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from either category. Our review is not exhaustive but intends to 
make a case for the existence of such a mechanism in many, if not 
all moths.

SpecieS Recognition by pheRomone blendS
Animals are, by necessity, specialists when searching for mates. 
The consequences of pursuing a mate from a related but repro-
ductively isolated species are dire for animals that expend much 
energy in long-distance flights (Bartholomew and Casey, 1978). 
Moths have evolved a system of sex-pheromonal communica-
tion between calling females (senders) and conspecific males 
(receivers), incorporating the production of a suite of chemicals 
by females. These consist, for the most part, of aliphatic acetates, 
alcohols, and/or aldehydes with hydrocarbon chains 10–22 car-
bon atoms in length and often with one or more double bonds 
(Byers, 2005). This chemical alphabet allows for numerous unique 
molecules to be used as components of signals. Considering only 
the possible variations of the most commonly used molecules, 
Byers (2005) estimates there are over 100,000 possible pheromo-
nal volatiles. Here, we review the evidence from the peripheral 
reception of pheromone odors in moths that suggests the exist-
ence of a template in the AL for the recognition of complex odors. 
We particularly emphasize how changes in behavioral selectiv-
ity that follow changes in the periphery can be understood as 
an alteration of the input to a pre-existing AL template. In the 
proceeding sections, we will describe the evidence for the nature 
of this template.

intRoduction
The olfaction-based behavior of an animal is governed by a trade-
off: focusing on a narrow range of innately attractive odors effi-
ciently guides the animal to mates and food sources that are most 
likely to be rewarding, while a flexible olfactory system that explores 
new odors and associates new rewards with them is resistant to 
changes in the availability of any one source (Waser et al., 1996; 
Chittka et al., 1999; Memmott et al., 2004). For a moth emerging 
from its pupal stage, with only a few days to a few weeks of adult life 
ahead of it to eat and mate, coming prepared with pre-programmed 
search images for the mates and night-blooming flowers they are 
likely to encounter, along with a capacity to learn new sources of 
food, could be highly valuable.

Most moths take flight at night, when the utility of visual signals 
is at a nadir. As nocturnal flyers, moths rely mainly on olfaction 
(Balkenius et al., 2006). Chemical cues released into the air can 
guide moths to sources of food or mates over long distances (Wall 
and Perry, 1987), and are behaviorally active at remarkably low 
concentrations. For example, only a few molecules of pheromone 
or plant odors can trigger increased heart rates in moths (Angioy 
et al., 2003).

Here, we review neuroethological findings about selected, innate 
mate-seeking and feeding behaviors of moths and ask if there is 
a common operating principle for a neural substrate underlying 
recognition of an innately attractive odor. We propose that for both 
sex pheromone and food odors, the circuitry of the antennal lobe 
(AL) produces a pattern of coordinated output for attractive odors 
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The use of fine variations on a single molecular theme 
requires a male receiver to have sufficiently specific receptors 
to accept certain variants and reject all others. The antennae 
of male moths carry olfactory organules – olfactory sensilla-
containing olfactory receptor cells (ORCs) that respond with 
such specificity. For instance, ORCs of one phenotype present in 
a particular species respond specifically to a 14-carbon acetate 
with a double bond at carbon 11 in the cis configuration, and not 
to the trans isomer (Wanner et al., 2010). Pheromone-binding 
proteins in the lymph that bathes ORCs in antennal sensilla can 
increase the specificity of receptor responses further (Grosse-
Wilde et al., 2006).

Most moth species employ multi-component pheromone mix-
tures instead of monomolecular signals (Byers, 2006). Two factors 
likely necessitate this level of complexity. First, genera with closely 
related, sympatric species often have sex pheromones with at least 
one component in common (Byers, 2006). Second, there are limits 
to the specificity of an ORC, and there are many examples of ORCs 
in one species that respond to pheromone components used by 
other species (Grant et al., 1989; Lofstedt, 1990; Berg et al., 1995; 
Domingue et al., 2007b, 2008). This may reflect an upper limit to 
the ability of a receptor to reject molecules that are highly similar 
to the preferred ligand and would lead to ambiguity between a 
non-preferred ligand at high concentration and a preferred ligand 
at low concentration.

Related moth species also may use pheromone mixtures with 
identical components, but in ratios specific to each species (Baker, 
2008). A pattern is emerging that describes a large number of moth 
pheromone mixtures: a “major” component (providing a majority 
of molecules in the blend) and one or more “minor” components 
(often present at a much lower concentration but nevertheless 
required to elicit behavior in a recipient moth). Moreover, attrac-
tion to a pheromone blend may be inhibited by “antagonistic” 
compounds in the pheromone mixtures of other species (Baker 
and Heath, 2004). Species recognition thus requires a form of rudi-
mentary pattern recognition, dependent on the arrangement of 
features in a complex stimulus, in the olfactory system of a male 
moth (Baker, 2008).

Clues about the nature of the pattern-recognition mechanism 
come from several observations of individual moths for which the 
parameters of an acceptable pattern have shifted. Accompanying 
these behavioral shifts are some revealing changes in the responses 
of the ORCs to pheromone blends typically rejected by “normal” 
moths. In a laboratory colony of Trichoplusia ni, a strain spontane-
ously arose in which females emit roughly equivalent amounts of 
the major and minor pheromone components instead of the typical 
1:100 ratio (Haynes and Hunt, 1990). Over several generations, 
males emerged that were attracted to the mutant blend (Liu and 
Haynes, 1994). In normal males, the ratio between the major and 
minor components is reflected in the ratio between responses of 
the corresponding “major” and “minor” ORCs (Domingue et al., 
2009). In the males evolved to accept the mutant blend, the response 
of the minor ORC was decreased, such that the nearly equal ratio 
between components still produced an unequal ratio of responses 
between the types of ORCs (Domingue et al., 2009). The ratio of 
ORC responses of evolved males to the mutant blend was thus 
similar to that of normal males to the normal blend.

Another case study provides an additional clue. In males of the 
species Ostrinia nubilalis, ORCs for the major and minor compo-
nents of the conspecific sex-pheromone blend also respond weakly 
to the pheromone components of a related species, O. furnacalis, 
which differ only in the position of the double bond (Domingue 
et al., 2007a). This illustrates the utility of encoding schemes that 
depend on more than just the presence of a particular pheromone 
molecule (i.e. “labeled-line” coding), as a high concentration of 
O. furnacalis components would be indistinguishable from a low 
concentration of conspecific components. In contrast, the relative 
activity of neurons responding to an odor is typically consistent 
across concentrations, and is hypothesized to underlie “concen-
tration invariant” encoding of odor identity (Cleland et al., 2007; 
Uchida and Mainen, 2007; Asahina et al., 2009).

Despite the incomplete specificity of their ORCs, only rare O. 
nubilalis males are attracted to the O. furnacalis pheromone, in 
which the major and minor components are present in an approxi-
mately 1:1 ratio (Linn et al., 2003). Major and minor ORCs in both 
normal and rare males have similar sensitivity to the major and 
minor components of the conspecific pheromone and thus produce 
a ratio of responses congruent with the 99:1 ratio of components 
in an attractive blend (Domingue et al., 2007a). Responses to the 
heterospecific O. furnacalis components in normal males also reflect 
the 1:1 ratio of components in the pheromone of that species, allow-
ing the animal to discriminate between the blends. In the rare males, 
the response of the minor ORC to the heterospecific pheromone 
component is greatly diminished, producing a response closer to 
99:1 when presented with a 1:1 stimulus and thus facilitating a 
behavioral response to the odor (Domingue et al., 2007a).

These studies and others on peripheral changes in pheromone 
processing suggest the existence of an internal template for the ratio 
of components in a conspecific pheromone blend (Baker, 2008). In 
both examples, sensitivity in the periphery changed, producing a 
response to a new mixture that had a ratio of major and minor ORC 
activation similar to that observed in response to the conspecific 
blend. Where might the template for such a pattern be located? 
The axons of pheromone-responsive ORCs terminate in the AL in 
a set of large, male-specific glomeruli called the macroglomerular 
complex (MGC) (Matsumoto and Hildebrand, 1981). An addi-
tional clue from the periphery suggests that the template exists 
there, at least in part.

The species O. nubilalis comprises two strains, differing only 
in the ratio of components produced by females and attractive to 
males: an “E-strain” and a “Z-strain,” named for the isomer of the 
major pheromone component (Carde et al., 1978; Anglade and 
Stockel, 1984). The major component for one strain is the minor 
component for the other, and vice versa. In both strains, major 
ORCs terminate in the larger of two glomeruli in the MGC, and 
minor ORCs in the smaller (Karpati et al., 2008).

This arrangement is also found in male moths of the subfamily 
Heliothinae. Evidence from both the input ORCs (Berg et al., 1998, 
2005; Galizia et al., 2000; Lee et al., 2006a,b) and output projection 
neurons (PNs) (Christensen et al., 1995b; Vickers and Christensen, 
1998, 2003; Vickers et al., 1998) in the MGC demonstrates that the 
major component, shared across all four species studied in detail, 
is processed in the largest glomerulus, called the cumulus. One 
or more minor components, and in some species a  component 
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innately attRactive floRal odoRS and  
SynchRonouS codeS
Beyond the enlarged glomeruli of the MGC in the AL of a male 
moth lie a larger number of “ordinary” glomeruli, in a region called 
the main AL (Anton and Homberg, 1999). These glomeruli process 
sensory input about volatiles from flowers (sources of nectar) and 
foliage of host plants (on which females lay eggs) (Galizia et al., 
2000). Although more is known about the pheromone-processing 
pathways of the MGC, emerging evidence suggests that the process-
ing of innately attractive, complex odors in both regions of the AL 
share fundamental traits.

While the MGC and main AL mediate different olfactory behav-
iors, there are many similarities between the two compartments 
(Christensen and Hildebrand, 2002). However, evidence from cal-
cium-imaging (Galizia et al., 2000; Carlsson et al., 2002; Hansson 
et al., 2003) indicates that aggregate activity (calcium activity repre-
senting input, local circuitry, and output) in response to pheromone 
and plant odors is isolated to the MGC and main AL, respectively. 
Also, intracellular recordings (Reisenman et al., 2008) suggest that 
while the main AL receives significant inhibition originating from 
the MGC, the MGC receives no inhibition from some glomeruli, 
and only receives inhibition when the AL is activated by high con-
centrations of floral odors. Thus, the two are functionally separate 
compartments that may interact when the animal encounters both 
pheromone and floral odors. A similar arrangement is suggested 
by the anatomical arrangement of glomeruli in the antennal lobe 
of Drosophila, where classes of local neurons arborize in glomeruli 
across the AL, but avoid those involved in processing putative phe-
romone odors (Wilson and Laurent, 2005; Chou et al., 2010).

While pheromonal stimuli are the gold standard for innate, 
olfaction-based attraction and discrimination, naive moths are also 
innately attracted to the scent of certain flowers in preference to others 
(Plepys et al., 2002; Raguso and Willis, 2002; Riffell et al., 2008). The 
co-evolution of flowers and their moth pollinators is most remarkable 
in flowers pollinated by hawk moths (Grant and Grant, 1983). Those 
flowers have long, slender nectaries accessible to the moth’s long pro-
boscis (Darwin, 1862; Nilsson, 1988), large white, reflective surfaces 
(Raguso et al., 2003), and a strong, sweet fragrance. M. sexta moths 
exhibit innate attraction to the scent of the flowers of Datura wrightii, 
which is seasonally abundant in part of their range (Raguso and Willis, 
2002; Riffell et al., 2008). Although this flower releases a mixture of 
volatiles consisting of more than 65 components (Raguso et al., 2003), 
neurons in the AL respond robustly to only nine of those compounds 
(Riffell et al., 2009a), and a mixture of just three of these volatiles is 
sufficient to attract naive moths (Riffell et al., 2009b). Thus the initially 
daunting complexity of a floral scent may be reduced in the olfactory 
processing of an animal to something more closely approximating 
that of a pheromone blend. A behavioral focus on a reduced subset 
of volatiles in a complex mixture also has been observed recently in 
honey bees (Reinhard et al., 2010).

Owing perhaps in part to the more broadly tuned ORCs that inner-
vate the main AL (Wang et al., 2003; Hallem and Carlson, 2006), 
mixtures of plant volatiles activate a significantly larger number of 
glomeruli (Lei et al., 2004; Skiri et al., 2004; Pinero et al., 2008) than 
do pheromones. Nevertheless, simultaneous recordings from neurons 
across the AL show that in response to an innately attractive floral 
scent, a pattern of firing synchrony emerges (Riffell et al., 2009b). This 

that antagonizes behavior, are processed in smaller glomeruli 
 surrounding the cumulus. The proximity of these glomeruli, and 
the conserved functional relationship across species, suggests that 
they are incorporated into a conserved network at the level of the 
AL that performs the initial processing necessary for species-specific 
pattern recognition.

The network architecture of the AL consists primarily of inhib-
itory, GABAergic neurons that have arborizations throughout the 
AL (Anton and Homberg, 1999). These local interneurons (LNs) 
connect the glomeruli of the MGC and facilitate reciprocal inhibi-
tion between them (Waldrop et al., 1987; Christensen et al., 1993; 
Christensen and Hildebrand, 1997; Lei et al., 2002). This is best 
established in Manduca sexta, a species for which two pheromone 
components in a 1:2 ratio are necessary and sufficient for attrac-
tion of male moths to the source of the stimulus (Tumlinson 
et al., 1989). Stimulation with one component activates ORCs 
projecting to one glomerulus (Kaissling et al., 1989; Christensen 
et al., 1995a), PNs arborizing in that glomerulus (Christensen 
and Hildebrand, 1987; Hansson et al., 1991), and LNs arboriz-
ing in both glomeruli (Christensen et al., 1993), and inhibits the 
background firing of PNs in the MGC glomerulus activated by 
the other component (Christensen and Hildebrand, 1997; Lei 
et al., 2002).

Information about the presence, and potentially the quan-
tity, of each component is thus transmitted between glomeruli. 
The effect of these inhibitory inputs is not to reduce the output 
carried by PNs in response to a blend of both pheromone com-
ponents, but rather to increase the coordination, or synchrony, 
of their action potentials (Lei et al., 2002). Synchrony between 
spikes produced by PNs arborizing in the same glomerulus, but 
not by PNs arborizing in neighboring glomeruli, increased in 
response to the blend. This result is similar to what is seen in 
the Drosophila AL, though in that system the effect does not rely 
on interglomerular inhibition (Kazama and Wilson, 2009). In 
contrast, the degree of synchrony between moth MGC PNs is 
correlated with the strength of inhibition they receive from the 
neighboring glomerulus (Lei et al., 2002). Synchrony provides 
an additional coding dimension (Singer, 1999; Biederlack et al., 
2006) in the output of the MGC, such that the presence and 
intensity of each pheromone component can be encoded by the 
rate of firing of individual PNs, while the presence of both com-
ponents together in a mixture is encoded in the coordination of 
firing of PNs. Conceptually, synchronous firing of two neurons 
can be thought of as a new, active, virtual neuron that is more 
effective in driving responses down-stream and more selective 
to behaviorally relevant mixtures than either of the neurons that 
produce it (Ghose et al., 1994).

Synchrony, typically shaped by inhibitory networks, has been 
investigated and debated for years as a possible mechanism for 
“binding” the features of a complex stimulus to produce a unitary 
representation (Engel et al., 1992; Engel and Singer, 2001; Lestienne, 
2001; Robertson, 2003; Averbeck and Lee, 2004). We propose that 
the inhibitory network linking MGC glomeruli provides the mecha-
nism by which the features of an encountered pheromone mixture 
are compared to an internal template for the conspecific mixture, 
and the output of synchronous spikes encodes a blend that fits 
this template.
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odor-processing main AL, innately attractive odors produce pat-
terns of synchronous output. We have presented the available 
evidence that synchrony is the feature of AL output that encodes 
the innate salience of an odor. The mechanism underlying this 
firing synchrony is unknown, but future investigations can benefit 
from comparisons between pheromonal- and plant-odor-coding 
networks. It is important to note that this function of the AL does 
not preclude other functions, such as lateral inhibition, decor-
relation, and gain control (Wilson and Mainen, 2006), which may 
occur in tandem. Nor does it invert the tendency to attribute too 
little to the AL by attributing too much, as there are certainly 
more processes in higher olfactory centers linking stimulus and 
behavior.

Our model of processing of innately attractive odors in the AL is 
depicted in Figure 1. Both sex pheromone and plant odors consist of 
mixtures of components present in various proportions (grayscale 
and colored dots in Figures 1A,E, respectively). A moth apparently 
requires only a subset of these volatiles to initiate innate behaviors. 
In the male-specific, pheromone-processing subsystem, each of 
multiple highly specific receptors (represented by various shades 
of gray in Figure 1B) responds to only one of the components of 
the mixture. In contrast, receptors in the plant-odor-processing 
subsystem are variously selective (indicated by the color of the 
ORN in Figure 1F) and sensitive (indicated by the saturation of the 
color) to one or more components of the plant odor. Plant odors 
thus are represented across a population of ORCs. A map of the 
connectivity of ORCs to their main glomerular targets in the AL 
is not yet available in detail. Pheromone-responsive ORCs provide 
synaptic input to the large glomeruli of the MGC (Figure 1C), 
where LNs (represented by blue arrows) mediate reciprocal inhi-
bition between glomeruli. Although most moths have 3–4 MGC 
glomeruli, we currently have evidence for only the interaction of 
two MGC glomeruli in encoding a pheromone mixture.

In response to stimulation with the pheromonal mixture, PNs 
in each MGC glomerulus produce more synchronous spikes (red 
raster lines superimposed on gray and black arrows in 1C) with 
other PNs in the same glomerulus. Similarly, an innately attractive 
odor produces a pattern of synchrony in the main AL (indicated 
by black lines in Figure 1G). The output of each subsystem (green 
arrows in Figures 1D,H) that encodes the odor is thus a pattern 
of synchrony between PNs in the same glomerulus for pheromone 
odors (Figure 1D) and across multiple, heterogeneous PNs in the 
main AL (Figure 1H).

The particular features of this scheme, i.e. the importance of the 
configuration of a complex stimulus and encoding of higher dimen-
sions of a stimulus via synchrony, parallel those uncovered in other 
work (Meister, 1996; Dan et al., 1998; Krahe et al., 2002; Cleland et al., 
2007; Uchida and Mainen, 2007; Marsat et al., 2009; Avargues-Weber 
et al., 2010) and stems naturally from the observation that sensory 
systems are tuned, at various levels, to stimuli that are important for 
survival (Atick, 1992; Dusenberry, 1992). The fundamental similari-
ties between olfactory information processing and storage in brains 
separated by hundreds of millions of years of evolution are becoming 
clearer and more numerous over time (Hildebrand and Shepherd, 
1997; Davis, 2004; Ache and Young, 2005; Wilson and Mainen, 2006; 
Touhara and Vosshall, 2009). It seems likely that much of what is 
learned from moths will find parallels in other animals.

pattern is conserved in response to attractive blends with reduced 
numbers of components and is distinct from patterns generated by 
non-attractive mixtures and single components (Riffell et al., 2009b). 
Attractive odors also generate a distinctive pattern of firing rates across 
the ensemble of neurons. However, by using a shift-predictor measure 
of synchrony (Perkel et al., 1967), the authors ensure that the measures 
of synchrony and firing rate are independent. Thus both firing rate 
and synchrony may independently encode the presence of attractive 
floral scents (Riffell et al., 2009b). Synchrony, but not firing rate, is 
maintained across a range of concentrations that were detectable and 
attractive to the animal, providing a neural correlate of “concentra-
tion invariance” (Riffell et al., 2009a). An ensemble of synchronously 
responding neurons, innervating a larger number of glomeruli, thus 
is involved in encoding an innately attractive floral odor in a manner 
similar to that observed with sex pheromone in the MGC.

A fairly superficial analysis of the output of the AL thus has 
suggested that pheromonal and plant-odor processing share com-
mon mechanisms, wherein innately attractive mixtures of volatiles 
activate innate templates in the AL network, producing synchro-
nous output among PNs. Particular patterns of synchrony are cor-
related with innate olfactory behaviors, and are absent in response 
to stimuli that are not attractive (Riffell et al., 2009b). Definitive 
proof of this hypothesis will require a pharmacological or genetic 
manipulation that disrupts synchrony in response to a normally 
attractive odor, and consequently behavior.

As local neurons arborize similarly among glomeruli in the main 
AL and in the MGC (Hoskins et al., 1986), it is likely that similar 
networks of reciprocal inhibition are involved in both regions of 
the AL. Indeed, data from studies of inhibition between glomeruli 
suggest a possible mechanism. For a small number of glomeruli 
that have been tested, interglomerular inhibition is not symmetrical 
(Reisenman et al., 2008). Data from calcium-imaging studies of 
honey bees and Drosophila melanogaster suggest that the strength of 
inhibitory connection is specific to each pair of glomeruli (Sachse 
and Galizia, 2002, 2003; Linster et al., 2005; Silbering and Galizia, 
2007). A network of inhibitory connections, set according to some 
genetic program, could transform ORC inputs responding to a 
range of innately attractive odors into particular patterns of syn-
chronized PN output, to be read at higher levels of processing.

Like honey bees, moths can learn readily to associate odors with 
rewards by both classical conditioning (Hartlieb, 1996; Fan et al., 
1997; Daly and Smith, 2000) and in more naturalistic protocols 
related to foraging (Cunningham et al., 2004; Riffell et al., 2008). 
Evidence for learning in the wild also exists, as moths are found to 
feed from flowers to which they are not innately attracted when the 
preferred, innately attractive flower is scarce (Riffell et al., 2008). 
Simultaneous recordings from moths learning to associate an odor 
with a sucrose-solution reward reveal that neurons are recruited into 
the ensemble encoding the rewarded odor (Daly et al., 2004). Further 
research will clarify whether these changes make the representation 
of a learned odor more similar to an innately attractive odor.

concluSionS
We have reviewed evidence that innate odor attraction in moths 
is mediated by mechanisms in the AL that recognize and respond 
to the configuration of a complex odor. In both the specialized, 
pheromone-processing MGC and the more generalized, plant-
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Figure 1 | Processing of innately attractive odor mixtures in the sex-
pheromonal (A–D) and plant-odor (e–H) subsystems of the moth’s antennal 
lobe. (A) Sex pheromones of moths typically comprise a “major” component 
(black circles) and one or more “minor” components (gray and light gray circles). 
(B) Pheromonal ORCs respond specifically to one of the components of the 
pheromone (colors corresponding to component colors in A). (C) Pheromonal 
ORCs synapse in glomeruli (large ovals). Glomeruli are connected by LNs (blue 
arrows) that mediate reciprocal inhibition. The output of PNs in each glomerulus 
(gray and black lines with superimposed spike rasters) in response to the 

pheromone includes a high proportion of synchronized spikes (red rasters). 
(D) Trains of synchronous spikes comprise the mixture-specific output of the 
MGC. (e) Plant odors typically include a large number of volatiles (colored circles), 
of which only a few may be necessary to elicit behavior. (F) Multiple ORCs 
respond to plant volatiles to varying degrees (colors represent specificity to 
correspondingly colored component from E, saturation of color represents 
sensitivity). (g) Stimulation with an innately attractive odor produces a pattern of 
synchrony (black lines) across the AL. (H) The mixture-specific output of the main 
AL is characterized by a pattern of synchronized firing of PNs from across the AL.
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