
Frontiers in Behavioral Neuroscience www.frontiersin.org July 2010 | Volume 4 | Article 40 | 1

BEHAVIORAL NEUROSCIENCE
Review ARticle

published: 14 July 2010
doi: 10.3389/fnbeh.2010.00040

In all of these studies, a major challenge has been the technical 
limitations of our ability to record central nervous activity in freely 
behaving animals. Experimental studies of movement and behav-
ior in unrestrained animals necessarily can include only minimal 
arrangements for recording simultaneous neural responses; simi-
larly, studies of neural circuitry are usually performed on anesthe-
tized, restrained, and dissected preparations that cannot move. In 
these latter preparations, recordings of fictive motor output can 
give some indication of the expected pattern of muscle contrac-
tion, but this can be misleading. Depending on their work loop, 
muscles can act to move limbs or brake the movement of limbs; 
they can also transfer force along a limb or act as springs of varying 
stiffness (Dickinson et al., 2000). Moreover, these functions can 
vary dynamically during the course of a behavioral cycle – changes 
that are only apparent in the behaving animal. While these behav-
ioral and neurophysiological experiments are critically important 
for understanding the how individual parts of the system work, 
they cannot tell us how the entire system – the nervous system, 
the sensory organs, and musculo-skeleton system, and the body’s 
interaction with the world – functions dynamically to produce the 
behavior of a freely moving animal.

This challenge has been addressed by several investigators 
through neuromechanical simulation, which links a computational 
model of the animal’s neural circuits to a model of its body to study 
how the nervous system and body interact to achieve dynamic 
control of behavior (Ekeberg, 1993; Loeb et al., 1999; Pearson et al., 
2006). Neuromechanical simulation helps provide an integrated 
understanding of truly complex systems (Dickson et al., 2006). It 

IntroductIon
The nervous systems of animals evolved largely to guide and con-
trol their movements. This is apparent from observing animals that 
move and those, like barnacles and sea squirts, that settle, stop mov-
ing about and lose their brains (Wolpert, 2009). The guidance and 
control of oriented movement depends on multiple parallel streams 
of sensory input which the movement itself changes from moment 
to moment. The result is a closed feedback loop that links the sensory 
world to the nervous system, and the nervous system to the genera-
tion of movements that change the pattern of sensory input.

In recent years, the importance of the interaction of the body 
with the brain and the world has been recognized with the advent 
of neuromechanics, a field in which the coupling between neural 
and biomechanical processes is an explicit focus (Shadmehr and 
Wise, 2005; Chiel et al., 2009). For a variety of animals, the neu-
ral substrates of a behavior, the kinematics, and dynamics of the 
behavior itself, and the biomechanical mechanisms that mediate 
their connection have been studied in a coordinated fashion. The 
mechanisms of the control of flight by fruit flies (Dickson et al., 
2006), of the feeding behavior of Aplysia (Novakovic et al., 2006; 
Proekt et al., 2008), and of locomotion by stick insects (Buschges 
et al., 2008), cockroaches (Ritzmann and Buschges, 2007), and 
lobsters (Ayers, 2004) are a few prominent examples from among 
invertebrate animals studied. Swimming in lampreys (Grillner 
et al., 2008), walking in cats (Pearson, 2008), postural control in 
cats and humans (Ting and McKay, 2007), and reaching and point-
ing in primates (Shadmehr and Wise, 2005), are correspondingly 
prominent examples from vertebrates.
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allows investigators to ask whether the current understanding of 
a neural circuit is sufficient to account for the dynamic control 
of behavior (Ivashko et al., 2003; Ekeberg et al., 2004; Cofer et al., 
2010b). It can help identify synergies between patterns of motor 
command and biomechanical mechanisms (Chiel et al., 2009), and 
it can highlight the importance of sensory feedback in guiding 
behavioral performance (Ekeberg and Grillner, 1999; Ivashko et al., 
2003; Yakovenko et al., 2004; Ekeberg and Pearson, 2005).

Each of these studies also confronts a common set of procedural 
questions: How to create simplified descriptions of the physical 
world, the body, and the neural network that capture the key fea-
tures of all three? How to ground model parameters in experimental 
reality? How to explore a vast and heterogeneous parameter space 
to optimize the model and identify points of sensitivity and insen-
sitivity? How to share neuromechanical models to permit them to 
be examined, tested, modified, and extended by others?

The purpose of this review is to acquaint neuroethologists with 
the role that simulation plays in neuromechanics, and how it has 
helped address questions about functional connections between 
the nervous system, sensory and musculo-skeletal systems, and the 
body’s movement in the physical world. To do this, I will use three 
recently described sets of neuromechanical models on fly flight, 
locust jump, and cat walking to focus first on how neuromechanical 
simulations can help us to understand very complex systems, then 
on how they help us determine whether our understanding of the 
mechanisms is sufficient to account for the animal’s behavior, and 
finally on the importance of sensory feedback for adaptive motor 
performance. The issues of synergies between neural and biome-
chanical mechanisms mentioned above have recently been explored 
in an excellent review (Chiel et al., 2009), and so will not be addressed 
here. Individual answers to the common procedural questions will 
emerge from the account of each study. The final question, how to 
share neuromechanical models, is critical for the development of 
neuromechanics and will be addressed at the end.

understandIng complex systems
The biomechanics of multi-joint animal movement is often surpris-
ingly complex (McMahon, 1984), and the mechanisms of neuronal 
control of that movement is even more so. Experimental analysis 
of such complex systems necessarily occurs piecemeal, as particular 
mechanisms or functions are isolated experimentally. These include 
the kinematics (i.e., the pattern of movement) and dynamics (the 
physical forces at play in the movement) of the movement, the pat-
terns of motor command and sensory feedback that occur during 
the movement, and the circuit and synaptic organization of the 
part of the nervous system that controls the movement. Once the 
several mechanisms that compose the system have been described, 
the remaining challenge is to integrate abstract descriptions of each 
of them into a functioning model that adequately characterizes 
the system’s performance under closed-loop, hands-off conditions. 
This can only be done through simulation, where changes in all the 
system’s parameters can be observed as they unfold in simulated 
time, and the sensitivity of the overall system’s performance to each 
parameter can be assessed.

As anyone who has tried to catch a fly knows, the aerodynamic 
control of the body during flight is among the most impressive behav-
iors that animals perform; it is also among the most  challenging for 

experimenters to investigate. The flight behavior of flies is driven by 
a flight motor in which the thorax behaves like a mechanically reso-
nant box (e.g., a drum) that is activated by asynchronous excitation 
of the dorso-ventral and dorsal-longitudinal muscles that span the 
height and length of the box, respectively (Dickinson and Tu, 1997). 
The wings are attached laterally and so vibrate up and down with 
it. However, the control of flight depends on the pitch of the wings 
during each phase of their stroke, and on the movements of the head 
and thorax relative to each other and the wings. These respond to 
a variety of proprioceptive and exteroceptive sensory inputs that 
provide signals to initiate, maintain, modulate and stop flight as part 
of a dynamic, closed-loop control system.

Dickinson and his colleagues have studied flight in the fruit 
fly, Drosophila, and used a variety of techniques to describe the 
kinematics of take-off and flight (Card and Dickinson, 2008a,b; 
Fontaine et al., 2009), the role of vision and mechanosensation 
in guidance Sherman and Dickinson, 2004; Budick et al., 2007), 
the biomechanics of flight (Balint and Dickinson, 2004), muscle 
physiology and mechanics (Gordon and Dickinson, 2006), and 
aerodynamics (Fry et al., 2005; Lentink and Dickinson, 2009). This 
experimental work indicates that the fly’s nervous system combines 
a vast amount of sensory information from different modalities into 
a motor code that controls the activity of a relatively small number 
of steering motor neurons (MNs), which in turn generate rather 
subtle changes in the pattern of wing motion (Dickinson, 2006).

These results enabled Dickinson’s group to build an integrated 
model of flight control in the fly that contains five components: 
an articulated body, a model of aerodynamic forces and moments, 
a model of visual and mechanosensory inputs, a control struc-
ture, and a model of the environment that interacts with the fly 
(Figure 1) (Dickson et al., 2006). The body model includes a pair of 
wings connected to a rigid body by a pair of ball joints. The wings 
and body have dimensions and shapes which approximate those 
of the fly, with estimates of the mass, center of mass and inertia 
tensor for each. Wind forces and moments on the wings and body 
are calculated using a quasi-steady-state aerodynamics model based 
on force and moment coefficients measured in a scaled-up physical 
model of the flying fly. The environment model provides visual and 
mechanosensory inputs to the eyes and halteres, respectively, and 
both steady forces (i.e., wind streams) and perturbations (i.e., wind 

Figure 1 | A block diagram illustrating the organization of the fly flight 
model, showing the five distinct models (Controller, rigid Body 
Dynamics, Aerodynamics, environment, and Sensory Systems) and the 
signals that pass between them (in italics).
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and gravity of the animal’s body to produce the jump. As a result, the 
kick takes only a few milliseconds to complete, whereas the locust 
takes about 25 ms to leave the ground during the jump.

To determine whether the kick motor program could also 
produce the jump, Cofer et al. (2010a,b) built a neuromechanical 
model of a locust using the simulator program AnimatLab1. The 
simulated locust body was created from an anatomically accurate 
3-D graphical mesh obtained commercially. The body was divided 
into separate body and limb segments that were then re-connected 
with hinge joints. Hill-type muscle models represented the exten-
sor and flexor muscles of the leg; model parameters were set to 
experimentally determined values (Cofer et al., 2010b).

A particular challenge was to capture the biomechanics of the 
femoral-tibial joint, where the femur is linked to the tibia through 
a piece of flexible cuticle called the semi-lunar process (SLP). When 
the leg is flexed and the flexor and extensor muscles co-contract 
before a jump, half the energy of the extensor muscle is used to bend 
the SLP like an archery bow. That stored energy is then released 
with the energy stored in the extensor tension to power the jump. 
As the SLP unbends, the hinge with the tibia is accelerated distally 
as the tibia rotates around it to extend the leg. In the simulation, 
the SLP was represented by a small mass attached to the femur by a 
spring; the SLP mass was then attached to the tibia by a hinge joint 
(Cofer et al., 2010a,b). During simulated co-contraction of flexor 
and extensor muscles in the flexed leg, the SLP mass and attached 
tibia were pulled proximally by the model extensor muscle and 
the spring was stretched. The amplitude and direction of the force 
produced by bending the SLP was represented by the tension and 
direction of the stretched spring. When a jump was triggered, the 
tension in the SLP spring accelerated both the SLP mass and the 
tibia distally, while the extensor muscle pulled the proximal end 
of the tibia forward. The combined torques produced by the SLP 
spring and the extensor muscle at what is effectively a doubly hinged 
joint accelerated tibial extension, much like the rotations of the arm 
and hand of a baseball pitcher accelerates a pitched baseball.

The model neural circuit was laid out according to the published 
descriptions from the in vitro studies, with integrate-and-fire model 
MNs attached to the muscles through conductance-mediated neu-
romuscular junctions (Figure 2A, Cofer et al., 2010b). As the neu-
ronal sources that drive both the flexor and extensor MNs are still 
unidentified, the model MNs were driven by appropriate stimuli to 
reproduce the patterns of activity recorded during the kick experi-
ments (Figure 2B, Burrows and Morris, 2001). Leg extension was 
triggered by activation of a pair of inhibitory neurons, the flexor 
inhibitor MN that inhibits the flexor muscle, and the M cell, which 
inhibits the flexor MNs (Heitler and Burrows, 1977b; Gynther and 
Pearson, 1989).

The motor program was activated first with the model locust 
upside down, where it could produce a kick (Figure 2C), and then 
right side up, where it could jump (Figure 2D; Cofer et al., 2010b). 
The motor program began with an early tonic command to the set 
of flexor MNs that was followed by activation of the extensor MN to 
produce co-contraction of the flexor and extensor muscles. An exci-
tatory synapse between the extensor and flexor MNs (Figure 2A) 
increased the excitation of the flexor MNs, and tension rose to 

gusts) to the aerodynamic model. A computer model of 3-D terrain 
and visual objects provides input to the visual system; the graphical 
presentation is continuously updated to reflect the movement of the 
fly. The visual processing model begins with the time- and spatial 
filtering that occurs in the retinular cells of each ommatidium. 
Retinular cell outputs provide inputs to Hassenstein–Reichardt 
(H–R) elementary horizontal motion detectors. Wide-field hori-
zontal motion detectors collect the summed inputs of 500 H–R 
motion detectors and respond to rotation of the visual world as 
the fly turns and give a null response during linear flight. Because 
little is known of the neural circuitry that underlies flight control 
in the fly, the control model is algorithmic. It consists of a set of 
rules that determine how the outputs of the sensory system alter 
wing kinematics through changes in a set of wing deformation 
modes. These changes then create forces to produce body attitude 
changes, including pitch, yaw, and roll, and the overall aerodynamic 
force on the model.

The model has been tested in a closed-loop, visually based flight 
within a virtual tunnel, and found “to fly up the tunnel while suc-
cessfully avoiding the walls.” The authors emphasize that this is 
more a proof of concept than a biologically accurate representation, 
but as such it provides a strong foundation for the development 
of a more accurate and useful model. The fly model demonstrates 
that the neuromechanics of fly flight are understandable despite 
the tremendous complexity of the system and its environmental 
interactions. Perhaps most important, the model provides a means 
of addressing hypotheses about the flight control system that would 
be practically impossible to test via direct experimentation. Finally, 
it specifies what the neural control structures must do to control 
flight, and so provides a functional template that can guide experi-
mental analysis of the underlying neural circuits.

suffIcIency of our current understandIng
Our understanding of the neural control of animal behavior often 
depends on how we imagine the neural activity patterns recorded 
in a stationary, dissected preparation apply to the freely behaving 
animal. This issue was particularly salient in efforts to understand 
the neural control of the locust jump. Recordings from leg nerves 
and muscles made during preparation for a jump presented an 
ambiguous picture. To resolve the issue, attention was switched 
to a similar behavior, kicking, which could be evoked by locusts 
held upside down while intracellular recordings were made from 
elements of the thoracic ganglia. These recordings revealed that 
both the flexor and extensor motorneurons of the corresponding 
muscles that span the femoral-tibial joint of the back legs were co-
active before the kick (Heitler, 1974). Aided by a large mechanical 
advantage, the flexor muscle produced sufficient tension to hold 
the leg in a flexed position even as the extensor muscle contracted 
to produce nearly 15 times greater force. The kick was triggered 
when the flexors were inhibited, removing opposition to a rapid 
extensor contraction (Heitler and Braunig, 1988) that produced 
the kick (Burrows and Morris, 2001).

Although the similarities between the kick and the jump made 
it likely that the same motor program was used for both (Heitler 
and Burrows, 1977a), differences between the two behaviors raised 
the possibility that their motor programs were different. The kick is 
unloaded, whereas the thrust of the legs has to overcome the inertia 1www.AnimatLab.com
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In addition, the simulation of the SLP mechanism showed that 
it has opposing effects before and during the jump. Before the 
jump it helps maintain leg flexion against the increasing extensor 
tension. As the jump begins, it contributes strongly to leg exten-
sion to power the jump. This switch occurs as the leg begins to 
extend, when rotation of the femoral-tibial joint causes the SLP 
force vector to pass through the joint and promote leg extension. 
The SLP then effectively doubles the power of the jump, enabling 
the locust to jump twice as far as it could without the SLP (Cofer 
et al., 2010b).

the effect of sensory feedback In the closed-loop
Ever since the seminal work of Sherrington (1910) and Brown 
(1911), the relationship between centrally generated rhythmic activ-
ity and proprioceptive feedback in the generation of motor pat-
terns has been the subject of lively research and debate (Rossignol 
et al., 2006; Windhorst, 2007; Jankowska, 2008; Kiehn et al., 2008; 
Pearson, 2008). Neuromechanical simulation has begun to play an 
important role in this debate (Frigon and Rossignol, 2006; Pearson 
et al., 2006). Here I will briefly discuss four studies that focused on 
the locomotor control of the cat hind limbs (Figure 3). The first 
asked whether known circuitry and common assumptions about 
the control of walking can account for the basic patterns of locomo-
tion (Ivashko et al., 2003). The second addressed the issue raised 
by Brown and Sherrington to ask about the relative contributions 
of proprioceptive feedback and central pattern generation to stable 
walking (Yakovenko et al., 2004). The third eliminated the CPG 
to ask which of two different proprioceptive signals can promote 
stable stance-to-swing transitions (Ekeberg and Pearson, 2005), 
while the fourth showed how these proprioceptive signals can tune 
the CPG to rhythms that are appropriate for the environmental 
and kinematic context in which the animal is walking (Prochazka 
and Yakovenko, 2007).

Ivashko et al. (2003) wished to determine whether realistic 
models of spinal circuits, muscles, and limb biomechanics could 
interact to account for the major features of locomotion in the 
cat, including the kinematics, EMG patterns and ground reaction 
forces. The cat hind limbs were each modeled as a set of three rigid 
segments coupled by frictionless joints and linked to a common 
segment that represented the pelvis and trunk. The anterior end 
of the trunk segment was maintained at a constant level from the 
ground. Muscles were represented by a Hill-type biomechanical 
model, and a single compartment Hodgkin–Huxley-like model 
represented the neurons. The movement of each leg was produced 
by the contractions of nine muscles that spanned either one or two 
joints (Figure 3). Local control of each leg was governed by a cir-
cuit consisting of an alpha MN, a Renshaw inhibitory interneuron 
(IN), and INs that responded to Ia and Ib-type signals from the 
muscles. This circuit was in turn controlled by two layers of central 
pattern generator (CPG) INs: “principal” CPG INs that produced 
each phase of the movement and “switching” CPG INs that pro-
duced phase transitions during the movement. Together these CPGs 
excited alpha MNs and excited or inhibited the Ia and Ib INs to 
excite or inhibit agonist and antagonist MNs and inhibit unwanted 
reafference according to the phase of the rhythm. The organization 
of the CPG circuitry was based on the CPG circuitry that controls 
breathing in the medulla (Ivashko et al., 2003). The model was 

nearly 1 N in the flexor muscle and 14 N in the extensor muscle 
(Figure 2B). A burst of activity in the M cell and flexor inhibitor 
MN led to a drop in flexor muscle tension that freed the tibia to 
extend under the force of both the extensor muscle and the SLP. 
The kick was over in 5 ms, while the animal took 25 ms to leave the 
ground after the start of the jump. By various measures, including 
the height, distance, and duration of the jump, the duration of 
the jump impulse, and the peak jump velocity, acceleration and 
power, the simulated jump matched experimentally determined 
values (Bennet-Clark, 1975; Heitler and Burrows, 1977a; Burrows 
and Morris, 2001; Cofer et al., 2010b). Similarly, the simulated kick 
velocity and duration also matched the experimental measures of 
the kick. Cofer et al. (2010b) concluded that the simulation cap-
tured the main features of both the kick and the jump, and that the 
same motor program could readily produce both behaviors.

D

C

1.368 s

1.368 s 1.373 s

1.393 s

B

Neurons

Flexor Tension

Extensor 
Tension
Distance Jumped
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Figure 2 | Simulated locust kick and jump. (A) Neural circuit, with flexor 
(red) and extensor (green) motor neurons, inhibitory (gold) neurons, flexor 
command (lavender) neuron, the flexor and extensor muscles, and the tendon 
lock mechanism that prevents premature extension. (B) Jump motor program. 
Top: flexor (red), extensor (green), and inhibitory motor neurons (gold); 2nd: 
Flexor muscle tension; 3rd: Extensor muscle tension; Bottom: longitudinal 
(blue) and vertical (green) distance moved. (C) The kick immediately before 
(left) and 5 ms later (right). (D) The jump immediately before (left) and 25 ms 
later (right) as the feet leave the ground. Adapted from Cofer et al., 2010b.
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activation of the alpha MN activity, with the CPG providing the 
remaining 70%. Simulations showed that without proprioceptive 
feedback, the CPGs could produce a stable gait over a broad range 
of muscle activation levels. When CPG activation was reduced to 
levels that could not support stable walking alone, proprioceptive 
feedback provided the needed stability. At higher levels of CPG 
activation, proprioceptive feedback improved stability somewhat 
and caused the walking gait to become more erect and vigorous.

In these last simulations, one role of sensory feedback was to 
excite resistance reflexes that opposed gravity (Figure 3, #5, 6). In 
addition, transitions between the stance and swing phases were 
known to depend on sensory feedback (Figure 3, #7, 8), and so 
the model was used to explore the effect of rule-based transitions 
on locomotor stability. Such rules use the phase (stance or swing) 
of the limb movement and proprioceptive sensory information 
that describes its position to determine whether the conditions 
are met for a transition between states. The rule for determining 
the stance-to-swing transition was “IF stance AND hip is extended 
AND leg is unloaded, THEN swing”; a similar rule determined the 
swing-to-stance transition. These rules cut short the motor activa-
tion pattern for a given state if the criteria for transition were met, 
effectively resetting the rhythm at each half cycle. Use of the rules 
extended the range of stable cadences and locomotor velocities 
obtained with a fixed CPG frequency and set of swing and stance 
muscle activation patterns by enabling the biomechanical feedback 
to determine when the phase transitions would occur.

The proprioceptive contributions to the IF-THEN rules that 
governed locomotor phase transitions were examined more closely 
by Ekeberg and Pearson (2005) in a three-dimensional model of the 
cat hind limbs. Hearkening back to Sherrington (1910), they stud-
ied which proprioceptive feedback signals could signal transitions 
between walking phases according to these rules and produce stable 
locomotion in the absence of a CPG. Experiments had identified hip 
extension (Figure 3, #8) and unloading ankle extensors (Figure 3, 
#7) as two factors that were important for timing the transition 
from the stance phase of stepping to the swing phase (Donelan 
and Pearson, 2004; McVea et al., 2005). Ekeberg and Pearson used 
their model to determine how either factor affected the stepping 
pattern when used alone or together to govern the transition. The 
stance-to-swing transition occurred when the force in the ankle 
extensor decreased sufficiently and/or the hip joint was sufficiently 
extended; muscles were then excited simultaneously to lift the foot 
off the ground and begin the swing phase. The simulations showed 
that transitions promoted by the two signals separately had dif-
ferent effects on stability. When liftoff depended on a sufficient 
drop in ankle extension force (the “unloading rule”), alternating 
stepping of the two legs was preserved in the face of a perturbation 
of either leg. A reduction in ankle extension force occurred as the 
load shifted to the opposite leg, so that perturbations of either leg 
may affect when the transition occurred, but not the relationship 
between the two legs. However, perturbations of one leg changed 
the timing away from alternate stepping when the hip extension rule 
was used alone, and this change decreased the locomotor stability. 
These simulations demonstrated the importance of mechanical 
linkages between legs for maintaining stability during locomotor 
state transitions, and how proprioceptive triggers for those transi-
tions might affect that stability.

able to account for most features of the locomotor pattern, but 
differed from experimental recordings in the activation pattern of 
some muscles and in the ground reaction forces produced. Despite 
these differences, the Ivashko et al., model demonstrated that the 
interaction of a CPG network with proprioceptive feedback could 
produce stable walking rhythms that closely approximated those 
of the cat.

Proprioceptive feedback had been found to contribute up to 30% 
of the extensor muscle activation in the stance phase of the step 
cycle (Prochazka et al., 2002), which raised the question of how pro-
prioceptive inputs contributed to stable walking. Yakovenko et al. 
(2004) used a similar model to address this question. Spindle and 
tendon organ models provided Ia and Ib responses related to the 
length and force developed by the muscles, respectively (Figure 3, 
#5,7); the responses were delayed by 35 ms before contributing to 
the activation of the alpha MNs to reflect the recorded delay of up 
to 40 ms. The Ia and Ib afferents each contributed 15% of the total 
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Figure 3 | illustrative diagram of the neuromechanical system of the cat 
hind leg; details differ from those presented in the four papers reviewed. 
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excite Swing CPG elements to promote stance–swing transition.
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to the future questions asked above without  neuromechanical 
 simulation as an essential tool. Neuromechanical simulation ena-
bles descriptions of the body parts and their relationships to each 
other and the environment to be assembled into a model. The 
model can be challenged first to replicate the experiments that 
provided the data on which it is based, and then to simulate neural 
and behavioral interactions that cannot be studied experimentally. 
Simulations can help determine whether the current understand-
ing of those interactions is sufficient to account for the animal’s 
behavior, identify parameters to which the system is sensitive and 
insensitive, and reveal the mechanisms behind emergent proper-
ties of the system. Although everyone works to build successful 
models, it is likely that neuromechanical models make their most 
valuable contribution when they fail, for it is then that gaps in our 
understanding are revealed that must be spanned by additional 
experiments or additional thought.

sharIng neuromechanIcal models
The strength of experimental science is that any finding can be 
tested, modified, or extended by any properly trained and equipped 
scientist because the subjects of study are available to all. This is 
not the case with most neuromechanical models, which are devel-
oped to run on custom software that is not readily used by other 
investigators. This difficulty in sharing is arguably the single most 
important impediment to the widespread use of neuromechanical 
simulation by the neuroscience community (Pearson et al., 2006). 
The challenge of learning to use a single-purpose simulator to 
test, modify, and extend another investigator’s model is likely to 
be too great even for those whose research is directly affected by 
the model’s results. In addition, the challenge of creating both a 
neuromechanical model and a simulator on which to run it makes 
contributions to the field difficult for all but those with a back-
ground in programming and numerical solving techniques.

The problem can be addressed through the development of a 
general-purpose neuromechanical simulator, much like NEURON 
(Hines and Carnevale, 2001) and GENESIS (Bower and Beeman, 
2007) provide for neuronal simulations and OPENSIM (Delp 
et al., 2007) provides for biomechanical simulations. One solution 
is provided by AnimatLab1, a free, open-source neuromechanical 
simulator for any skeletal animal (Cofer et al., 2010a). AnimatLab 
has been used to simulate locust jumping (described above) (Cofer 
et al., 2010b), crayfish walking (Rinehart and Belanger, 2009), cat 
paw shaking (Klishko et al., 2008), and human arm flexion (Cofer 
et al., 2010a). To my knowledge, AnimatLab is presently unique in 
its ability to simulate a wide variety of neuromechanical systems, 
and so could become a common platform where models are built, 
tested, shared, and extended. Regardless of whether it or some other 
neuromechanical simulator becomes the common tool of choice, 
some such means for sharing, testing, modifying, and extending 
neuromechanical models must be adopted by the research com-
munity to achieve the rapid development that the field of neuro-
mechanics deserves.
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Although these last two studies showed that CPGs and 
 proprioception-dependent phase switching could each produce 
stable locomotion, it was apparent that together they could produce 
stable walking over a larger range of gaits and contexts. However, 
it was unclear how they would interact to produce the locomotor 
pattern adopted by an animal walking in a particular context. 
That pattern is characterized by a pair of “phase/duration plots”, 
in which the duration of each phase, stance or swing, is plotted 
against step duration, and a bout of locomotion follows a pair of 
operating points along those curves. In intact animals, the stance 
phase/duration plot is higher and steeper (more “dominant”) than 
the swing phase plot. In “fictive walking” preparations, where the 
proprioceptive feedback is eliminated, either stance or swing are 
dominant in a given preparation. These experimental results sug-
gested that proprioceptive reafference helps to bias the system 
towards the stance phase during normal walking. Prochazka and 
Yakovenko (2007) examined this with their neuromechanical cat 
model, and found that the stance phase was always dominant in 
walking simulations where proprioceptive feedback helped time 
transitions between phases. This result indicates that the kinemat-
ics of walking and the sensory feedback it generates normally help 
bias the system in favor of the stance phase. Moreover, the feedback 
may also help adjust the CPG rhythm to match the constraints 
imposed on the walking kinematics by the body and environ-
ment. For example, if the walking surface is slippery, the leg may 
move backward and finish stance before the stance portion of the 
CPG cycle is done. Sensory feedback from the extended leg would 
terminate the stance phase early on each cycle until the CPG had 
adjusted by moving the operating point along the phase/dura-
tion curve to shorter step durations. They suggested that walking 
could be made stable over a wide range of CPG frequencies if 
the central drive adjusted the operating points on the curves to 
match the constraints placed by the terrain and sensory feedback 
on state transitions.

These simulation studies of cat walking emphasize the impor-
tance of proprioceptive feedback for the neural control of move-
ment, particularly in uncertain environments, where feedback 
during each step is needed for stable, coordinated movement. 
While CPGs provide the basic pattern of motor activation, prop-
rioceptive feedback helps maintain posture, increases locomotor 
stability, and helps time state transitions in the face of immediate 
biomechanical demands.

While these are clear accomplishments, they are just the begin-
ning. For example, cats can vary their posture during walking, to 
adopt a high, erect posture when facing an opponent, and a low 
posture when stalking a prey. The coordination between postural 
states and circuits and locomotor states is largely undescribed. The 
memory of the location of an object in the path of a hind leg can 
guide a stepping motion over it (McVea and Pearson, 2006); this 
suggests that locomotor programs result from motor plans that 
predict the consequences of movement and are continually updated 
based on recent experience, perceptions of the terrain, and the 
intentions of the animal.

The set of neuromechanical simulations reviewed here make clear 
that the neural control of movement cannot be understood outside 
of the neuromechanical context, and they show how this complex-
ity can be addressed. Indeed, it is hard to contemplate approaches 
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