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Re-exposure to cues repeatedly associated with methamphetamine (Meth) can trigger
Meth-seeking and relapse in the abstinent abuser. Weakening the conditioned Meth-
associated memory during cue re-exposure may provide a means for relapse-reduction
pharmacotherapy. Accordingly, we sought to determine if the atypical antidepressant mir-
tazapine disrupted the persistence of Meth-induced conditioned place preference (CPP)
when administered in conjunction with re-exposure to contextual conditioning cues, and if
this effect was altered by Meth being present during cue re-exposure. First, we evaluated
the effect of mirtazapine on the maintenance of Meth-induced CPP during re-exposure
to either the saline- or Meth-paired chamber 12 days after conditioning. Meth-conditioned
rats subsequently administered mirtazapine expressed CPP independent of re-exposure
to the saline- or Meth-paired chamber; but the magnitude of CPP was significantly less for
mirtazapine-treated rats re-exposed to the Meth-paired chamber. Next, we evaluated the
effect of mirtazapine on a “reinforced re-exposure” to the Meth-paired context. Adminis-
tration of mirtazapine vehicle and Meth, prior to re-exposure to the Meth-paired chamber
did not disrupt the ability of rats to demonstrate CPP 15 days after conditioning; how-
ever, CPP was disrupted when rats were administered mirtazapine and Meth prior to
re-exposure to the Meth-paired chamber. These results indicate that the capacity of mir-
tazapine to diminish Meth-induced CPP is promoted if mirtazapine treatment is coupled
with Meth administration in the Meth-associated context and thus appears to be the con-
sequence of disrupting processes necessary to reconsolidate CPP following activation of
drug-associated memories.
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INTRODUCTION
Psychostimulant abuse, including the potent stimulant metham-
phetamine (Meth), is a serious public health problem worldwide.
Exposure to cues associated with drug-use activates limbic brain
regions in drug-addicted individuals (Childress et al., 1999, 2008)
and these cues can elicit drug-craving and drug-seeking behaviors
even after long periods of withdrawal (Ehrman et al., 1992; O’Brien
et al., 1992; Hartz et al., 2001). Thus, diminishing the salience of
Meth-associated cues may have significant therapeutic potential
for relapse-reduction in the abstinent addict.

Associative learning between contextual cues (conditioned
stimulus) and the rewarding effects of abused substances (uncon-
ditioned stimulus) can result in conditioned place preference
(CPP), a behavior observed in humans (Childs and deWit, 2009)
and rodents (O’Brien et al., 1998; Tzschentke, 1998, 2007). For
associative memories, like CPP, to be expressed, the memory
must be acquired, consolidated, and then recalled in order to
be expressed (McGaugh, 2000). Re-exposure to salient drug-
associated cues reactivates memories which must be reconsoli-
dated to be retained. If reactivated memories are not successfully

reconsolidated, the ability to subsequently recall the memory may
be compromised (Tronson and Taylor, 2007). Supporting this con-
cept, inhibiting reconsolidation via abrogating de novo protein
synthesis in the brain (i.e., within the basal lateral amygdala) has
been shown to reduce cue-induced cocaine seeking (Lee et al.,
2006). Thus, reconsolidation is a particularly attractive therapeutic
target for relapse-reduction by abstinent addicts where the asso-
ciative memories formed between the rewarding effects of abused
substances and contextual cues are thought to serve as power-
ful triggers to relapse. The current study advanced this idea by
evaluating Meth-induced associative learning in rats using CPP
expression as a behavioral output“window to the brain,”and deter-
mining if systemic treatment intervention during reconsolidation
could disrupt the persistent drug-associated memories.

The atypical antidepressant mirtazapine alters neurotransmis-
sion through a variety of receptors and signaling proteins; it acts
as an antagonist at H1, α2 adrenergic, and 5-HT2A/2C seroton-
ergic receptors and indirectly enhances adrenergic and 5-HT1A–
mediated neurotransmission via α2 adrenergic antagonism (Had-
djeri et al., 1995, 1996, 1998a,b; de Boer, 1996; de Boer et al.,
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1996). Studies from our laboratory have demonstrated the utility
of mirtazapine to antagonize many consequences of repeated Meth
administration including changes in neuronal activity (McDaid
et al., 2007) and motor sensitization (McDaid et al., 2007), as
well as and Meth-induced CPP established with a single pairing
of Meth (Herrold et al., 2009). Most recently, we demonstrated
that Meth-induced CPP established with three once-daily pair-
ings of Meth (such as the one employed in the current study),
was inhibited by 10 once-daily home cage injections of mirtaza-
pine, but not by a single mirtazapine injection administered on
the last day of the 10 once-daily treatment protocol (Voigt et al.,
2011b). Thus, administration of mirtazapine in the neutral context
of the home cage disrupted Meth-induced CPP only when given
repeatedly, an outcome which may indicate that significant, endur-
ing neuroplastic events were required in order for mirtazapine to
inhibit memory maintenance. However, it is possible that such
adaptations may not be required if the memory was made labile
by re-exposing Meth-conditioned rats to contextual cues previ-
ously associated with Meth. The salience of context cues clearly
regulates the brain state. For example, exposure to cues associated
with abused drugs, including cocaine (Brown et al., 1992; Franklin
and Druhan, 2000; Ciccocioppo et al., 2001; Zombeck et al., 2008)
and Meth (Rhodes et al., 2005) increase neuronal activity in lim-
bic brain regions, an effect which is specific to drug-paired cues
(Brown et al., 1992; Franklin and Druhan, 2000; Ciccocioppo et al.,
2001; Rhodes et al., 2005; Zombeck et al., 2008). The cue-elicited
increases in neuronal activity are associated with enhancements
in glutamatergic (Bell et al., 2000; Hotsenpiller et al., 2001) and
dopaminergic (Lin et al., 2007) neurotransmission. As adrener-
gic and serotonergic systems modulate glutamate (Maura et al.,
1988; Boehm, 1999) and dopamine (Kawahara et al., 2001; Di
et al., 2008; Olvera-Cortes et al., 2008), we posited that mirtaza-
pine may be able to indirectly disrupt neurotransmission that are
evoked by salient cues and that such disruption may be suffi-
cient to weaken the conditioned response memory bond. Thus, we
sought to determine if a single injection of mirtazapine adminis-
tered in conjunction with re-exposure to conditioned contextual
cues (i.e., the saline- or Meth-paired chamber) during the post-
conditioning withdrawal period would alter performance in a
subsequent CPP test. Moreover, after CPP has been acquired, a
subsequent pairing of the unconditioned stimulus (Meth) with
the conditioned stimulus (chamber context) should act to rein-
force the CPP memory; however, it is not known how mirtazapine
may influence this process. Therefore, we also determined if mir-
tazapine disrupted the maintenance of CPP when it was given
along with Meth prior to re-exposing the rats to the Meth-paired
chamber. Together these studies provide valuable new insights
into mnemonic processes associated with Meth-induced CPP, as
well as exploring the potential of mirtazapine as an anti-addiction
therapy.

MATERIALS AND METHODS
ANIMALS
Fifty-one male Sprague-Dawley rats (Harlan, Indianapolis, IN,
USA) weighing 250–300 g at the start of the study were accli-
mated to the vivarium for at least 1 week prior to the onset of
the experiment. Rats were housed in pairs in a climate-controlled

environment on a 12-h light/dark cycle and allowed ad libitum
access to food and water. Cage mates were given identical treat-
ments. Housing facilities were accredited through the Association
for Assessment and Accreditation of Laboratory Animal Care, and
all experiments were carried out in accordance with the conditions
set forth by the National Institutes of Health Guide for the Care and
Use of Laboratory Animals (National Research Council, 1996) and
with the approval of the Loyola University Institutional Animal
Care and Use Committee.

DRUGS
(+)Methamphetamine HCl (Sigma, St. Louis, MO, USA) was dis-
solved in 0.9% sterile saline solution and the dose, 1 mg/ml/kg, was
calculated as the salt. Meth vehicle was administered as 1 ml/kg.
Mirtazapine (1,2,3,4,10,14b-hexa-hydro-2-methyl-pyrazino [2,1-
a] pyrido [2,3-c] benzazepine; isolated from tablet by Plantex,
Hackensack, NJ, USA, a division of Teva Pharmaceutical Indus-
tries, Ltd., North Wales, PA, USA) was dissolved in HCl, then sterile
water was added to the proper volume, with the final pH titrated to
∼6.3 with NaOH. Mirtazapine was administered as 5 mg/ml/kg.
Mirtazapine vehicle was administered as 1 ml/kg. All injections
were given intraperitoneally (i.p.).

APPARATUS FOR ASSESSING BEHAVIOR
The test room was dimly lit (54–108 lx) with white noise (white
noise generator, San Diego Instruments, San Diego, CA, USA) con-
tinuously present. The CPP apparatus (63 cm × 30 cm × 30 cm)
consisted of three chambers divided by Plexiglas sliding doors
(AccuScan Instruments, Inc., Columbus, OH, USA); two large
conditioning chambers (25 cm × 30 cm × 30 cm) were separated
by a small center chamber (13 cm × 30 cm × 30 cm). Each cham-
ber had distinct visual and tactile cues. Chamber 1, vertical white
stripes on walls and an overturned paint dish glued to the cen-
ter of a patterned floor; Chamber 2, horizontal white stripes on
walls and a grid floor; Center chamber, solid white walls and a
smooth, slightly raised platform floor. Time spent in each cham-
ber and motor activity was monitored via two sets of photobeams
(24 horizontal and 12 vertical).

CONDITIONED PLACE PREFERENCE
The rats were transported from the housing room to the adjacent
test room at least 30 min prior to the start of the experiment. Rats
were given a 15-min pre-test to verify that the box configuration
did not produce a significant bias for either chamber (time spent
in chamber 1, 365 ± 20 s, time spent in chamber 2, 406 ± 21 s;
n = 40; paired t -test, p > 0.05). However, individual rats tended
to spend more time in one chamber or the other during the pre-
test, thus rats were Meth-paired in the chamber in which they
spent the least amount of time during the pre-test. For 11 (of
the 51 total) rats, pre-test data were lost due to computer error
and these rats were randomly assigned to a chamber in which
to receive Meth and saline. On days 1, 3, and 5 of conditioning,
rats received a Meth injection and were immediately placed into
the appropriate chamber (Meth-paired chamber) of the CPP box
for 45 min. On days 2 and 4, rats received a saline injection and
were immediately placed in the opposite chamber (saline-paired
chamber) for 45 min. This conditioning protocol reliably produces
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amphetamine- (Rademacher et al., 2006; Shen et al., 2006) and
Meth- (Harper and Napier, 2005; Voigt and Napier, 2007)-induced
CPP that is sensitive to pharmacological interventions (Harper and
Napier, 2005; Shen et al., 2006; Voigt et al., 2011b).

For each experiment (described in detail below), rats were given
the pre-treatment in the home cage 30 min prior to the treat-
ment, and immediately re-exposed to either the Meth-paired or
saline-paired chamber for 45 min. Rats were tested for preference
3 days later (on day 20) to allow mirtazapine to be eliminated
from the system prior to testing. To do so, rats were placed into the
center chamber and sliding doors immediately removed allow-
ing free access to the entire CPP box. The test session lasted
30 min and time spent in each chamber was evaluated to determine
preference.

Experiment 1, development and persistence of Meth-induced CPP
Rats (n = 8) were conditioned with Meth and tested for prefer-
ence on day 8 to verify the development of CPP (Figure 1A). On
day 17, these same rats received a pre-treatment of mirtazapine
vehicle followed by a Meth vehicle treatment, were re-exposed to
the saline-paired chamber and subsequently tested for CPP on day
20. This experimental design enabled us to verify that repeated
CPP testing or re-exposure to non-significant (i.e., saline-paired
cues) did not disrupt the ability of rats to retain and demonstrate
a preference for the Meth-paired chamber.

Experiment 2, influence of chamber association on
mirtazapine-induced effects
On day 17, Meth-conditioned rats (n = 17) received either (1) mir-
tazapine pre-treatment followed by a treatment of Meth vehicle
and re-exposed to the saline-paired chamber (n = 11) or (2) mir-
tazapine pre-treatment followed by Meth vehicle treatment (n = 6)
and re-exposed to the Meth-paired chamber (Figure 1B). All rats
were tested for place preference on day 20. This experimental
design enabled us to determine the influence of saline- or Meth-
paired cues on mirtazapine-induced effects, i.e. how mirtazap-
ine influenced reconsolidation of Meth-induced CPP following
re-exposure to saline- or Meth-induced cues.

FIGURE 1 | Experimental timelines. M, methamphetamine (1 mg/kg); S,
saline (1 ml/kg); ∅, no drug. (A) Timeline for Experiment 1. (B) Timeline for
Experiments 2 and 3.

Experiment 3, the ability of mirtazapine to alter reinforced
re-exposure
On day 17, Meth-conditioned rats (n = 21) were administered
(1) mirtazapine vehicle pre-treatment followed by Meth treat-
ment and re-exposed to the Meth-paired chamber (n = 14) or
(2) mirtazapine pre-treatment followed by Meth treatment prior
to re-exposure to the Meth-paired chamber (n = 7) and the rats
were tested for CPP on day 20 (Figure 1B). This experimental
design allowed us to determine how a reinforced re-exposure to
the Meth-paired chamber would affect mirtazapine effects on the
reconsolidation of Meth-induced CPP.

STATISTICAL ANALYSIS
Experiment 1 (Figure 2): A two-way repeated measures ANOVA
was used to evaluate CPP across multiple CPP tests with the factor
of chamber (saline-paired vs. Meth-paired) and the repeated fac-
tor of test. Experiments 2 and 3 (Figures 3 and 4): A mixed factor
ANOVA was employed with the within subjects factor of chamber
and the between subjects factor of treatment. For all experiments,
a post hoc Newman–Keuls test was used to identify between cham-
ber differences (α = 0.05); and significant preference was indicated
as a significantly greater amount of time spent in the Meth-paired
chamber compared to the time spent in the saline-paired chamber.
Time spent in the center chamber was not included in the statisti-
cal analysis. Data are presented as mean ± SEM. Statistical outliers
were determined as those rats that spent greater than 2 SD above
or below the mean time spent in any chamber; four rats out of the
total 50 were excluded as outliers.

RESULTS
EXPERIMENT 1: DEVELOPMENT AND PERSISTENCE OF METH-INDUCED
CPP
The results revealed that three pairings with Meth was suffi-
cient to induce a preference that was expressed 3 days after con-
ditioning (Figure 2, Day 8 CPP Test, left set of bar graphs).
Furthermore, this preference was not disrupted by experimental
procedures conducted on day 17 or due to repeated CPP test-
ing (Figure 2, right set of bar graphs). That is, when rats (n = 8)
were administered mirtazapine vehicle + Meth vehicle, a two-way
repeated measures ANOVA (test × chamber) revealed a signifi-
cant effect of chamber [F (1,14) = 39.060, p < 0.0001] but no effect
of test [F (1,14) = 0.092, p = 0.766] or test-chamber interaction
[F (1,14) = 0.035, p = 0.854]. Post hoc Newman–Keuls revealed time
spent in the Meth-paired chamber was significantly greater than
time spent in the saline-paired chamber for both tests (p < 0.01;
Figure 2). Hence, the preference that is evident 3 days after
conditioning was not altered by repeated testing, experimental
procedures on day 17, or by the 15-day withdrawal period.

EXPERIMENT 2: MIRTAZAPINE AND RE-EXPOSURE TO CONDITIONING
CUES
Meth-conditioned rats were used to evaluate the effect of mir-
tazapine on mnemonic processes engaged during re-exposure to
either the saline- or Meth-paired chamber on day 17. Analy-
sis of CPP test data revealed a significant effect of chamber
[F (1,30) = 46.530, p < 0.0001] and a treatment-chamber interac-
tion [F (1,30) = 10.439, p = 0.003] with no effect of treatment
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[F (1,30) = 0.283, p = 0.599]. This demonstrates that rats who
received mirtazapine + Meth vehicle treatments on day 17 in either
the saline- or Meth-paired chamber, maintain CPP (Figure 3;
re-exposed to the saline-paired chamber, left set of bar graphs
(n = 11), post hoc Newman–Keuls, p < 0.01; re-exposed to the
Meth-paired chamber, shown in right set of bar graphs (n = 6),
post hoc Newman–Keuls, p < 0.05). Even so, time spent in the
Meth-paired chamber was significantly less after re-exposure to
the Meth-paired chamber than after re-exposure to the saline-
paired chamber (Figure 3, between treatment groups, post hoc
Newman–Keuls, p < 0.05). These results indicate that context is a
significant factor in the ability of mirtazapine to alter the processes
necessary to subsequently express Meth-induced CPP.

EXPERIMENT 3: MIRTAZAPINE AND REINFORCED RE-EXPOSURE TO
THE METH-PAIRED CHAMBER
This experiment determined the ability of mirtazapine to mod-
ulate the maintenance of Meth-induced CPP when administered
prior to a“reinforced exposure”to the Meth-paired chamber. Rein-
forcement was accomplished by administering Meth (1 mg/kg)

FIGURE 2 | Preference established during conditioning was maintained

for more than 2 weeks, and was not disrupted by experimental

procedures employed on day 17. As shown in the left set of bar graphs,
on day 8, Meth-conditioned rats (n = 8) demonstrated a robust preference
for the chamber previously paired with Meth (left set of bar graphs).
Mirtazapine vehicle + methamphetamine vehicle and immediate
re-exposure to the chamber paired with saline during conditioning did not
disrupt the preference for the Meth-paired chamber when on day 20 (right
set of bar graphs; post hoc Newman–Keuls, **p < 0.01). Time spent in the
center chamber is presented for qualitative comparisons, and was not
included in two-way repeated measures ANOVA. Saline, saline-paired
chamber; Meth, methamphetamine-paired chamber; Center, central neutral
chamber; Mirt Veh, mirtazapine vehicle (water pH ∼ 6.3, 1 ml/kg); Meth Veh,
methamphetamine vehicle (0.9% saline, 1 ml/kg).

30 min after mirtazapine (or its vehicle) and immediately re-
exposing the rats to the Meth-paired chamber. A two-way ANOVA
of CPP test data revealed a significant treatment-chamber inter-
action [F (1,38) = 18.824, p = 0.0001] with non-significance for
the effects of treatment [F (1,38) = 0.001, p = 0.981] or chamber
[F (1,38) = 2.895, p = 0.097]. Post hoc Newman–Keuls test revealed
that administration of mirtazapine vehicle + Meth prior to re-
exposure to the Meth-paired chamber did not inhibit the ability of
rats to express a preference (Figure 4, left set of bar graphs (n = 14),
p < 0.01). In contrast, rats that received mirtazapine + Meth prior
to re-exposure to the Meth-paired chamber, did not demonstrate
a preference for the Meth context during the CPP test (Figure 4,
right set of bar graphs (n = 7), post hoc Newman–Keuls, p > 0.05).
A between groups comparison showed that the magnitude of time
spent in the Meth-paired chamber was significantly decreased after
mirtazapine + Meth compared to vehicle + Meth; the decrease in
time spent in the Meth-paired chamber was accompanied by an
increase in time spent in the saline-paired chamber (Figure 4,
post hoc Newman–Keuls, p < 0.05).

These data demonstrate the unique ability of mirtazapine
administered in conjunction with re-exposure to the Meth-paired
chamber to diminish the expression of the previously established

FIGURE 3 | Mirtazapine administered prior to re-exposure to the

Meth-paired chamber, but not the saline-paired chamber, on day 17

inhibited the expression of Meth-induced CPP on day 20. Rats
re-exposed to the saline-paired chamber (n = 11; left set of bar graphs) or to
the Meth-paired chamber (n = 6; right set of bar graphs) both expressed a
preference for the Meth-paired chamber (post hoc Newman–Keuls;
*p < 0.05, **p < 0.01). However, the magnitude of the preference for the
Meth-paired chamber was significantly less in rats re-exposed to the
Meth-paired chamber (post hoc Newman–Keuls, p < 0.05). Time spent in
the center chamber is presented for qualitative comparisons, and was not
included for statistical analysis. Saline, saline-paired chamber; Meth,
methamphetamine-paired chamber; Center, central neutral chamber; Mirt,
mirtazapine (5 mg/kg); Meth Veh, methamphetamine vehicle (0.9% saline).
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FIGURE 4 | Methamphetamine (Meth) administered in conjunction

with mirtazapine during re-exposure to the Meth-paired chamber on

day 17 inhibited the expression of CPP tested on day 20. Rats
administered mirtazapine vehicle + Meth (n = 14, left set of bar graphs),
expressed CPP (post hoc Newman–Keuls, p < 0.01) whereas rats that
received a mirtazapine + Meth (n = 7, right set of bar graphs) did not
demonstrate a preference for the Meth chamber (post hoc Newman–Keuls,
p > 0.05). In addition, the time spent in the Meth-paired chamber was
significantly reduced after Mirt pre-treatment compared to vehicle
pre-treatment (post hoc Newman–Keuls, p < 0.05). Time spent in the
center chamber is presented for qualitative comparisons, and was not
included for the one-way ANOVA statistical analysis. Saline, saline-paired
chamber; Meth, methamphetamine-paired chamber; Center, central neutral
chamber; Mirt Veh, mirtazapine vehicle (water pH ∼ 6.3; 1 ml/kg); Mirt,
mirtazapine (5 mg/kg); M, methamphetamine (1 mg/kg).

Meth-induced preference both in the absence (Figure 3) and the
presence of the unconditioned stimulus, Meth (Figure 4).

DISCUSSION
Our results suggest that mirtazapine disrupts reconsolidation
of CPP upon re-exposure to salient Meth-paired cues (Experi-
ment 2); an effect which was more robust when the re-exposure
was coupled with the unconditioned stimulus Meth (Experi-
ment 3). This effect is highly significant because it indicates
that Meth contributes to the labile state induced by contex-
tual cues to promote the pharmacological actions of mirtaza-
pine and demonstrates that activation of brain regions by re-
exposure to salient cues and by Meth administration synergize
to render the brain susceptible to influence by mirtazapine.
Such effects were not obtained when mirtazapine was adminis-
tered either in the home cage (Voigt et al., 2011b) or in con-
junction with re-exposure to the saline-paired context (Experi-
ment 2), underscoring the importance of the Meth-paired con-
text in the ability of mirtazapine to disrupt Meth-associated
memories.

The contextual dependence of mirtazapine (i.e., Meth-paired
chamber vs. the saline-paired chamber effects) points to the vul-
nerability of the brain during the time when it is recognizing the
reward-associated context. Furthermore, the robust disruption of
CPP that occurred when Meth-paired cues were combined with
Meth administration indicates that presentation of salient cues
synergizes with Meth to enhance memory reactivation, rendering
the memory more sensitive to disruption by mirtazapine. This syn-
ergistic effect is likely the consequence of neurotransmitter systems
and brain circuits commonly engaged by re-exposure to salient
drug-associated cues and Meth. In drug-addicted humans, cues
associated with an abused substance activate limbic brain regions
(measured with fMRI or PET; Childress et al., 1999, 2008; Kilts
et al., 2001, 2004). In rats, Fos expression, a marker for neuronal
activity (Sagar et al., 1988; Dragunow and Faull, 1989; Morgan
and Curran, 1989), is increased in limbic brain regions after re-
exposure to cues associated with cocaine (Brown et al., 1992;
Franklin and Druhan, 2000; Ciccocioppo et al., 2001; Zombeck
et al., 2008) and Meth (Rhodes et al., 2005); such neuronal activ-
ity does not occur when rats are re-exposed to non-drug-paired
cues (Brown et al., 1992; Franklin and Druhan, 2000; Ciccocioppo
et al., 2001; Hotsenpiller et al., 2001; Hotsenpiller and Wolf, 2002;
Rebec and Sun, 2005; Rhodes et al., 2005; Zombeck et al., 2008). In
rodents, many of the same regions which exhibit an increase in Fos
expression after exposure to cocaine-paired cues, also demonstrate
an increase in Fos expression after acute cocaine administra-
tion (e.g., cingulate cortex, claustrum, and amygdala). Addition-
ally, repeated, intermittent administration of a psychostimulant
(e.g., Meth) renders the brain more sensitive to subsequent drug-
injections (Pierce and Kalivas, 1997; Sax and Strakowski, 2001;
McDaid et al., 2006, 2007). Thus, the activated brain state (i.e.,
cue-induced and/or Meth-induced) appears to provide a unique
substrate that allows mirtazapine to weaken the Meth memory.
The importance of the Meth-paired chamber is underscored by
our previous work which demonstrated that a single injection of
mirtazapine given in the neutral context of the home cage, on the
same day as in the current protocol (i.e., 12 days after condition-
ing), was unable to inhibit the expression of Meth-induced CPP
(Voigt et al., 2011b). The similar outcomes of our previously pub-
lished work (Voigt et al., 2011b) and the results obtained during
re-exposure to the saline-paired context would be expected if sim-
ilar non-activated brain states were produced when rats remained
in the home cage and when re-exposed to the saline-paired context.

In the current treatment protocol is difficult to discern between
mirtazapine effects on maintenance, consolidation, and reconsol-
idation of the CPP memory. However, the results are likely not
due an inhibition of memory maintenance independent of re-
exposure to conditioning the cues as we have previously observed
that a single administration of mirtazapine given in the home
cage on day 17 did not inhibit the maintenance of Meth-induced
CPP (Voigt et al., 2011b). Thus, mirtazapine is likely influenc-
ing consolidation and/or reconsolidation of processes that relate
to salient drug-paired contextual memories. One possible mech-
anism by which mirtazapine may have disrupted CPP is via facil-
itating the extinction of CPP by enhancing consolidation of a
new mnemonic event (i.e., that the Meth-paired chamber was
uncoupled from the rewarding effects of Meth). Non-reinforced
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exposure to a previously drug-paired context can result in extinc-
tion and may, in part, explain the outcomes of Experiment 2 (i.e.,
a non-reinforced re-exposure). However, typically it takes multi-
ple non-reinforced exposures to extinguish a CPP memory (Voigt
et al., 2011a); therefore, it is not likely that extinction processes
are responsible for the outcome in Experiment 2. Furthermore,
Experiment 3 was a reinforced exposure which would not be
expected to result in extinction. Another interpretation of these
data is that mirtazapine is disrupting Meth-induced CPP due to
an intrinsic aversive property of mirtazapine. If so, administration
of mirtazapine prior to re-exposure to the Meth-paired chamber
would be expected to produce a dysphoric effect to override the
previous Meth-induced preference. While very high doses of mir-
tazapine have been reported to produce dysphoria (Bhanji et al.,
2002), the mirtazapine dose used in our experiments would not
be expected to produce either preference or aversion (Kang et al.,
2008). Thus, it seems unlikely that this explanation is responsible
for the outcomes observed in our experiments.

A probable explanation for the observed effects of mirtazap-
ine is via inhibiting CPP memory reconsolidation. Re-exposure
to cues triggers memory recall, making the memory labile and
sensitive to disruption; if the memory is not successfully recon-
solidated the ability to subsequently recall the memory may
be compromised (Tronson and Taylor, 2007). Targeting recon-
solidation as a means to reduce drug-associated behaviors has
been reported; protein synthesis inhibitors disrupt the reconsol-
idation of cocaine (Valjent et al., 2006) and morphine-induced
CPP (Milekic et al., 2006), inhibition of the ERK kinase MEK
after re-exposure to conditioning cues inhibits memory recon-
solidation (Miller and Marshall, 2005), and cue-induced cocaine
seeking is successfully inhibited by disrupting memory recon-
solidation (Dudai, 2006). The present study extends this liter-
ature by showing that a mirtazapine negatively impacted the
CPP memory when combined with re-exposure to the Meth-
associated chamber (but not the saline-paired chamber). The
receptor and downstream targets of mirtazapine are known to
modify memory reconsolidation (as well as consolidation); the
mechanisms of which overlap with reconsolidation (Dudai, 2006).
For example, consolidation/reconsolidation are promoted by post-
training brain infusions of an H1 receptor antagonists (Hasenohrl
et al., 2001; Eidi et al., 2003) and α2 antagonists (Ferry and

McGaugh, 2008), and post-training systemic administration of
selective serotonin reuptake inhibitors (Meneses, 2007b), 5-HT1A

receptor agonists (Meneses and Hong, 1999; Meneses, 2007a;
Meneses and Perez-Garcia, 2007), and an α2 antagonist (Haa-
palinna et al., 1998). Consolidation/reconsolidation can also be
inhibited by antagonism of H1 receptors (Dai et al., 2007; Zlo-
muzica et al., 2009) as does 5-HT1A receptor activation (Eriksson
et al., 2008). Downstream consequences of mirtazapine include
negative regulation of adenylate cyclase and consequently PKA
via 5-HT1A (Devivo and Maayani, 1985; Schoeffter and Hoyer,
1988; Albert and Tiberi, 2001; Lanfumey and Hamon, 2004)
and α2 adrenergic receptors (Jakobs and Schultz, 1982; Arn-
sten et al., 2005). PKA is critical for memory consolidation
(Bourtchouladze et al., 1998; Vianna et al., 2000; Quevedo et al.,
2004; Isiegas et al., 2006) and reconsolidation (Micheau and
Riedel, 1999); providing another mechanism by which mirtaza-
pine may have mediated the behavioral effects observed in the
current study. Thus, there are several mechanisms by which mir-
tazapine may inhibit the reconsolidation of the Meth-induced
CPP memory. Whatever the mechanism, our results show that
an activated brain state makes the process more vulnerable to
mirtazapine.

Clinical studies support the use of mirtazapine as a phar-
macotherapy for Meth abuse. Mirtazapine reduces the severity
of withdrawal symptoms in human abusers of amphetamine
(Kongsakon et al., 2005) and Meth (McGregor et al., 2008; Col-
fax et al., 2011) and appears to sustain abstinence from opi-
ate and cocaine use (Rafeyan and Napier, 2008). Mirtazapine
also is reported to reduce cocaine craving (Zueco Perez, 2002).
Other clinical evaluations failed to demonstrate favorable clini-
cal outcomes with mirtazapine therapy (Cruickshank et al., 2008;
Shoptaw et al., 2009). We propose that the value of mirtazap-
ine therapy may be better realized by considering the role of
drug-associated cues during a time of relapse.
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