case 06-02. (A) Tangential section stained for
myelin showing areal borders. The square frames the region represented in
the upper right box (B). (B) Map of the forepaw representation and part of the
face representation in areas SR, S1, and SC. Responsiveness of each site is
characterized by different symbols as depicted in the inferior left corner. The

star marks one tracer injection site in area SC that is further illustrated in
Figure 7A. (C) Multiunit receptive fields recorded in sites depicted in (B) of
this Figure are numbered accordingly in the drawings. Abbreviations: A,
auditory field; CT, caudal temporal area; PS, peristriate cortex; PV, parietal
ventral area; S2, secondary somatosensory area; V1, primary visual
area.

PHYSIOLOGICAL REPRESENTATION OF THE FOREPAW IN AREA S1
The best stimuli for evoking responses from S1 consisted in either
cutaneous stimulation or very light taps or squeezes (Figure 1).
Receptive fields in the forepaw representation typically comprised
single digit tips, whole digits, or palmar pads (Figures 2B,C – sites
1, 3, 4, 5, and 9). Some sites in S1 presented neurons that were
responsive to more than one digit (Figure 3 – site d) or to more
than one palmar pad (Figures 2B,C – site 2, and 10; Figure 3 – site
4). Occasionally, the receptive field included the whole digit and
the adjacent palm pad (Figure 3 – site c; Figure 4 – sites 3, 4, 6, and
26). Most of the recording sites in the forepaw representation con-
tained neurons responsive to stimulation of the glabrous forepaw.
Sites with neurons responsive to the dorsal (hairy) forepaw were
also identified (Figures 2B,C – sites 5–9, and 19).

In S1, digit tips were generally represented rostral to palm pads
(Figures 2B,C – sites 1–4, and Figure 3 – sites 2–8). Additionally,
distal palm pads, proximal palm pads, wrist, and forearm were
represented in a rostral-to-caudal sequence (Figure 2C – sites 2–4;

Figure 3 – sites 4–8; Figure 4 – sites 15–18 and 24–27). In S1, we
also observed a medial to lateral topographic organization con-
sisting in a progression from the ulnar forepaw, including digits
3–5, to digits 1 and 2 in the radial forepaw (Figure 3 – sites a, 3,
b–d; Figure 4 – sites 3, 14, 25).

In some instances, despite closely spaced recording sites, we
were not able to detect a precise topographic organization in S1
(e.g., Figure 4 – sites 3–6). Additionally, neurons responsive to the
whole forepaw were usually found close to the border of the face
representation (Figures 2B,C – sites 15–21) or next to the border
with area SC (Figure 3 – sites 9, 10; Figure 4 – site 28).

THE FACE REPRESENTATION IN AREA S1
We mapped part of the representation of the face in S1 in order to
define the lateral border of the forepaw representation in S1. The
transition from the representation of the forepaw to the represen-
tation of the face was sharp. Inferior jaw and chin were represented
in the anterior portion of the face representation in S1 (Figure 2
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FIGURE 3 |Topographic organization of the forepaw representation

and part of the face representation in opossum area S1 (case 06-29).

(A) Somatotopic map in S1. Transition to adjacent areas SR and SC at the
same mediolateral level is characterized by a lack of responsiveness (x ).
Stars illustrate injection sites (seeTable 1). (B) Receptive fields obtained in
selected anterior to posterior rows of recording sites at a medial (numbers
1–10) and a lateral (numbers 11–15) position in S1, representing part of the
forepaw and face representations, respectively. A medial to lateral row of
sites (letters a to f ) is also illustrated. The corresponding receptive fields are
represented at their relative topographic position as the actual recording
sites as shown in (A).

– sites 24–27, and 31–34; Figure 3 – site e; Figure 4 – site 31).
Progressing from the representation of the inferior jaw to more
caudal and lateral portions of the face representation in S1, we
found the representation of the vibrissae, including the lateral vib-
rissae (Figure 2 – site 28) and the vibrissae of the snout (Figure 2 –
sites 29–30; Figure 3 – site f, 11–15; Figure 4 – site 32). In one case
(06-29, Figure 3), we obtained receptive fields consisting of a sin-
gle vibrissa, suggesting a fine topographic organization (Figure 3
– sites 11, 12, 14, 15). Ventral vibrissae located close to the lip

were represented in more anterior parts of S1 than dorsal vibris-
sae (Figure 3 – sites 11–15). In some sites, neurons responsive to
stimulation of multiple vibrissae were recorded (Figure 3 – site 13;
Figure 4 – site 32).

PHYSIOLOGICAL RECORDINGS IN AREAS SR AND SC
Responses in areas SR and SC, when present, were generally evoked
by deep stimulation, including limb movements. Full field visual
stimulation did not elicit any clear response when tested under ure-
thane anesthesia. Somatosensory receptive fields in areas SR and
SC tended to be larger than those in S1. They generally encom-
passed the whole forepaw (Figure 2 – sites 12, 22; Figure 4 – sites
10, 22), forearm (Figure 2 – site 11), or multiple digits (Figure 4 –
sites 9, 21). Sites with neurons displaying good responses to light
cutaneous stimulation and relatively small receptive fields were
sometimes recorded in SR (Figure 2 – site 13) and SC (Figure 4 –
site 30).

In our experiments, neurons in area SC tended to be more
responsive than neurons in SR. In case 07-05 (Figure 4), we
obtained evidence for a crude topographic representation of the
forepaw in SC that mirrored that of S1. Basically, the representa-
tion of the forearm and wrist was found close to the S1/SC border
(Figure 2 – site 11, and Figure 4 – sites 7 and 8). A progression
from the caudal border of S1 to the caudal border of SC revealed
receptive fields that were progressively more distal in the forepaw
(Figure 4 – sites 7–9, 18–21, and 28–30). Additionally, SC dis-
played a medial to lateral topographic organization similar to that
of S1 in which digits 1 and 2 (i.e., the representation of the radial
forepaw, Figure 4 – sites 29 and 30) were represented more lat-
erally than digits 3, 4, and 5 (i.e., the representation of the ulnar
forepaw, Figure 4 – sites 9, 19–21). We were not able to identify
any topographic organization in area SR because most of the sites
recorded in this area contained non-responsive neurons.

CORTICAL CONNECTIONS OF OPOSSUM PARIETAL CORTEX
Different fluorescent tracers were injected in areas S1 and SC
resulting in injection cores that ranged from 0.02 to 1.35 mm2

(Table 1). Analysis of the sequence of tangential sections in all cases
revealed that the core of each injection encompassed most of the
cortical layers, without reaching the white matter. Injection sites
and retrograde labeled cell bodies were identified (Figures 5 and
6) and represented in composite schematic drawings (Figures 6A,
7, and 8).

Cortical projections to area SC (cases 07-05, 06-02, 04-09)
We made three small injections of FR in area SC in three different
cases (Figures 6 and 7). In two of them, the injection core was
entirely contained within SC. In case 07-05, the anatomical tracer
injection was placed in a site where neurons were responsive to
somatosensory stimulation of the digits (Figure 6A). In case 06-02,
the tracer was injected in a site containing non-responsive neurons
but close to the representation of the forepaw in SC (Figures 2 and
7A). In a third SC injection (case 04-09), the tracer was placed in
the representation of the glabrous forepaw, but a small part of the
injection halo invaded area S1 (case 04-09; Figure 7B). In these
three cases, the injection sites were typically at the same mediolat-
eral level as the representation of the forepaw and forearm in S1
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FIGURE 4 | Progressions of recording sites from area SR to area SC (case

07-05). (A) Electrophysiological map. Each numbered recording site has its
corresponding receptive field illustrated in (B,C). Three different rows of
recording sites are represented. (B) Diagram illustrating the receptive fields
from the three rows of recording sites depicted in (A). Receptive fields
recorded in a given cortical area are aligned in the same column of the

diagram. Multiunit receptive fields in SR and SC are usually mapped with
deep stimulation and tend to be larger than those in S1. (C) Receptive fields
recorded at the representation of the inferior jaw and lip. The representation
of vibrissae is lateral and posterior to the representation of the inferior jaw
(see also Figure 3). Corticocortical connections after anatomical tracer
injections in this case [black stars in (A)] are shown in Figures 6A and 8.

(see above), and the retrograde labeled cells were found dispersed
mainly in ipsilateral somatosensory,auditory,and peristriate visual
cortices (Figures 6 and 7).

All three cases revealed projections that originated in different
somatosensory fields, including S1, SR, and S2/PV (Figures 6A
and 7). Projections from S1 to SC were usually moderate, repre-
senting 16–35% of all retrogradely labeled cells sampled in our
reconstructions (Table 2) and originated predominantly in the
representation of the forepaw. Considering only labeled cells in
S1, 97.28% of them originated from the forepaw representation
in case 07-05; and 94.67% in case 06-02. Heterotopic projections

from the face representation of S1 to SC were scarce. In case 04-09,
we observed a relatively higher number of retrograde labeled cells
in the face representation of S1 (41.67% of all labeled cells in S1).
This was probably caused by tracer spreading from the injection
site in SC to the face representation to S1 (Figure 7B).

The lateral parietal cortex was another source of projections to
SC (representing 9.30% to 23.97% of all labeled cells, see Table 2).
This region was previously identified as areas S2 and PV (Beck
et al., 1996). Generally, labeled cells were concentrated in the
anterior half of S2/PV (Figures 6A and 7B); suggesting that most
of the projections from this region originated in area PV, since S2
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FIGURE 5 | Photomicrographs of injection sites of fluorescent anatomical

tracers and retrogradely labeled neurons in tangential cortical sections.

(A) Site labeled after insertion of a small crystal of diamidine yellow (DY). (B)

Cellular nuclei retrogradely labeled by DY. (C) Fluororuby injection site. (D)

Neurons retrogradely labeled by fluororuby (white arrowheads show some
examples) Calibration bars: (A,C) = 50 μm; (B,D) = 100 μm.

is located posterior and medial to PV (Beck et al., 1996). Cortical
ipsilateral projections from SR to SC ranged from 3.51 to 6.67%
of all labeled cells (Table 2).

The most lateral and anterior part of opossum parietal cortex
of has been identified as “insular cortex” (Ebner, 1978; Martinich
et al., 2000). In our experiments, we observed that this region also
projects to area SC (ranging from 3.52 to 7.54% of all labeled cells,
Table 2). Additionally, in two cases, few labeled cells were located
immediately rostral to the orbital fissure (case 07-05: 1.45%; case
04-09: 2.79% of all labeled cells), but no labeled cells were found
close to the rostral pole of the frontal cortex in any of the three
cases studied.

Anatomical tracer injections in area SC revealed substantial
projections from peristriate visual cortex in at least two cases (case
07-05: 19.25%; case 06-02: 19.56%; case 04-09: 5.89% of all labeled
cells). The peristriate cortex (PS) of the opossum is located cau-
dal to area SC, and is composed of at least two different belt-like
visual areas rostral to V1 (Martinich et al., 2000). Labeled cells
were found along the mediolateral extension of PS, but in case
07-05 and 06-02, projections seemed to originate mainly in its
medial half (Figures 6A and 7A). In V1, occasional labeled cells
were observed (less than 1% of all labeled cells, Table 2). Finally,
few projections arising from auditory cortex (A) were consistently
observed in all three cases analyzed (from 2.79 to 2.96% of the
total labeled cells).

SC intrinsic connections
Intrinsic projections in SC corresponded to 20–40% of all
labeled cells (Table 2). In cases 06-02 and 07-05, anatomical
tracer injections in the representation of forepaw resulted in a

concentration of retrograde labeled cells in the medial half of
area SC (Figures 6 and 7A). A more homogeneous distribution
of labeled cells along the mediolateral extent of SC was obtained
in case 04-09 (Figure 7B) where the injection core seemed to have
invaded part of the face representation in S1.

Cortical projections to S1 (case 07-05)
In case 07-05, we inserted one small crystal of DY into the repre-
sentation of the wrist in S1 (Figure 8). This injection produced a
relatively large effective tracer core, which partially invaded the
representation of face in S1 and a non-responsive zone in SR
(Figure 8).

Most projections to the forepaw representation in this exper-
iment originated in cortical areas that process somatosensory
information, including SR, SC, S2/PV, and the “insular cortex”
(a lightly myelinated region of the lateral parietal cortex located
anterior to PV and caudal to F4; cf. Ebner, 1978; Martinich et al.,
2000; Figure 8). We observed dense projections from area SC
to the forepaw representation in area S1 (16.88% of all labeled
cells). This projection was essentially homotopic, since most of
the S1-projecting cells were located in the medial half of SC
(Figure 8), where we recorded responses to digits, forepaw, and
forearm (Figure 4).

In case 07-05, many DY-labeled cells were found in area SR
(12.72% of all labeled cells), but it is conceivable that part of
them corresponded to intrinsic connections, since a small part
of the injection core invaded SR. Lateral to S1, projections from
the S2/PV region were also found (Figure 8; 17.69% of the labeled
cells). Most of this projection originated in the anterior part of
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FIGURE 6 | Case 07-05. Corticocortical and intrinsic connections after a

small FR injection in area SC. (A) Injection in the representation of digits
1–2 in area SC. Labeled cells are more numerous at the medial half of area SC
as compared to the lateral half. A similar bias can be observed in area S1
(corresponding to the forepaw representation, see also Figure 4) and in area
SR. Concentration of labeled cells in S2/PV probably corresponds to
homotopic corticocortical connections. Additional connections originate in
peristriate cortex (PS), auditory cortex (A), and “insular” cortex (i.e., the
region anterior to area S2/PV). Black stars depict the center of other injection
sites; one of them is illustrated in Figure 8. The white square in SC depicts
the region corresponding to the photomicrographs in parts (B) to (E). (B)

Representative profiles of FR-labeled (intrinsic) neurons in area SC. White
arrows point to retrogradely labeled cell bodies after tracer injection in SC. (C)

to (D) Photomicrographs of the same region framed in (B) obtained with
brightfield microscopy (C) or using different fluorescence filters: (D) filter for
UV; (E) filter for fluorescein. The region of the histological section framed in
these photomicrographs did not present any DY-labeled neuron (D), see also
Figure 8. Although the FR-labeled neurons (B) could also be detected as
yellowish contours under the fluorescein filter (E), the specificity of this label
can be confirmed by the absence of any conspicuous label under the UV-filter
(D) or using the brightfield (C). The stars in (B) to (E) depict the same blood
vessel for reference.

S2/PV, suggesting that projections from PV to S1 were denser than
those from S2 (see Beck et al., 1996).

Projections from the peristriate visual cortex to S1 were repre-
sented by few labeled cells (1.82% of total labeled cells), especially
when compared to the small-sized injections made in area SC (see
above). No labeled neuron was found in V1 or in frontal cortex
(Figure 8). Projections from auditory cortex to S1 corresponded
to only 2.76% of the all labeled cells.

S1 Intrinsic connections
In case 07-05, most of the intrinsic projections of the forepaw
representation were located medial to the injection site, corre-
sponding to the representation of the forepaw, and possibly to
other body parts, such as the forearm and trunk (cf. Figures 4
and 8). Projections arising from the face representation were also
present (8.32% of labeled cells in S1), but they were less numer-
ous than the projections originated in the representation of the
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FIGURE 7 | Distribution of retrogradely labeled cells after single FR

injections in area SC in two additional cases. (A) In case 06-02
distribution of labeled cells is very similar to that observed in case 07-05
(Figure 6A). The injected region was not responsive to cutaneous
stimulation. (B) In case 04-09 part of the injection core spread from the
center of the injection to caudal S1, probably reaching the face
representation. Spatial distribution of labeled cells looks different from that
observed in cases 07-05 (Figure 6A) and 06-02 (A).

forepaw (91.68% of all labeled cells in S1). It is possible that some
of the intrinsic projections from the face representation in S1 were
due to the invasion of the tracer core into the face representation.

DISCUSSION
A previous study of the cortex of Didelphis virginiana charac-
terized five different somatosensory fields, areas S1, S2, PV, SR,
and SC (Beck et al., 1996). Areas S1, S2, and PV displayed inde-
pendent topographic representations of the contralateral half of
the body identified in electrophysiological mapping experiments
(Beck et al., 1996). Also, in previous studies using anesthetized
preparations, there was no evidence for topographically organized
maps in areas SR and SC because these cortical fields were unre-
sponsive to sensory stimulation (Lende, 1963; Magalhaes-Castro
and Saraiva, 1971; Pubols et al., 1976; Beck et al., 1996). Never-
theless, SR and SC could be identified based on their anatomical
connections with S1 (Beck et al., 1996).

In the present investigation, we studied the organization of
the representation of the forepaw in areas S1 of the Didelphis
aurita, and the connections of SC with other cortical fields, using

combined electrophysiological, anatomical tracing, and architec-
tural analysis. At least three general important features of our
data should be highlighted: (1) the topographic organization of
the forepaw representation in area S1 was rather crude instead
of regular and precise, with predominance of neurons responsive
to cutaneous stimulation, but also displaying neurons responsive
only to deep stimulation or that were not responsive at all; (2) area
SC displayed a topographic organization that was mirror-reversed
to that found in S1; (3) the pattern of connections to the forepaw
representation in S1 was similar to that of SC, except for the fact
that SC received additional projections from auditory and visual
cortices. This suggests a role of SC in multimodal integration. A
detailed discussion of these major findings and on the phylogenetic
significance of the opossum area SC follows below.

TOPOGRAPHIC ORGANIZATION OF FOREPAW REPRESENTATIONS IN
AREA S1
For most mammals (see Johnson, 1990 for a comprehensive
review) including opossum species of the genus Didelphis (Lende,
1963; Magalhaes-Castro and Saraiva, 1971; Pubols et al., 1976;
Beck et al., 1996), representation of the contralateral half of the
body in S1 cortex has an “upside-down” disposition in which the
face is represented most laterally, followed by forelimb, trunk, and
hindlimb, in a lateral to medial sequence. However, most of the
previous S1 maps in the opossum do not provide detailed informa-
tion about the internal organization of the forepaw representation
(Lende, 1963; Magalhaes-Castro and Saraiva, 1971; Pubols et al.,
1976; Beck et al., 1996). One exception is the study of Pubols
et al. (1976) in which the authors state that the organization of
the ventral forepaw is “extensive, orderly, and precise.” Although
no individual cases are illustrated, the authors present a summary
map of the representation of the forepaw. According to Pubols
et al. (1976), ventral digits are represented anteriorly and palm
pads posteriorly, in a regular topographical fashion in which dig-
its 1–5 and its accompanying palm pads are regularly represented
from lateral to medial in S1. This topographic arrangement is also
shared by many other species, including the squirrel, tree shrews,
and primates (Johnson, 1990).

Although our data confirmed this general topographic arrange-
ment, our maps from individual cases indicated that the forepaw
representation in S1 was not entirely regular and precise. Neu-
rons in individual sites in S1 presented responses to digit tips,
whole digits, individual palm pads, multiple digits, multiple pads,
or even the whole forepaw. Eventually, these receptive fields were
repeated along two or more sites in a row. Sites containing neurons
responsive to the whole forepaw could be close to sites containing
neurons responsive to discrete parts of the forepaw. We did not
record neurons with receptive fields smaller than a whole palm
pad, or representing intermediate or proximal phalanges. Further-
more, we detected some examples of actual lack of topographical
order in sequences of closely spaced recording sites (e.g., sites 4–6
in case 07-05, Figure 4). It is important to note that Pubols et al.
(1976) recorded under a different anesthetic protocol than the one
we used and this may account for some of the differences with our
mapping results depicted above.

Another consistent feature of S1 detected by our mapping
experiments was the prevalence of many sites with neurons
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FIGURE 8 | S1 corticocortical and intrinsic connections (case 07-05).

(A) Projections were revealed after insertion of a small crystal of DY in the
representation of the wrist in S1 (white star), resulting in a large tracer core
that invaded part of the representation of the face in S1 and part of SR (black

halo). Black stars depict the center of injection sites from which corticocortical
connections are not illustrated. Corticocortical connections for the injection in
SC are illustrated in Figure 6A. The small square in SC depicts the region
photographed in Figure 6. (B) Multiunit receptive field at the injection site.

responsive to the whole forepaw which were characteristically
located close to the border with the face representation in S1.
Neurons in these sites were generally responsive to very light
taps, but not to cutaneous stimulation. In S1 of other mammals,
the border between the forepaw and face representations can be
less responsive to cutaneous stimulation and can display different
architectonic and connectional arrangements than the rest of area
S1 (Krubitzer et al., 1986; Hayama and Ogawa, 1997; Jain et al.,
1998, 2001; Fang et al., 2002; Kaas, 2004). In some rodent species,
such as the squirrel and the rat, the hand–face border consists
of dysgranular cortex instead of the usual granular cortex that
comprises most of S1 (or area 3b). Typically, dysgranular cortex
is less responsive to cutaneous stimulation than the granular cor-
tex (Krubitzer et al., 1986). Similar to what has been described
in rodents (Zilles and Wree, 1985; Krubitzer et al., 1986; Santi-
ago et al., 2007), and also in primates (Fang et al., 2002), a region
of dysgranular cortex interposing between the representation of
the face and forepaw was detected in other marsupials as well
(Elston and Manger, 1999; Huffman et al., 1999), but not in rep-
resentatives of the genus Didelphis. Nevertheless, it is conceivable
that these opossum species present a circuitry in the hand–face
border that is differentiated from the rest of S1, thus resulting in
neurons displaying attenuation of cutaneous responsiveness and
larger receptive fields in anesthetized preparations.

The absence of neuronal responsiveness in some sites in S1
could, in principle, be due to anesthesia levels. Most of our map-
ping sessions were performed under urethane anesthesia, using
the same protocol adopted by Beck et al. (1996). These authors
do not report a significant number of sites with non-responsive
neurons in S1, but their individual electrophysiological maps
are less dense than ours. It is important to highlight that we
only classified a site as “unresponsive” if we were able to record

responses elsewhere under the same anesthetic conditions (i.e.,
during the same period of time in which no supplemental anes-
thetic doses were administered). This indicated that the absence
of response was probably due to a local differential sensitivity to
anesthetics and not to a generalized depression of cortical activity.
The same reasoning applied to sites with non-responsive neurons
in SC (see “Functional Organization of Area SC” below).

CORTICAL PROJECTIONS TO S1
S1 connections revealed in case 07-05 by the DY crystal inserted
in the representation of the forepaw basically confirmed previous
findings of Beck et al. (1996) after large WGA-HRP injections in
the representation of the face in area S1 of the Didelphis virginiana.
Although in our experiment the tracer was placed in a different
sensory representation of S1, both studies agree in that: (1) intrin-
sic connections are distributed rather uniformly around the core of
the injection sites; (2) SC and somatosensory cortical areas SR, S2,
and PV are all connected to S1; (3) homotopic connections with
other somatosensory areas seem to predominate over heterotopic
connections; (4) connections to PV are more intense than those to
S2. Denser connections between S1 and PV as compared to con-
nections between S1 and S2 were also reported in other mammals
like the brush-tailed possum (Elston and Manger, 1999), and the
squirrel (Krubitzer et al., 1986).

FUNCTIONAL ORGANIZATION OF AREA SC
In this study, evidence for topographic organization in the SC area
of the opossum was provided for the first time. Receptive fields in
anterior to posterior rows of sites reverted from the digit tips to
palm pads and wrist in S1, back to pads and digit tips in SC. This
indicates a representation of the body in SC that is mirror-imaged
to that of S1. The medial to lateral extension of SC also seems to
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present a topographic organization parallel to that of S1. This is
the kind of topography obtained in fields immediately caudal to S1
in rodents (Slutsky et al., 2000) or in anthropoid primates (Kaas,
1983, 2004). However, similar to the brush-tailed possum (Elston
and Manger, 1999) and to the squirrel (Slutsky et al., 2000), and
different from area 1 of anthropoid primates (Kaas, 2004), most
sites in area SC of the Didelphis aurita contained neurons that
were either responsive to deep stimulation or non-responsive at
all.

Neurons in sites located at more lateral portions of SC were not
responsive. This was the region where the representation of the
face in SC was expected to be found. We do not believe that the
absence of response to face stimulation in the lateral part of SC
was due to technical issues like variation in anesthetic levels, since
we were able to record from the forepaw representation under
the same conditions in which the putative face representation was
unresponsive (e.g., case 07-05, Figure 4). Nevertheless, it still needs
to be elucidated whether opossum SC contains a complete repre-
sentation of the contralateral body, similar to areas S1, S2, and PV.

Results of SC connectivity indicate that there is a representation
of the face in the lateral part of SC. In cases 07-05 and 06-02, in
which injection sites were restricted to the representation of the
forepaw in SC, intrinsic connections were predominantly with the
medial parts of SC where the forepaw is represented (Figures 6A
and 7A). Additionally, projecting cells from S1 and S2/PV were
concentrated in their respective forepaw representations, whereas
the representation of the face in S1 and in S2/PV seemed to be
devoid of labeled cells. This is different from what was obtained in
case 04-09 where the SC injection site invaded a small part of the
representation of the face in S1. In this case (04-09), many labeled
cells were found in the lateral half of SC, and in the face repre-
sentation of S1 and S2/PV (Figure 7B). These data would then
implicate that SC intrinsic and corticocortical projections were
predominantly homotopic.

Another possibility is that opossum SC would be a cortical
field specialized in processing information from the forelimb only.
This would have some interesting implications in terms of the
evolutionary origin of parietal cortical fields. If SC has a com-
plete representation of the body and is specialized in processing
somatosensory information, then it would be homologous to cau-
dal somatosensory fields of other species, like area PM in the
squirrel or area 1 and 2 in most anthropoid primates. But, sup-
posing that opossum SC is specialized in processing information
from the forepaw and forelimb only, and taking into account that
it receives visual information from occipital fields (see below),
this would make SC homologous to PP cortical fields of higher
mammals (corresponding to Brodmann’s areas 5 and 7) where
somatosensory information is combined with visual inputs to pro-
vide a body-centered frame of coordinates used to guide hand and
forelimb movements (see below).

CORTICAL CONNECTIONS OF SC: FUNCTIONAL AND PHYLOGENETIC
IMPLICATIONS
One important original contribution of the present study was
the characterization of the cortical projections to area SC
(Figure 9). In our three cases, SC injections were made in the
forepaw representation and revealed projections from all identified

FIGURE 9 | Schematics of the ipsilateral corticocortical inputs to area

SC. Thickness of continuous arrows is proportional to the number of
retrograde labeled neurons found after the anatomical tracer injection in
area SC considering both cases 07-05 and 06-02 combined. The thickness
of the two dashed arrows is not proportional to the number of labeled
neurons, representing weak projections to SC (less than 2% of the labeled
neurons each). Cortical projections to SC originate in somatosensory
cortical areas SR, S1, and S2/PV. Projections from a region lateral and
anterior to S2/PV identified as “insular cortex” are presumably
somatosensory as well. SC receives a important visual projection from the
peristriate cortex (PS), suggesting that SC is involved in multimodal
processing. Weak connections to SC arise from auditory cortex (Aud), V1,
and the cortex rostral to the orbital fissure (FR). See text for details.

somatosensory fields including S1, SR, S2/PV, and the insular cor-
tex that extends rostral to area PV. Quantification of retrogradely
labeled neurons in cases 07-05 and 06-02 combined revealed that,
apart from intrinsic connections (representing 32% of the labeled
neurons), most of the ipsilateral corticocortical input to SC arises
from S1, visual peristriate cortex (PS), and S2/PV, each region
corresponding to about 20% of the projections to SC. Minor
contributions arise from auditory cortex (3%) and the cortex
anterior to the orbital sulcus (1%). This basically confirms data
obtained by Beck et al. (1996) in which SC was identified as a
somatosensory processing area based on its connections with S1.
In addition, because our injections in SC revealed important pro-
jections from peristriate visual cortex, and weak but consistent
projections from auditory cortex, we propose that SC is actually
involved in multimodal sensory processing.

The peristriate cortex (PS) of the Didelphis aurita opossum
is located caudal to SC and anterior to the primary visual area
(Sousa et al., 1978; Martinich et al., 2000). Based on architecture
and connectional data, Martinich et al. (1990, 2000) demonstrated
that the peristriate cortex in this species was constituted by two or
more topographically organized visual areas. After our injections
in the forepaw representation of SC, most of retrogradely labeled
cells were located in the medial part of PS, which receives infor-
mation from the lower visual field. This suggests that the medial
PS projection to the forepaw representation in SC is relaying
visual information about the forepaw and its immediate surround-
ings (Volchan et al., 2004). In SC this visual information can be
integrated with somatosensory inputs from S1, S2/PV and other
somatosensory fields, thus generating new information that can
be used to guide visually oriented behaviors.

Similar projections from visual and anterior somatosensory
cortical fields to a caudal somatosensory region were also identified
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in the brush-tailed possum by Elston and Manger (1999). In
this Australian marsupial, two different fields were identified cau-
dal to S1. First, there was a myelin sparse region, immediately
caudal to and interdigitating S1 where neurons required stim-
ulation of deep receptors in the periphery to elicit responses.
Caudal to this region, Elston and Manger (1999) identified the
PP cortex, located in-between somatosensory and visual peristri-
ate (area 18) cortical fields. Similar to our results, tracer injections
in both caudal fields of the brush-tailed possum revealed projec-
tions from all somatosensory cortical fields (including PP), and
from the peristriate cortex (Elston and Manger, 1999). Different
from our results, caudal somatosensory fields in the brush-tailed
possum were devoid of projections from auditory cortex (Elston
and Manger, 1999).

It is important to note that in our experiments many of the SC
projecting neurons in auditory cortex were located in the anterior
portion of this field where auditory cortex and area PV intermin-
gles (Krubitzer et al., 1986; Beck et al., 1996). It is then feasible that
these cells are rather relaying somatosensory information from
the forepaw instead of sending actual auditory inputs. However,
retrograde labeled cells in more caudal and lateral parts of the
auditory field were also found. In this case, auditory information
relayed to SC could be informing a system involved in generating
a body-centered frame of reference to guide movements in space.

Finally, it is difficult to postulate whether the cortex imme-
diately caudal to S1 in the opossum is composed of a single
somatosensory area, area SC, or if there is an additional field,
caudal to SC, the PP cortex, interposed between SC and the peri-
striate visual cortex. So far the attempts to record from the visual
peristriate cortex in the opossum has failed, for only area V1 has
been proved to be visually responsive in anesthetized prepara-
tions (Sousa et al., 1978; Martinich et al., 2000). Nevertheless, our

connectional data indicate that the cortex immediately caudal to
S1 receives projections from the peristriate cortex, suggesting a
role in visual processing for this field. In addition, in the brush-
tailed possum Elston and Manger (1999) were able to record visual
responses in the cortex just caudal to S1. Altogether, these data
suggest that in the opossum and, probably, in other marsupials
as well, the cortex immediately caudal to S1 process information
from somatosensory, visual, and possibly auditory information,
being a multimodal field. This would support the notion that in
smaller (and presumably more primitive) brains, cortex caudal to
S1 would be homologous to the PP areas (areas 5 and 7) of higher
mammals, and not to purely somatosensory fields, such as areas 1
and 2, that characterize the simian organization.
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