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Orexins (hypocretins) are neuropeptides synthesized in neurons located in the lateral
(LH), perifornical, and dorsomedial (DMH) hypothalamus. These neurons innervate many
regions in the brain and modulate multiple other neurotransmitter systems. As a
result of these extensive projections and interactions orexins are involved in numerous
functions, such as feeding behavior, neuroendocrine regulation, the sleep-wake cycle, and
reward-seeking. This review will summarize the literature to date which has evaluated a
role of orexins in the behavioral effects of alcohol, with a focus on understanding the
importance of this peptide and its potential as a clinical therapeutic target for alcohol use
disorders.
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OVERVIEW
Orexins (orexin-A, a 33-amino acid peptide, and orexin-B,
a 28-amino acid peptide), or hypocretins (hypocretin-1 and
hypocretin-2) are neuropeptides derived from same precur-
sor: pre-proorexin or pre-prohypocretin (De Lecea et al., 1998;
Sakurai et al., 1998) and they are the main endogenous ligands of
the orexin/hypocretin system. The name orexin was given to the
peptide because it means appetitive in Greek (Sakurai et al., 1998)
and hypocretin is intended to indicate a hypothalamic member of
incretin family (De Lecea et al., 1998). In this review we use the
term orexin to describe this system and its components.

To date, two receptors have been identified for the orexin
peptides: the OX-1 receptor (OX1R), which has higher affinity
orexin-A; and the OX-2 receptor (OX2R), which has equal affin-
ity for both orexin-A and -B (Sakurai et al., 1998). The orexin
receptors are members of the family of seven-transmembrane
G protein-coupled cell surface receptors (Sakurai et al., 1998).
OX1R reportedly couples exclusively with Gq-protein whereas
OX2R has been shown to couple with Gq- and Gi/o-proteins (Zhu
et al., 2003).

A number of antagonists of OX1R and OX2R have been
developed by different pharmaceutical companies, initially
with the goal of investigating sleep disorders. In this section
we describe some examples of these compounds, our list is
not intended to be exhaustive, since drug development is a
dynamic and changing process. GlaxoSmithKline (GSK) devel-
oped the OX1R antagonist SB 334867, which has a ∼50 fold
higher affinity for OX1R than OX2R (Rodgers et al., 2001;
Smart et al., 2001). The same company also developed SB

408124, SB 410220, and SB 674042 which possess varying
selectivity for human OX1R over OX2R (Langmead et al.,
2004; Dugovic et al., 2009). GSK has also developed a dual
OX1R/OX2R antagonist, SB 649868 which is currently in phase
II clinical trials for sleep disorders (Scammell and Winrow,
2011). Almorexant is another dual OX1R/OX2R antagonist,
developed by Actelion (Brisbare-Roch et al., 2007; Boss et al.,
2009; Malherbe et al., 2009b). Merck, in turn, has developed
three dual antagonists: DORA-1, DORA-5, and [(7R)-4-
(5-Chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-
methyl-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305)
(Bergman et al., 2008; Cox et al., 2009; Whitman et al., 2009;
Winrow et al., 2010). Finally, Johnson & Johnson have developed
a selective OX2R antagonist, JNJ 10397049, as has Hoffmann-La
Roche with N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-
sulphonyl)-amino]-N-pyridin-3-ylmethyl-acetamide (EMPA)
(McAtee et al., 2004; Malherbe et al., 2009a).

Orexin-containing neurons are found in dorsomedial (DMH),
lateral (LH) and perifornical hypothalamic areas (PFA) (Peyron
et al., 1998). These neurons send their projections widely to mul-
tiple brain regions in the cortex, hypothalamus, brainstem, and
spinal cord (Broberger et al., 1998; Elias et al., 1998; Peyron et al.,
1998; Date et al., 1999; Nambu et al., 1999; Van Den Pol, 1999).
Orexins can modulate noradrenergic (Hagan et al., 1999; Horvath
et al., 1999; Bourgin et al., 2000), serotonergic (Brown et al., 2001,
2002), cholinergic (Burlet et al., 2002), and dopaminergic systems
(Korotkova et al., 2003), as well as the hypothalamic-pituitary-
adrenal axis (Jaszberenyi et al., 2000; Kuru et al., 2000). In accor-
dance with an extensive projection network of orexin neurons and
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their established role in modulating several major neurotrans-
mitter systems, orexins are involved in numerous physiological
functions: blood pressure regulation, thermoregulation, feeding
behavior, neuroendocrine regulation, the sleep-wake cycle and,
more recently, drug-seeking behavior (Allen and Cechetto, 1992;
Stanley et al., 1996; De Lecea et al., 1998; Peyron et al., 1998;
Sakurai et al., 1998; Harris et al., 2005; Lawrence et al., 2006;
Aston-Jones et al., 2009).

ADDICTION
Drug addiction (including alcohol dependence) is a chronic,
relapsing disorder which consists of a compulsive pattern of
drug-seeking and drug-taking behavior that takes place at the
expense of other activities. Many people experiment with poten-
tially addictive drugs and a minority become addicted; hence
drug use alone does not inevitably lead to drug addiction. A key
question in addiction research, therefore, is how do susceptible
individuals make the transition from casual to compulsive drug
use? Cellular and molecular effects of repeated drug use appear
to produce long-term alterations in neural functions and ulti-
mately remodel neuronal circuits. These changes may potentially
explain how the risk of relapse from a drug-free state can per-
sist for years, and also how drug-related cues are able to control
behavior. In order to elucidate the mechanism by which the tran-
sition from drug use to addiction occurs, research is directed
toward identifying and characterizing brain systems that medi-
ate the rewarding effects of addictive drugs and if/how these brain
systems are changed by drug use.

Harmful alcohol consumption is responsible for 2.5 mil-
lion deaths annually, causing illness and injury to many more.
According to the World Health Organization (WHO) 55% of
the adult population has consumed an alcoholic beverage at
least one time in their life. In 2005, worldwide alcohol con-
sumption was equal to 6.13 litres of pure alcohol consumed per
person aged 15 years or older (WHO, 2011). Unlike drugs such
as cocaine, alcohol has many pharmacological targets, acting on
various signaling pathways, ion channels, and neurotransmitter
systems. Examples of molecular targets include γ-aminobutyric
acid (GABA), glycine (Mihic, 1999), glutamate (Lovinger et al.,
1989), serotonin (Lovinger, 1999), and acetylcholine (Narahashi
et al., 1999) signaling.

Despite their varying pharmacological profiles and proper-
ties, most drugs of abuse share the common feature of acutely
enhancing neurotransmission in the mesocorticolimbic system.
This interaction can be direct, as in the case of psychostimulants,
or indirect, as in the case of opioids, but all ultimately result in
increased levels of extracellular dopamine in the terminal fields
of this pathway (Di Chiara and Imperato, 1988; Wise, 1996).
Different terminal regions are thought to be involved in the dif-
ferent aspects of addictive behavior. The nucleus accumbens is
thought to be involved in the mediation of the acute reinforcing
effects of drugs (Di Chiara, 2002; Volkow et al., 2002) whereas
changes in the prefrontal cortex, orbitofrontal cortex, and ante-
rior cingulate are related to the decreases in inhibitory control and
hyper-responsiveness to drug-related cues (Kalivas and Volkow,
2005; Goldstein and Volkow, 2011). The amygdaloid complex and
hippocampus play an important role in conditioning and learning

associations between drugs and drug-related stimuli (Fuchs et al.,
2005, 2007; See, 2005; Rogers and See, 2007). More recently,
attention has been given to the role of neuropeptides in modu-
lating the mesocorticolimbic system, including the neuropeptide
orexin.

The function of a particular orexin neuron appears to depend
on the location of the cell body; neurons from dorsomedial
hypothalamic areas and perifornical hypothalamus are reportedly
associated with arousal and stress, while orexin neurons from LH
are suggested to be associated with reward-seeking processes for
both natural and drug rewards (Harris and Aston-Jones, 2006).
Moreover, other studies with varying drug challenges also support
the notion that the hypothalamic orexin neurons are functionally
heterogeneous (Fadel and Deutch, 2002; McPherson et al., 2007).
Orexinergic neurons send projections to the ventral tegmental
area (VTA) and nucleus accumbens (Fadel and Deutch, 2002).
With regards the VTA, both dopaminergic and GABAergic neu-
rons appear to be innervated, albeit somewhat sparsely (Balcita
Pedicino and Sesack, 2007). Nevertheless, evidence is accruing for
direct orexinergic input onto VTA dopaminergic cells that inner-
vate the prefrontal cortex and nucleus accumbens (Vittoz et al.,
2008). While the VTA receives input from both medial and lateral
orexinergic neurons (González et al., 2012), in terms of opiate
dependence, orexin inputs onto caudal VTA cells are implicated
(Richardson and Aston-Jones, 2012). Thus, given the innerva-
tions of mesolimbic regions by orexin and the presence of orexin
receptors in these nuclei, a framework exists to suggest a potential
role in mediating the rewarding effects of drugs of abuse including
alcohol. The main goal of this present review is to focus on orexins
and alcohol, and to provide an update on this rapidly developing
field (Lawrence, 2010).

In electrophysiological studies on brain slices bath application
of orexin-A potentiates NMDA currents in VTA neurons, while
orexin-B potentiates both NMDA and AMPA currents (Borgland
et al., 2006). When both orexin peptides are applied, the effect
is greater than seen with orexin-B alone, suggesting that both
peptides exert actions through distinct receptors, signal trans-
duction pathways and/or cellular targets (Borgland et al., 2008).
Orexins caused an increased in firing frequency, burst firing, or
no change in firing in different groups of A10 dopamine and
non-dopamine neurons in the VTA (Korotkova et al., 2003).
Microdialysis studies showed increased dopamine and metabo-
lite levels in nucleus accumbens after intra-VTA microinjection
of orexin-A and orexin-B (Narita et al., 2006).

OREXINS AND ALCOHOL SELF-ADMINISTRATION
There is no apparent difference in the density of expression of the
mRNA encoding pre-proorexin in the hypothalamus of alcohol-
preferring P rats compared to non-preferring NP rats (Lawrence
et al., 2006). It has been known for some time that High saccha-
rin intake (HiS) rats voluntarily consume more ethanol compared
to Low Saccharin intake (LoS) rats, as well as showing other
addiction-prone behaviors (Dess et al., 1998). More recently, it
has been demonstrated that HiS rats possess a higher number
of positive orexin cells in the LH and PFA than LoS rats (Holtz
et al., 2012). Rats with high novelty-induced activity show both
high ethanol consumption and elevated orexin mRNA expression
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in the perifornical hypothalamus, while expression of orexin was
reduced in rats with high triglycerides despite similar ethanol
intake (Barson et al., 2012). Therefore, while there is no clear link
between orexin expression and alcohol preference per se, chronic
ethanol consumption does alter the expression of pre-proorexin
mRNA in the LH of rats (Lawrence et al., 2006; Morganstern et al.,
2010).

The operant self-administration procedure is a widely
accepted animal model to study drug reinforcement and
drug-seeking. Evidence for a role of orexins in the reinforc-
ing properties of alcohol was established by the observation
that OX1R-selective antagonist SB 334867 attenuated operant
self-administration of ethanol by Indiana-preferring (iP) rats
(Lawrence et al., 2006). Subsequently, a similar effect was demon-
strated in Long–Evans rats which was specific to ethanol, as
sucrose self-administration was not affected (Richards et al.,
2008). This contrasts with another study which showed that
30 mg/kg of SB 334867 decreased responding for both sucrose
pellets and ethanol in rats (Cason et al., 2010). More recently we
have shown that while 5 mg/kg of SB 334867 can attenuate self-
administration of both sucrose and ethanol solutions, there is a
significantly greater effect for ethanol compared to sucrose (Jupp
et al., 2011a). Moreover, we showed a greater role for OX1R in the
motivational properties of ethanol, as the same dose of SB 334867
attenuated responding on a progressive ratio schedule for ethanol
but not sucrose (Jupp et al., 2011a). The apparently contradictory
effects observed with natural reward may relate to differences in
the reinforcement schedule used in each study (FR1 vs. FR3 vs.
PR), and/or the doses of compounds used. Thus, attenuation of
sucrose self-administration occurs at higher doses of SB 334867
(Cason et al., 2010), where selectivity between OX1R and OX2R
may be reduced.

Collectively however, these data point to a role for the
OX1R in the rewarding and motivational properties of ethanol.
Importantly however, a recent study found no impact of OX1R
antagonism on ethanol self-administration by Wistar rats with
the OX1R antagonist SB-408124 (Shoblock et al., 2011). The level
of ethanol self-administration by the Wistar rats in this study
was relatively low compared to alcohol-preferring strains. Hence,
the authors raise the possibility that activity at OX1R is only
recruited during high levels of ethanol intake, or only involved
during high motivation to consume ethanol. This hypothesis
is supported by the observation that SB 334867 reduces alco-
hol consumption and preference in Sprague–Dawley rats with
a high baseline preference for alcohol while having no effect
on those with a low baseline preference (Moorman and Aston-
Jones, 2009). In addition, OX1R activation has been linked to
high effort work for extremely salient rewards (Borgland et al.,
2009).

Nevertheless, a recent study has implicated the relatively
less-studied OX2R in ethanol reward. The OX2R antago-
nist, JNJ 10397049, reduced ethanol, but not saccharin, self-
administration after systemic administration (Shoblock et al.,
2011). Indeed, it has been suggested that studies with relatively
high doses of “selective” OX1R antagonists may in fact be dif-
ficult to interpret as solely acting through OX1R due to loss
of selectivity in vivo (e.g., Shoblock et al., 2011; Gotter et al.,

2012). In this regard however, as we canvassed in a recent study
from our lab (Jupp et al., 2011a), SB 334867 can reduce alcohol
self-administration in rats at doses (5 mg/kg ip) where OX1R
selectivity is retained. On balance, it appears possible that both
OX1 and OX2 may play a role in mediating the reinforcing prop-
erties of alcohol (and other drugs). It would be worth addressing
whether both OX1R and OX2R are implicated in natural and drug
rewards more fully. This is now a real possibility with commer-
cially available antagonists for OX1R and OX2R. In this regard,
two highly selective compounds namely GSK1059865 (OX1R)
and JNJ1037049 (OX2R) have been assessed in conjunction with
fMRI in rat brain after an acute amphetamine challenge (Gozzi
et al., 2011). The findings suggested that the OX2R effect was pre-
dominantly cortical (arousal) while the OX1R effect was predom-
inantly subcortical striatal (reward and goal-directed behaviors).
Importantly, these conclusions do not preclude a potential corti-
cal action of OX1R. Such functionally topography may relate to
suggestions that orexin projections from the LH control drug-
seeking behavior through activation of reward pathways and
perifornical-dorsomedial areas of hypothalamus control interface
arousal and the stress pathways (Harris and Aston-Jones, 2006).
Future studies will undoubtedly address the issue of the pre-
cise functional interplay between medial and lateral orexinergic
populations.

The above-mentioned data relate to studies using systemic
administration of drugs to manipulate the orexin system. While
of value, they do not provide evidence for anatomic loci of
action where orexins may be acting in the brain to regu-
late self-administration of alcohol. Microinjections of orexin-A
into the paraventricular nucleus and LH increase ethanol self-
administration, but not food or water consumption in Sprague–
Dawley rats (Schneider et al., 2007). In contrast, intra-nucleus
accumbens microinjections of orexin-A had no effect on ethanol
intake (Schneider et al., 2007). More recently, intra-LH injections
of NMDA stimulate both ethanol intake and expression of orexin
in rats (Chen et al., 2012). Therefore, while hypothalamic sites
where orexins regulate ethanol intake have been identified, there
is still a need to fully evaluate potential extra-hypothalamic sites
of action.

OREXINS IN ALCOHOL RELAPSE/REINSTATEMENT
The extinction-reinstatement paradigm is a commonly used ani-
mal model of relapse and is used to investigate the neurobiology
underlying drug-seeking behavior (Stretch et al., 1971; Davis
and Smith, 1976; De Wit and Stewart, 1981). In 2005 it was
reported that intracerebroventricular administration of orexin-
A reinstated extinguished responding on a cocaine-paired lever
in rats (Boutrel et al., 2005; Wang et al., 2009). The same has
also been found for nicotine-seeking behavior in mice (Plaza-
Zabala et al., 2010). SB 334867 attenuates reinstatement induced
by a cocaine- and heroin-related stimulus, without affecting that
induced by a stimulus conditioned to a conventional reinforcer
(Smith et al., 2009; Martin-Fardon et al., 2010; Smith and Aston-
Jones, 2012). A similar result is found when drug-seeking is
assessed after 1 day or 2 weeks of abstinence (without extinction)
or following extinction of cocaine-seeking in a different context
(Smith et al., 2010). Zhou et al. (2012) showed that SB 334867
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regulated cue-induced reinstatement of cocaine-seeking in male,
but not female, rats.

In the alcohol field, Lawrence et al. (2006) provided the
first evidence linking the orexin system in cue-induced rein-
statement of alcohol-seeking. Shortly afterwards these functional
data were supported by demonstration that cue-induced rein-
statement of alcohol-seeking was associated with activation of
orexin-containing neurons (Dayas et al., 2008). Also, in the
renewal paradigm of alcohol-seeking there is a significant pos-
itive correlation between the activation of orexin neurons and
relapse responding on the “active” nose-poke (Hamlin et al.,
2007). Subsequently this evidence has been expanded to include
the observation that SB 334867 abolishes cue-induced reinstate-
ment of alcohol-seeking both immediately after extinction as
well as after an extended period of abstinence following extinc-
tion (Jupp et al., 2011b). Collectively, these data suggest that
despite extinction and long-term abstinence, the orexinergic sys-
tem is seemingly still involved in the integration of the salience
of cues that previously signaled the availability of ethanol. The
latter study included an examination of the pattern of neu-
ronal activation following immediate vs. delayed reinstatement.
Thus, the putative anatomic loci where SB-334867 may be act-
ing (directly or indirectly) to regulate relapse-like alcohol-seeking
seemingly includes prefrontal cortical structures. Intriguingly, the
putative anatomic loci where SB 334867 may act (directly or indi-
rectly) to regulate relapse-like alcohol-seeking apparently shifts
from orbitofrontal/medial prefrontal cortex, accumbens core and
basolateral amygdala (BLA) following immediate reinstatement
to primarily a cortical locus following delayed reinstatement.
These findings collectively suggest that the circuitry through
which orexin impacts upon alcohol-seeking driven by exposure
to cues may change over time. Further studies, including func-
tional mapping, are required to determine the precise loci where
OX1R may regulate cue-induced alcohol-seeking, including cor-
tical sites and subcortical targets, such as the VTA which has
recently been implicated in cue-driven cocaine-seeking (James
et al., 2011). Reversible inactivation of LH prevented cue-induced
reinstatement of beer and sucrose-seeking rats (Marchant et al.,
2009). Using the retrograde neuronal tracer combined with Fos
activation method, recruitment of LH-projecting neurons from
nucleus accumbens shell during reinstatement was demonstrated
(Marchant et al., 2009).

Dhaher et al. (2010) reported that SB 334867 prevented the
increase of ethanol consumption observed on relapse following
abstinence, but did not have any effect on Pavlovian spon-
taneous recovery of alcohol-seeking after 2 weeks abstinence.
Nevertheless, the same OX1R antagonist reduces stress-induced
reinstatement to alcohol or sucrose-seeking by yohimbine
(Richards et al., 2008); or the cue-induced reinstatement of alco-
hol seeking facilitated by intra-lateral hypothalamic injection of
neuropeptides S (NPS) in rats (Cannella et al., 2009). As is
the case with ethanol consumption, recent studies have found
that SB 334867 is more effective at reducing reinstatement of
alcohol-seeking compared to that for a natural reward (Martin-
Fardon and Weiss, 2012). Interestingly, inhibition of hypotha-
lamic peptides, including orexin neurons, by projections from
nucleus accumbens shell has been implicated in the extinction

of alcohol-seeking behavior (Millan et al., 2010), suggesting a
possible role for orexins in extinction.

OREXINS IN ALCOHOL CONDITIONED PLACE PREFERENCE
A study utilizing the CPP paradigm provided the first evidence
for a role for the orexin neurons of the LH in reward and
reward-seeking. Conditioned animals which show a preference
for a reward-paired chamber (with food, morphine, or cocaine)
display increased Fos expression in lateral hypothalamic orexin
cells (Harris et al., 2005). It was demonstrated that neurons that
project from rostral lateral septum to LH are activated in propor-
tion to cocaine-induced CPP, and the inhibition of lateral septum
neurons blocked Fos expression in orexin cells in the LH (Sartor
and Aston-Jones, 2012). Studies involving functional topography
of orexin projections to VTA showed that this region is a signifi-
cant target of orexin action (Richardson and Aston-Jones, 2012).
Administration of the OX1R antagonist SB 334867 intra-VTA was
found to reduce morphine CPP (Narita et al., 2006) while admin-
istration of morphine systemically or orexin-A into the VTA
reinstated this CPP (Harris et al., 2005). In addition, microinjec-
tion of Y4 receptor agonist, rPP (rat pancreatic polypeptide), into
the LH reinstated the extinguished morphine CPP which could
be blocked by previous OX1R antagonist treatment (Harris et al.,
2005). Subsequent studies have further supported a role for OX1R
in opiate place preference (Sharf et al., 2010).

Alcohol CPP studies are equivocal at this stage and it appears
that there may be a differential role for OX1R and OX2R in
the conditioned rewarding effects of ethanol. OX1R antago-
nism by SB 334867 attenuated a weak CPP to ethanol in DBA
mice; however, when a different protocol which resulted in a
strong CPP was utilized SB 334867 had no effect (Voorhees
and Cunningham, 2011). More recently, a different OX1 recep-
tor antagonist SB-408124 was found to have no effect on
the acquisition or expression of an ethanol-induced CPP in
DBA mice (Shoblock et al., 2011). These authors found that
the OX2R antagonist JNJ 10397049 attenuated the acquisi-
tion, expression, and reinstatement of an ethanol-induced CPP
(Shoblock et al., 2011).

OREXINS AND BEHAVIORAL SENSITIZATION
Behavioral sensitization has been proposed to occur as a result
of changes in the neural circuits that regulate the attribu-
tion of incentive salience to stimuli (Robinson and Berridge,
2008). Intracerebroventricular injections of orexin A or orexin
B increase locomotor activity in mice (Narita et al., 2006). Both
systemic and intra-VTA administration of SB 334867 blocks
the development of behavioral sensitization to cocaine in rats
(Borgland et al., 2006). Importantly, intra-VTA SB 334867 itself
does not alter locomotor activity at doses that regulate cocaine-
seeking (James et al., 2011). In contrast to cocaine, SB 334867
had no effect on either acute or sensitized responses to mor-
phine (Sharf et al., 2010). OX1R antagonism decreases ethanol-
induced locomotor activity in mice, but not spontaneous activity
in mice (Voorhees and Cunningham, 2011) or rats (Richards
et al., 2008). In addition, recent data suggest that OX2R antag-
onism can attenuate ethanol-induced locomotor activity in mice
(Shoblock et al., 2011). As yet, a role for orexin in behavioral
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sensitization to ethanol has not been thoroughly examined.
However, pre-proorexin knockout mice showed intact acute loco-
motor responses and behavioral sensitization to morphine (Sharf
et al., 2010).

OREXINS AND MOTOR FUNCTION
When combined with ethanol, Almorexant, a dual orexin recep-
tor antagonist, did not interfere in rotarod performance and grip
strength, showing no action in motor coordination (Steiner et al.,
2011). Moreover, this study also suggested that Almorexant has
no effect upon ethanol-induced sedation. In humans, there is no
potentiation of alcohol impairment by Almorexant (Hoch et al.,
2012). In rats, orexin-A or -B given icv reduced the hypnotic
effects of ethanol (Jia et al., 2011). In a prenatal alcohol exposure
procedure, it was observed that rats which received alcohol intra-
gastrically twice daily on postnatal days PD 4–9, and were then
treated with SB 334867 daily on PD 12–14, presented lower lev-
els of activity upon test than rats who had received vehicle on PD
12–14 (Stettner et al., 2011). This finding implicates the orexin
system in the persistent hyperactivity observed following prena-
tal alcohol exposure. Intriguingly, prenatal alcohol exposure (via
dams gavaged from E9 to parturition with 1 or 3 g/kg of ethanol)
stimulates neurogenesis, including that of orexinergic neurons,
which may contribute to altered consumption patterns in exposed
offspring (Chang et al., 2012).

OREXINS AND WITHDRAWAL
Somatic signals of nicotine-induced withdrawal were attenu-
ated with OX1R antagonism or in pre-proorexin knockout mice.
In parallel, nicotine withdrawal-induced Fos expression in the
DMH/perifornical region and the PVN was attenuated by pre-
treatment with SB 334867 (Plaza-Zabala et al., 2012). In terms of
ethanol, data from alcohol-dependent subjects implicates orexin
in affective dysregulation that accompanies withdrawal (Von
Der Goltz et al., 2011). Indeed, there is a significant associa-
tion between orexin A levels and severity of withdrawal scores
(Bayerlein et al., 2011).

FUTURE DIRECTIONS
In this review we have summarized recent studies focusing on
implications of the orexin system in alcohol use and abuse.
There are still numerous questions that remain to be answered:
for example, defining the anatomic loci for putative actions of
OX1R versus OX2R in regulating alcohol use, and evaluating

the possibility of dual OX1/OX2R antagonists as potential
pharmacotherapeutics. In relation to medication development,
assessing the functioning and responsivity of orexin systems in
states of alcohol dependence are also warranted. Another issue
is elucidating the precise role orexins play in the conditioned
reinforcing effects of alcohol across different species. From a
neurobiological perspective, the integration of orexin-containing
neurons into the circuitries underpinning many of the behav-
iors discussed requires more thorough attention. Related to this
point is a pressing need to delineate the interactions between
orexins and other peptides, such as NPS (Cannella et al., 2009),
galanin (Karatayev et al., 2010) plus undoubtedly others, and
non-peptides, such as histamine (Jia et al., 2011). While much
of the data to date address the issue of a direct role for orex-
ins in alcohol use and relapse, the field should also be cognizant
of the evidence of a possible role for orexins in alcohol with-
drawal. As mentioned above, recent human studies suggest that
the more severe alcohol withdrawal symptoms are, the greater
reduction in orexin-A expression is observed, at least in lympho-
cytes (Bayerlein et al., 2011). This finding, including observations
on orexin A promoter methylation (Bayerlein et al., 2011), suggest
the potential for involvement of orexins in aspects of the with-
drawal syndrome following chronic alcohol, and possibly other
drug, use. Naturally, this supposition is based upon the assump-
tion that epigenetic alterations in lymphocytes are mirrored in
neurons, which remains to be clarified. Nevertheless, our labo-
ratory has recently demonstrated that even following protracted
abstinence, orexin signaling is activated upon re-presentation of
cues previously paired with alcohol availability. Therefore, orex-
ins may actually exert multiple roles in relation to alcohol use and
abuse, ranging from consumption, motivational strength, with-
drawal through to relapse. Given the various lines of evidence
for these factors presented within this review, it is clear that sub-
stantial further research is required to confirm or refute these
hypotheses.
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