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More recent comparative studies with diverse species scattered 
across a divergent range of animal phyla have also repeatedly dem-
onstrated roles for the biogenic amines, and especially dopamine, 
in reward-seeking and reward learning. This raises the question of 
whether the function of dopamine in reward-seeking and learning 
has been broadly conserved across animal phyla, or whether this is 
a case of convergent evolution. In this review we discuss the evi-
dence that dopamine affects reward responses across the Nematoda, 
Vertebrata, Platyhelminthes and Mollusca, representing highly diver-
gent phyla. We then discuss how phylum Arthropoda appear to be 
an exception in that most studies have shown reward responses and 
reward learning to be affected by octopamine rather than dopamine. 
Finally we place this information in an evolutionary context.

Dopamine anD rewarD responses in nematoDa, 
platyhelminthes, mollusca, anD Vertebrata
Dopamine has been shown to affect responses to reward in 
extremely diverse animal groups, but the documented effects of 
dopamine vary. Most studies with invertebrates have used food 
stimuli as rewards since these tend to elicit the most robust behav-
ioral responses and learning.

Nematodes (e.g., Caenorhabditis elegans) possess one of the sim-
plest animal nervous systems, but even in this animal, dopamine 
affects the expression of a form of food-seeking behavior. C. 
elegans possesses dopaminergic mechanosensory neurons that 
release dopamine in the presence of bacterial food (Sawin et al., 
2000; Rivard et al., 2010). Dopamine release from these neurons 
reduced crawling speed (Sawin et al., 2000; Rivard et al., 2010), 
and dopamine modulation of the locomotor circuit also increased 
turning behavior (Hills et al., 2004). Such behavioral responses 
to food are greater in starved worms than fed worms (Sawin 
et al., 2000). These changes in locomotor behavior in response 
to food are a very simple form of reward-seeking behavior. The 

introDuction
Most motile animals show some form of active foraging behavior to 
locate resources they need in their environment, and will actively avoid 
stimuli that are harmful to them. These basic behavioral responses 
have been used to provide a simple operational definition of whether 
stimuli are rewarding or punishing to an animal. In the field of ani-
mal behavior research, rewarding and punishing stimuli are often 
defined simply by the nature of the responses they elicit: rewards 
elicit approach behavior, whereas punishing stimuli elicit avoidance 
behavior (Skinner, 1938). Rewards also have a reinforcing property, in 
that almost all motile animals studied will learn to repeat actions that 
bring about (or bring closer) a rewarding outcome. Reinforcement 
in this context describes the process of “stamping in” actions that 
result in attaining the reward (Wise and Rompre, 1989; Wise, 2004). 
Given this operational definition of reward, it can be said that reward-
seeking and reward learning are fundamental aspects of animal 
behavior. These behavioral responses appear to be universal across 
animal groups. Reward-seeking was recognized as fundamental to 
even the earliest explanatory models of behavior: Sherrington (1906), 
Tinbergen (1951), and Lorenz (1965) all developed behavioral models 
that incorporated an assumed innate “drive” to seek rewards.

Exploring the neurobiology of reward responses and reward 
processing has long been a major focus of neuroscience research. 
Understandably the vast majority of studies have considered humans 
and other mammals, while more recently, mechanisms of reward 
processing have been studied in a wider range of animal model sys-
tems. Mammalian research has clearly established that the circuit con-
necting midbrain dopaminergic neurons to the ventral striatum and 
prefrontal cortex is central to mammalian brain reward systems (Wise 
and Rompre, 1989; Koob and Le Moal, 1997; Schultz, 2000, 2007; 
Watson and Platt, 2008). Dopamine is a key modulator of this circuit, 
and of behavioral responses to rewards (Berridge and Robinson, 1998; 
Roitman et al., 2004; Wise, 2004; Berridge et al., 2009).
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effects of dopamine on locomotion result in an “ exploratory” 
area-restricted search pattern of locomotion, which ensures that 
the animal explores and dwells longer in an area containing food 
(Hills et al., 2004), and the outcome of their change in crawling 
behavior is that they are more likely to locate food. It is striking 
that even this elementary form of reward-seeking behavior is 
modulated by dopamine.

Caenorhabditis elegans learned to locate food faster in a simple 
T-maze after repeated training trials with the apparatus (Qin 
and Wheeler, 2007). Dopamine deficient cat-2 mutant worms, 
which lack the enzyme tyrosine-hydroxylase necessary for the 
biosynthesis of dopamine (Figure 1), learned the maze task less 
well, and the memory did not persist as long as in wild-type 
animals (Qin and Wheeler, 2007). This suggests that dopamine 
affects memory systems involved in food-seeking behavior in 
nematodes.

The Platyhelminthes (flatworms) are also simple animals. They 
have no body cavities and a simple nervous system, but they do 
have rudimentary cephalization, and they can learn both classi-
cal and operant conditioning tasks (Best and Rubinstein, 1962; 
Shafer and Corman, 1963). Dopamine seems to be involved in the 
mechanism of reinforcement in the flatworm Dugesia japonica. 
Kusayama and Watanabe (2000) developed a conditioned-place-
preference assay for D. japonica, and were able to induce in the 
flatworms a preference for an environment in which they had been 

treated with methamphetamine (which increases  extracellular 
biogenic amine levels). This preference could be eliminated 
by treatment with three different antagonists characterized in 
mammals as active against dopamine receptors (Kusayama and 
Watanabe, 2000), suggesting that dopamine is involved in rein-
forcement in planarians.

Far more is known about the role of dopamine in reinforcement 
in the mollusk Aplysia (Lechner et al., 2000a,b). In Aplysia, the 
ingestion of seaweed involves rhythmic and coordinated move-
ments of the foregut and peri-oral structures. Lechner et al. (2000a) 
developed a training protocol for the classical conditioning of bit-
ing in Aplysia so that animals could be trained to associate a light 
touch to the lips with a paintbrush with the presentation of sea-
weed reward. After conditioning, the number of biting responses 
to the lip tickle was increased (Lechner et al., 2000a,b). Lesioning 
the esophageal nerve blocked this form of conditioning, show-
ing that the esophageal nerve mediates the reinforcing property 
of the unconditioned food reward during classical conditioning 
(Lechner et al., 2000b). Brembs et al. (2002) were able to train 
the biting response in a slightly different operant paradigm that 
paired biting with direct electrical stimulation of the esophageal 
nerve, providing more evidence that the esophageal nerve conveys 
the reinforcement signal. The esophageal nerve contains many 
processes that are dopaminergic (Kabotyanski et al., 2000), and 
Brembs et al. (2002) were able to replace electrical stimulation of 

Figure 1 | Chemical relationships and biosynthetic pathways linking 
dopamine, tyramine, octopamine, and norepinephrine (enzymes in italics). 
Dopamine, tyramine, octopamine, and norepinephrine are all derived from 
tyrosine. In order to synthesize dopamine, tyrosine is first converted to DOPA by 
tyrosine-hydroxylase, which is then decarboxylated by DOPA-decarboxylase to 
yield dopamine. Tyramine is either produced directly from tyrosine by 

tyrosine-decarboxylase, or (more rarely) dehydroxylated from dopamine by 
dopamine-dehydroxylase. This figure summarizes the most common synthesis 
pathways, but there are variations among the phyla. In some groups, 
octopamine is a trace amine and synthesized from tyramine by dopamine-β-
hydroxylase, while in other phyla, norepinephrine is physiologically irrelevant and 
not present at any biologically meaningful level.
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Dopamine regulates learning of stimuli associated with reward: 
it is essential for both the establishment and expression of con-
ditioned reinforcement via associative learning (Wise, 2004). 
Dopamine-selective lesions of the nucleus accumbens can block 
responding to reward-associated stimuli (Taylor and Robbins, 
1986), whereas amphetamine injection into the nucleus accumbens, 
to elevate extracellular dopamine in this area, enhances responding 
(Taylor and Robbins, 1984).

Recordings from midbrain dopamine neurons in mammals 
have shown strong responses to both primary rewards (such as 
food and water), and also conditioned stimuli associated with 
rewards (Schultz, 1998; Schultz, 2001). Most midbrain dopamin-
ergic neurons projecting to the nucleus accumbens and fron-
tal cortex are tonically active (meaning a relatively constant 
“baseline” level of firing), but show phasic activation (bursts 
of enhanced firing) following primary food rewards, or stimuli 
learned to be predictive of reward (Schultz, 2000, 2007). These 
reward responses are not unconditional; rather the intensity 
of the phasic activation is modulated by reward predictability 
(Hollerman and Schultz, 1998; Schultz, 1998). Most midbrain 
dopaminergic neurons have a tonic firing rate that is strongly 
enhanced by unexpected rewards far more than expected rewards, 
while the neuronal firing rate drops below baseline in response 
to expected rewards that do not appear (Schultz, 2001, 2007). 
This pattern of activity appears to represent the reward pre-
diction error: that being the difference between predicted and 
obtained rewards. Reward prediction error is central to reward-
driven learning according to the Rescorla–Wagner model of 
learning (Rescorla and Wagner, 1972; Schultz, 2000; Pessiglione 
et al., 2006).

Subsecond changes in the amount of dopamine released into 
the nucleus accumbens appear to directly modulate reward-
 seeking behavior (Roitman et al., 2004). Short pulses of dopamine 
released into the nucleus accumbens were recorded in rats trained 
to lever-press for sucrose in response to stimuli signaling the start 
of a lever-pressing session. Lever-presses were coincident with the 
peaks of the dopamine surge (Roitman et al., 2004). The taste 
of sugar evoked a similar short pulse of dopamine release into 
the nucleus accumbens, whereas quinine (an aversive taste) sup-
pressed dopamine release (Roitman et al., 2008). Together, these 
findings show that the phasic responses of dopamine neurons sig-
nal an assessment of the current value of reward stimuli, and that 
these dopamine signals directly modulate behavioral responses 
to rewards.

roles of Dopamine anD octopamine in rewarD 
responses in arthropoDa
So far, we have discussed examples from four phyla of highly 
diverse animals in which dopamine dominates reward learning 
and the reinforcing properties of rewards, but the Arthropoda do 
not seem to fit this pattern. The Arthropoda are ecdysozoan pro-
tostomes most closely related to Nematoda (Figure 2), but within 
this group evidence from both insects and crustaceans has shown 
that octopamine affects reward learning and behavioral responses 
to rewards (Hammer, 1997; Hammer and Menzel, 1998; Schwaerzel 
et al., 2003; Unoki et al., 2005; Vergoz et al., 2007; Kaczer and 
Maldonado, 2009; Selcho et al., 2009).

the esophageal nerve with iontophoretic application of dopamine 
onto selected post-synaptic neurons to achieve effective training. 
This showed conclusively that dopamine is the neurochemical 
mediator of the  reinforcement signal in operant conditioning. 
In the classical conditioning paradigm, association of a tactile 
stimulus with food could also be blocked by treatment with the 
dopamine receptor antagonist, methylergonovine (Reyes et al., 
2005). Therefore evidence from both classical and operant con-
ditioning studies in Aplysia suggest a role for dopamine in rein-
forcement and reward learning.

The Nematoda, Platyhelminthes and Mollusca are representatives 
of three different superphyla within the protostomes (Figure 2). 
The Chordata are deuterostomes, and a separate lineage from the 
protostome groups (Figure 2). Despite all this taxonomic diversity 
dopamine affects behavioral responses to reward and reinforce-
ment in a similar manner. The affects of dopamine on mammalian 
reward responses have been well reviewed recently (Schultz, 2007), 
and hence here we consider only the main findings as relevant to 
this comparative review.

Dopamine has long been identified with motor function in 
mammals, but the first evidence linking dopamine to reward-
 seeking came from the observation that moderate dopamine recep-
tor antagonist treatments attenuated the motivation to respond to 
a food reward before compromising the ability to respond (Wise 
and Schwartz, 1981; Wise, 2004). This effect appeared to be caused 
in part by dopamine receptor antagonists eliminating the reinforc-
ing properties of rewards (Wise and Schwartz, 1981). Conversely, 
stimulation of the midbrain dopamine system is strongly reinforc-
ing. Animals will work at lever-press and other tasks for electrical 
stimulation of dopaminergic midbrain regions such as the ventral 
tegmental area and lateral hypothalamus (Routtenberg and Lindy, 
1965; Carlezon and Chartoff, 2007; Watson and Platt, 2008). Such 
stimulation can be chosen in preference over food or water reward 
(Routtenberg and Lindy, 1965).

Figure 2 | Phylogeny of groups discussed in this paper, based on nearly 
complete ribosomal rNA gene analyses (Mallatt et al., 2010). Discussed 
phyla represent examples of protostome, deuterostome, and diploblastic 
groups, yet dopamine is a modulator in the motor systems of all these diverse 
phyla, and affects responses to rewarding or punishing stimuli in mollusks, 
platyhelminths, arthropods, nematodes, and chordates.



Frontiers in Behavioral Neuroscience www.frontiersin.org October 2010 | Volume 4 | Article 163 | 4

Barron et al. Biogenic amines and reward systems

The arthropod studies described so far have relied heavily on 
pharmacological tools to manipulate biogenic amine systems. A 
difficulty with this approach is that the affinities of most of the 
available biogenic amine receptor agonists and antagonists to all 
the biogenic amine receptors in the different experimental insect 
species are incompletely known. Consequently, it is difficult to 
experimentally manipulate a single receptor system in isolation or 
to be completely confident that nominated agonists or antagonists 
do not affect more than one biogenic amine system. Currently, the 
only solution to this problem is to use several different antago-
nists or agonists against the same receptor system(s), and hope-
fully show the same behavioral effects (Unoki et al., 2005; Vergoz 
et al., 2007). Also, in many cases pharmacological treatments have 
been applied to the whole organism or to the whole brain, which 
has limited a circuit-level analysis of reinforcement systems in 
arthropods.

Genetic analyses of the function of the bioGenic 
amines in rewarD anD aVersiVe learninG in 
Drosophila
The genetic tools available for Drosophila melanogaster (Diptera) 
have enabled very different approaches to investigate the roles of 
octopamine and dopamine in reward responses. In Drosophila, 
several studies have used different genetic tools to manipulate 
all (or most) dopaminergic or octopaminergic neurons in the 
fly brain. The conclusions of these studies are consistent in that 
they have shown that dopamine is required for aversive learning, 
but not reward learning, and octopamine is required for reward 
learning but not aversive learning (Schwaerzel et al., 2003; Schroll 
et al., 2006; Claridge-Chang et al., 2009; Honjo and Furukubo-
Tokunaga, 2009). However, more recent studies have used more 
selective genetic manipulations to target specific dopamine recep-
tors, or specific small groups of dopamine neurons. These have 
shown that some dopamine signals may also modulate reward 
responses in Drosophila (Kim et al., 2007; Krashes et al., 2009; 
Selcho et al., 2009). In this section we first review studies that 
have manipulated all dopaminergic or octopaminergic neurons 
in the fly brain, and then studies that have selectively targeted 
specific populations of dopamine neurons, or dopamine receptor 
systems. We then discuss how findings from genetic studies with 
Drosophila can be reconciled with pharmacological studies with 
other arthropods.

Schwaerzel et al. (2003) explored the role of octopamine and 
dopamine in appetitive and aversive conditioning using strains 
of Drosophila melanogaster in which the enzymes responsible for 
the synthesis of different biogenic amines were under the control 
of heat-shock sensitive promoters. Flies in which the tyramine-
β-hydroxylase (Figure 1) gene had been knocked out could not 
synthesize octopamine (Monastirioti et al., 1996). These flies per-
formed normally in an aversive learning task associating electric 
shock with a novel odor, but did not learn to associate a sugar 
reward with an odor (Schwaerzel et al., 2003). This defect could 
be rescued by a transgene containing the wild-type tyramine-β-
hydroxylase gene downstream of a heat-shock promoter, such that 
after heat-shock to activate the promoter and restore octopamine 
synthesis, flies performed normally in both the appetitive and aver-
sive learning tasks (Schwaerzel et al., 2003).

Among the vertebrates, octopamine (chemically similar to both 
dopamine and noradrenaline, Figure 1) is a trace amine whose phys-
iological importance is presently not well established (Burchett and 
Hicks, 2006). By contrast, in the arthropods, octopamine is a major 
regulator of behavior and physiology (Roeder et al., 2003; Roeder, 
2005). The similarities between the octopamine receptor subtypes in 
protostomes and adrenergic receptor subtypes in vertebrates suggest 
these two systems may have diverged from a common evolutionary 
origin (Evans and Maqueira, 2003; Maqueira et al., 2005; Pfluger and 
Stevenson, 2005). As detailed below, pharmacological studies with 
Crustacea and Insecta have shown that octopamine affects reward 
learning and reward responses more strongly than dopamine.

Kaczer and Maldonado (2009) showed that in the crab 
Chasmagnathus granulates, octopamine treatments influenced 
expression of a learned exploratory response triggered by experi-
encing food in a novel environment (Kaczer and Maldonado, 2009). 
Octopamine injection enhanced the exploratory response to food, 
whereas injection of two octopamine receptor antagonists reduced 
this response (Kaczer and Maldonado, 2009).

Similar regulation of food reward by octopamine has also been 
demonstrated in insects. Diverse studies with honey bees (Apis mel-
lifera, Hymenoptera) have shown that octopamine treatment affects 
behavioral responses to sucrose reward (Mercer and Menzel, 1982; 
Hammer and Menzel, 1998; Scheiner et al., 2002; Schulz et al., 2002; 
Barron et al., 2007). A robust and widely used assay for appetitive 
conditioning in honey bees is proboscis extension response con-
ditioning where bees learn to extend their proboscis in response 
to a novel odor paired with the presentation of sucrose reward 
(Kuwabara, 1957; Bitterman et al., 1983). Dopamine microinjection 
into the brain reduced performance in appetitive conditioning of 
proboscis extension (Mercer and Menzel, 1982), whereas microin-
jection of octopamine into either the mushroom bodies or antennal 
lobe could substitute for sucrose presentation in training (Hammer 
and Menzel, 1998). Some of the VUM (Ventral unpaired median)
neurons respond to sucrose (Hammer, 1993; Schroeter et al., 2007), 
and one of these (VUMmx1) has been shown to mediate sucrose 
reinforcement (Hammer, 1993). This neuron is believed to be 
octopaminergic (Menzel, 2001).

It is of interest to note that thoracic octopamine injection 
increased reflexive proboscis extension responsiveness to sucrose 
in an unconditioned paradigm in honey bees, whereas dopamine 
receptor agonist treatment reduced responsiveness (Scheiner et al., 
2002). This suggests an opponent relationship between octopamine 
and dopamine systems in response to sucrose reward. More recent 
pharmacological studies with the cricket (Gryllus bimaculatus, 
Orthoptera) (Unoki et al., 2005, 2006; Mizunami et al., 2009) and 
honey bees (Farooqui et al., 2003; Vergoz et al., 2007) have shown 
that treatments with octopamine receptor antagonists and agonists 
affected performance in reward learning assays, but treatment with 
dopamine receptor antagonists and agonists affected performance 
in aversive learning assays. As a result of these studies a commonly 
held view is that for the arthropods, octopamine and dopamine 
modulate different motivational systems with octopamine modu-
lating appetitive learning and dopamine modulating aversive learn-
ing (Beggs et al., 2007; Vergoz et al., 2007). However, new research 
with Drosophila (described below) suggests that this interpretation 
may be an oversimplification.
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2007). These defects could be rescued by restoring dDA1  expression 
in the  mushroom bodies (Kim et al., 2007). A study with larval 
Drosophila also reported that dumb1 and dumb2 mutants were defec-
tive in both aversive and appetitive learning assays (Selcho et al., 
2009), supporting the conclusion that signaling via the dDA1 recep-
tor in the mushroom bodies modulates learning of both rewarding 
and punishing stimuli.

Krashes and Waddell (2008) have shown that the level of satia-
tion of Drosophila influences the performance of flies in assays of 
appetitive memory. In fed flies, appetitive memory performance 
is low because mushroom body neurons are inhibited by tonic 
dopamine release from a population of dopaminergic neurons 
innervating the medial lobe and pedunculus of the mushroom 
body (the MB-MP neurons Krashes et al., 2009). Stimulation of 
neurons expressing neuropeptide F (dDPF) promoted appetitive 
memory performance in flies, mimicking the performance levels 
seen in hungry flies (Krashes et al., 2009). dNPF is an ortholog 
of mammalian neuropeptide Y that regulates food-seeking in 
mammals (Tatemoto et al., 1982; Kaira, 1997). One action of 
dNPF is to suppress the inhibitory MB-MP neurons, which then 
enables the expression of food-associated conditioned responses 
(Krashes et al., 2009). Therefore, a specific dopamine signal 
inhibits mushroom body neurons, and reduces the expression 
of appetitive memory.

To conclude the discussion of the arthropods; both pharmaco-
logical treatments and genetic manipulations of brain octopamine 
and dopamine systems have suggested different behavioral roles for 
octopamine and dopamine. Octopamine affects reward responses 
and dopamine affects punishment responses (Schwaerzel et al., 
2003; Unoki et al., 2005; Vergoz et al., 2007). But new genetic stud-
ies that have manipulated specific dopamine signals have shown 
that in Drosophila, different dopamine signals affect expression of 
learned responses to both rewarding and punishing stimuli (Kim 
et al., 2007; Krashes et al., 2009; Selcho et al., 2009). It would seem 
that pharmacological or genetic manipulations of the whole brain 
might not have been selective or precise enough to reveal all the 
behavioral effects of different dopamine signals.

The arthropods are different from the other phyla discussed so 
far in that octopamine has been shown by most studies to play a 
dominant role in mediating reward responses and reward learn-
ing, but it now seems likely that in Drosophila different dopamine 
signals affect expression of learned responses to both rewarding and 
punishing stimuli. This complexity parallels what is known of the 
many different behavioral roles of dopamine in mammals. In the 
mammalian brain, dopamine is most well known for its important 
role in the reward systems, but distinct mesolimbic dopamine sig-
nals mediate behavioral responses to aversive events and stress also 
(Ikemoto and Panksepp, 1999; Pruessner et al., 2004; Alcaro et al., 
2007; Schultz, 2007; Fadok et al., 2009; Diaconescu et al., 2010).

the eVolution of brain rewarD systems: inferences 
from comparatiVe neurochemistry
From a phylogenetic perspective, the link between dopamine and 
behavioral responses to reward is extremely broad (Figure 2). In 
this section we consider the implications of the similar behavioral 
roles of dopamine in various different phyla for the evolution of 
brain reward systems.

To examine the role of dopamine signaling in the two learning 
assays Schwaerzel et al. (2003) used a sophisticated gene construct 
that enabled neurotransmitter release from dopaminergic neurons 
to be blocked by maintaining flies at an elevated temperature. At 
the restrictive temperature, flies performed poorly in the aversive 
learning paradigm, but normally in an appetitive learning para-
digm (Schwaerzel et al., 2003). Similar findings have been reported 
for Drosophila larvae (Honjo and Furukubo-Tokunaga, 2009). The 
conclusion is that for adult and larval Drosophila, octopamine 
affects learning of rewarding stimuli and dopamine affects learn-
ing of aversive stimuli.

Relatively new genetic tools allow neuronal activity to be modu-
lated by light pulses, which has allowed researchers to study the 
behavioral changes that result when octopaminergic or dopamin-
ergic cell populations are activated in association with different 
environmental stimuli. To investigate the roles of octopamine and 
dopamine in learning by Drosophila larvae, Schroll et al. (2006) used 
channelrhodopsin gene constructs that allowed different neuronal 
populations to be activated by pulses of blue light. Larvae learned 
to avoid an odor that had been paired with light activation of 
dopaminergic neurons, but they became attracted to odors paired 
with light activation of octopaminergic and tyraminergic neurons 
(Schroll et al., 2006). The inference is that activity of dopaminergic 
neurons mediates punishment, whereas activity of octopaminer-
gic or tyraminergic neuron populations mediates the reinforcing 
properties of reward (Schroll et al., 2006).

Claridge-Chang et al. (2009) were able to optically activate popu-
lations of dopaminergic neurons in transgenic adult flies with a 
burst of laser light, by driving the expression of ATP-gated P2X2 
channels in dopaminergic neurons, and using laser light to trig-
ger ATP release from a previously microinjected caged precursor 
(Claridge-Chang et al., 2009). When laser-activation of dopamin-
ergic neurons was associated with a specific odor cue, flies learned 
aversion to the odor.

The consistent message from the Drosophila studies discussed 
so far is that for both larval and adult flies, octopamine is neces-
sary for the learning of food reward, and dopamine is necessary 
for aversive learning. This is in agreement with the main findings 
from pharmacological studies performed with other arthropods 
(Unoki et al., 2005; Vergoz et al., 2007). However, more targeted 
genetic manipulations of specific dopamine signals in Drosophila 
suggest that this understanding of dopamine’s role in insects is an 
oversimplification.

In the insect brain, the mushroom bodies are a protocerebral 
higher brain center known for their roles in olfactory process-
ing and learning and memory (Farris, 2008). In Drosophila, the 
mushroom bodies are necessary for associative learning (de Belle 
and Heisenberg, 1994; Heisenberg, 1998; Schwaerzel et al., 2003; 
Margulies et al., 2005; Krashes et al., 2007). The dopamine recep-
tor dDA1 (a D1-like dopamine receptor that activates adenylyl 
cyclase) is highly expressed in adult Drosophila mushroom bod-
ies, and also other regions of the brain. Kim et al. (2003) identi-
fied two mutants dumb1 and dumb2 that eliminated expression of 
dDA1 in the adult mushroom bodies and central complex. Both 
dumb mutants completely failed to learn the association of an odor 
stimulus with electric shock, and also showed partial impairment 
of learning of an odor associated with sucrose reward (Kim et al., 
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by homologous gene families (Pichaud and Desplan, 2002). This 
has renewed debate over whether eyes have evolved repeatedly, or 
once from an ancestral light-sensitive structure.

In the field of Evolutionary Development there is now the con-
cept of a basic genetic “toolkit” for development that is broadly  
conserved across diverse taxa (Carroll, 2005). The “toolkit” con-
cept recognizes that common genomic elements can be involved 
in the development of different structures across phyla, even if the 
way the tools are used and the structures formed are very differ-
ent between groups (Carroll, 2005). Similarly Toth and Robinson 
(2007) have argued that the “toolkit” concept can be extended to 
aid in understanding the evolution of different forms of behavior. 
A core “toolkit” of genes and signaling molecules could have been 
adapted and used in different ways as various complex forms of 
behavior evolved (Toth and Robinson, 2007).

The toolkit concept can perhaps explain dopamine’s role in 
reward responses across phyla. Ancestrally biogenic amines may 
have functioned as signaling molecules in nervous systems released 
in response to environmental stimuli, but these simple behavioral 
elements have been adapted and modified in various ways as new 
and more complex behavioral responses to reward and punish-
ment evolved. Developmental and molecular evidence indicates 
that higher brain centers have evolved independently in differ-
ent phyla (Farris, 2008). Here, higher brain centers are defined 
as multimodal areas that gather and integrate information from 
lower unimodal regions for integration of sensory information/
associations, behavioral flexibility and “cognitive” behavior (Farris, 
2008). Reward systems in arthropods and vertebrates both exten-
sively involve higher brain centers (Hammer, 1993; Hammer and 
Menzel, 1998; Schwaerzel et al., 2003; Roitman et al., 2004; Wise, 
2004). Since the vertebrate cortex and insect mushroom bodies 
are structures that have evolved independently (Farris, 2008) brain 
reward systems almost certainly evolved independently in these 
groups. But in both cases the evolutionary process may have made 
use of a common molecular toolkit, which included the biogenic 
amines as signaling molecules.

conclusion
Even the simplest motile animals change their behavior in response 
to the perception of stimuli they need to survive or reproduce, 
and most animals display active reward-seeking behavior. This 
is a major organizer and driver of animal behavior (Tinbergen, 
1951), and research with mammals has emphasized dopamine 
as a key neurochemical that modulates reinforcement, reward-
seeking and reward learning (Wise and Rompre, 1989; Schultz 
et al., 1993; Berridge and Robinson, 1998; Schultz, 2007; Berridge 
et al., 2009).

Effects of biogenic amines, especially dopamine, on behavio-
ral responses to reward have been reported across diverse animal 
phyla, but the reported functions of the biogenic amines do dif-
fer between groups. In nematodes, dopamine is a modulator of 
motor neurons. By changing locomotor behavior in response to 
food stimuli dopamine can trigger an elementary form of food 
searching behavior (Sawin et al., 2000; Hills, 2006; Rivard et al., 
2010), and learned changes in locomotor behavior in response to 
food (Qin and Wheeler, 2007). In mollusks, dopamine not only 
modulates the motor neurons involved in feeding behavior, but 

A consideration of the general behavioral functions of the 
 biogenic amines across animal phyla suggests that dopamine could 
have been predisposed to evolve functions in reward processing 
from an ancestral role as a signaling molecule modulating motor 
circuits in response to salient environmental stimuli. In one of 
the simplest metazoans, the nematode C. elegans, dopamine func-
tions to modulate motor output and locomotor behavior, and is 
released in response to environmental stimuli that signal the local 
abundance of food (Hills et al., 2004). As far as we know, dopamine 
modulation of motor circuits has been reported for every animal 
phylum in which it has been investigated: Nematoda (Sawin et al., 
2000; Rivard et al., 2010), Platyhelminthes (Buttarelli et al., 2000, 
2008; Raffa et al., 2001), Annelida (Esch and Kristan, 2001, 2002; 
Friesen and Kristan, 2007), Mollusca (Pavlova, 2001), Arthropoda 
(Burrows, 1996), chordata (Grillner et al., 1995; Jordan et al., 2008) 
and also diploblastic Cnidaria (Chung and Spencer, 1996; Kass-
Simon and Pierobon, 2007).

The Cnidaria represent perhaps the simplest animal nervous 
systems, and molecular and morphological evidence places the 
Cnidaria as basal among metazoans (Mallatt et al., 2010). In the 
cnidarian Hydra japonica, dopamine affects the extent of mouth 
opening in response to food stimuli (Hanai and Kitajima, 1984). 
It seems likely that modulation of motor circuits in response to 
environmental stimuli could be one of the ancestral functions 
of dopamine as a signaling molecule in simple nervous systems. 
From this proposed ancestral role, different biogenic amine sys-
tems could have evolved progressively more specialized functions in 
behavioral responses to rewarding or aversive stimuli as increasing 
levels of behavioral complexity evolved along with the evolution 
of more complex nervous systems (Hills, 2006). This hypothesis 
would explain why dopamine and other biogenic amines have roles 
in aversive responses (Schwaerzel et al., 2003; Schroll et al., 2006; 
Alcaro et al., 2007; Schultz, 2007; Claridge-Chang et al., 2009) and 
in setting the general level of arousal (Andretic et al., 2005; Kume 
et al., 2005; Monti and Monti, 2007; Krashes et al., 2009), as well 
as in reward responses across many phyla.

There are now several examples of genes, gene pathways or 
signaling molecules that appear to have “conserved” behavioral 
roles across vertebrates and invertebrates. As examples, cyclic AMP-
dependent protein kinase-related proteins are involved in learn-
ing and memory across diverse vertebrate and invertebrate groups 
(Dubnau et al., 2003; Kandel, 2006). Cyclic GMP-protein kinases 
affect various form of foraging behavior across nematodes and 
arthropods (Fitzpatrick and Sokolowski, 2004; Toth and Robinson, 
2007) and serotonin has a role in aggression across vertebrates and 
invertebrates (Kravitz, 2000). The roles of dopamine in reward 
responses across phyla is another example of what seems to be a 
general behavioral mechanism, but is this the product of conserva-
tion or convergent evolution?

When considering traits shared across phyla distinguishing 
between conservation and convergence is not simple. The difficulty 
is illustrated by considering the case of eye evolution (Fernald, 2006). 
Based on morphological evidence it was thought that vertebrate 
and invertebrate eyes evolved independently, and their similarities 
were the result of convergent evolution. But detailed molecular 
genetic analyses of the process of eye development have shown 
that eye development in vertebrate and invertebrates is organized 
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