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The recent outburst of interest in cognitive developmental robotics is fueled by the ambi-
tion to propose ecologically plausible mechanisms of how, among other things, a learning
agent/robot could ground linguistic meanings in its sensorimotor behavior. Along this
stream, we propose a model that allows the simulated iCub robot to learn the meanings of
actions (point, touch, and push) oriented toward objects in robot’s peripersonal space. In
our experiments, the iCub learns to execute motor actions and comment on them. Archi-
tecturally, the model is composed of three neural-network-based modules that are trained
in different ways.The first module, a two-layer perceptron, is trained by back-propagation to
attend to the target position in the visual scene, given the low-level visual information and
the feature-based target information.The second module, having the form of an actor-critic
architecture, is the most distinguishing part of our model, and is trained by a continuous
version of reinforcement learning to execute actions as sequences, based on a linguistic
command. The third module, an echo-state network, is trained to provide the linguistic
description of the executed actions. The trained model generalizes well in case of novel
action-target combinations with randomized initial arm positions. It can also promptly adapt
its behavior if the action/target suddenly changes during motor execution.
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1. INTRODUCTION
One of the topics central to cognitive science is the representation
of meanings related to language. Unlike the standard theories,
that postulate the existence of amodal symbols, being the core
of internal representations, the grounded theories of language
acquisition and comprehension (Harnad, 1990; Barsalou, 1999;
Jeannerod, 2001) claim that arbitrary symbols (of language) are
grounded in some way in the world and body (Wilson, 2002).
Thought is expressed not as a symbol manipulation, but as an
inner simulation drawing on lower-level capacities of the sensori-
motor cognition. A growing amount of empirical evidence serves
in favor of grounded cognition (see, e.g., a review in Barsalou,
2008). The question of involvement of the motor modality in the
comprehension of language was explored in various psycholin-
guistic and neuropsychological studies. For instance, Pulvermüller
and colleagues (Pulvermüller et al., 2001; Hauk et al., 2004; Pul-
vermüller, 2005) measured the activity in motor areas of the brain
during comprehension of simple action verbs connected to differ-
ent effectors, namely “kick” executed with leg, “pick” with hand,
and “lick” with mouth. Results from various experiments showed
that during sole comprehension of language without movement, a
somatotopic (map-like) activation appeared in the motor cortex,
in accordance with the effector of the action verb. Glenberg and
Kaschak (2002) studied this phenomenon on the basis of interfer-
ence between motion execution and comprehension of so called
“transfer” sentences (i.e., including motion from an agent to a
patient). Results of experiments showed that the reaction time
was significantly shorter when participants had to make a move

congruent with the direction implied by the perceived sentence,
in comparison with the incongruent direction. Interestingly, the
significant difference was observed also in case of abstract sen-
tences (Glenberg et al., 2008), which suggests that even high-level
concepts may be somehow related to the sensorimotor behavior.

Despite the rich amount of empirical evidence on the nature
of language comprehension, the actual mechanisms of grounding
of concepts have not yet been clarified. Computational modeling
has proved fruitful in the field of grounded cognition research.
Some authors (e.g., Steels, 2008) claim that the problem of symbol
grounding has been solved. This research direction of Steels (2003)
and Steels and Belpaeme (2005) focuses on a basic method of
grounding the language into sensorimotor cognition of the agent,
and on the development of simple shared lexicon in a population
of agents using language games. For instance, in the color naming
domain, Steels and Belpaeme (2005) created a simple model of
color categorization and naming, where agents play two types of
games. First an agent plays a discrimination game to learn to distin-
guish color categories. Having acquired some basic categories, the
agent is able to communicate randomly assigned names of those
categories with other agents. Through such a negotiation process
the agents are able to develop a shared lexicon of color names
representing basic color categories qualitatively similar to human
basic color categories. As the authors argue, the acquired mean-
ings in the agents are grounded because they are autonomously
generated in the world through a sensorimotor embodiment and
perceptually grounded categorization methods, and the agents
autonomously introduce and negotiate symbols invoking these
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meanings (Steels, 2008, p. 238). It appears though that the issue of
grounding (referential) meanings is still a matter of vivid debate
in the community (De Vega et al., 2008). Namely, some authors
propose that the representation of meaning (e.g., in amodal or
in perceptual symbols) is entirely independent from the question
of whether meaning is grounded or not. Hence, the solution for
symbol grounding could arise in a system using amodal symbols.
The opposing argument holds that we truly need to avoid amodal
symbols to guarantee the formation of meanings inherent to the
agent. In their review, Taddeo and Floridi (2005) introduced zero
semantical commitment condition as a criterion for valid solu-
tion to the symbol grounding problem, completely avoiding the
designer’s approach. This criterion, however, appears unsatisfiable
in artificial systems (Vavrečka, 2006).

Cognitive developmental robotics offers a stable platform to
study the grounding in separate cognitive abilities (Asada et al.,
2009). It uses physical and simulated robots operating in a simpli-
fied environment focusing on a concrete problem with a possible
scalability to other skills and domains. Artificial neural networks
are typically used as control architectures for these robots. Can-
gelosi and Riga (2006) examined how grounded meanings of
words can be combined to form the meaning of a new word. This
process is called the symbol grounding transfer, since the mean-
ing is not grounded directly, but in its simpler components. For
instance, words like “horse” and “horn” can be combined to a new
concept“unicorn.”It is very likely that high-level abstract concepts,
which cannot be directly associated with sensorimotor experience,
are grounded using low-level concrete concepts (Barsalou and
Wiemer-Hastings, 2005). The model of Cangelosi and Riga (2006)
is based on learning through imitation, which has been consid-
ered fundamental for acquisition of language (Tomasello, 2003). In
their experiment they used two robots simulated in open dynamics
engine (ODE, www.ode.org), one pre-programmed demonstrator
and one imitator endowed with a multi-layer perceptron neural
controller trained using a standard back-propagation algorithm
(Rumelhart et al., 1986). First the robot learns to comprehend and
produce basic actions, in latter stages of development it learns to
comprehend and produce composite actions based on a verbal
command. In a subsequent work, Cangelosi et al. (2007) extended
this simple architecture to not only comprehend, but also to pro-
duce verbal descriptions of actions. These important works, aimed
to discover and describe the actual mechanism of learning abstract
concepts, clearly demonstrate the importance of the cognitive
robotics as a research method. However, a small drawback of this
model is the learning procedure and the associated assumption
about the availability of the required motor commands. It is not
natural for the action to be literally forced to the agent, as if the
instructor was dragging the child’s hand to learn to reach for an
object.

One of the most intriguing recent connectionist models of
embodied language acquisition is the Recurrent Neural Network
with Parametric Biases (RNNPB, Tani, 2003; Tani and Ito, 2003).
It is a Jordan-type recurrent neural network endowed with special
parametric bias nodes, which enable it to recognize and catego-
rize various spatio-temporal patterns and thus modulate its own
dynamic function. The values of the PB nodes during the execution
of concrete behaviors can be stored and subsequently (manually)

fed as an input to the network, which will then produce the learned
behavior, or to a twin RNNPB network (trained to acquire simi-
lar PB vectors for matching concepts) to produce recollection. An
important feature of this model is, that the PB vectors are formed
purely by self-organization, so they are self-determined by the net-
work in an unsupervised manner. On the other hand, the general
learning algorithm used in this architecture is the (supervised)
back-propagation through time (BPTT) algorithm (Rumelhart
et al., 1986). RNNPB was used in various setups where physical
or simulated robots learned repertoires of actions, and/or action
names (Tani et al., 2004; Sugita and Tani, 2005, 2008). A typical
cognitive robotics methodology, used in experiments of Tani and
Sugita comprises a simple perceptual categorization followed by a
verbal command leading to the execution of a simple action. One
particular experiment of Sugita and Tani (2005) served as a model
setting for our experiments. It used a small mobile robot a task of
which was to comprehend a two-word command indicating either
a location or a color of one of the three objects in front of it (left,
center, right, red, green, blue), and an action to be produced upon
the object (push, point, hit).

Currently the most “accurate” prototype of a child robot is the
iCub, a small-size humanoid robot created under the European
project RobotCub (Metta et al., 2008). Designed to resemble a 2.5-
year-old child, even in height and weight, the iCub is endowed
with 53 degrees of freedom (DoF) in joints distributed all over
its body in proportion similar to human effectors (e.g., 9 DoF for
hands), movable eyes with color cameras, and various other sen-
sors, providing a very accurate model of an actual child’s body. The
platform includes a carefully designed virtual form of the iCub
robot in the ODE, the iCub simulator (Tikhanoff et al., 2008),
providing a safe, yet realistic, environment for testing the control
architectures before implementing them to the real robot. Various
computational models of cognitive capacities were created on the
basis of the iCub simulator platform, many of which focus on sen-
sorimotor cognition and grounded acquisition of language, the
topic considered in this paper. For instance, Macura et al. (2009)
propose a cognitive robotics model of grasping based on a hybrid
neural network architecture, with Jordan recurrent neural network
used as an executive component. In their experiments the iCub
learns to execute various grasping sequences and to differentiate
between them as different goals. Results of experiments showed
that not only did the iCub learn to grasp successfully, but it also
displayed similar stimulus–response compatibility effect (Simon,
1969) as human subjects, hence highlighting the model’s biological
relevance.

Recently, Tikhanoff et al. (2011) created a neural network
model for reaching and grasping, incorporating the linguistic
component as well. The architecture encompasses a feed-forward
network for reaching and a recurrent neural network for grasp-
ing. The reaching task, trained by error back-propagation (BP),
is approached as one-step process, for which the training data is
first acquired during the motor babbling stage when the required
joint position are stored for various target positions in robot’s
peripersonal space. In contrast, the grasping behavior is viewed
as a sequential task and employs an associative reinforcement
learning (RL) algorithm (Barto and Jordan, 1987), making the
approach more ecologically plausible. This task is hence based
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on an appropriate design of the reward function that can drive
successful grasp types for different objects. Marocco et al. (2010)
proposed a model of direct grounding of language in action
(motor control), inspired by Sugita and Tani (2005) and Cangelosi
and Riga (2006), in which language and action are fully intercon-
nected. Meanings in this model are specific exclusively to the robot
(simulated iCub), not to the designer. Unlike less plausible input-
target mapping pairs used in some of the previous models, the
model of Marocco et al. (2010) learns dynamical sequences of
input-output patterns as they develop in time. To achieve this, the
model is trained using the BPTT algorithm, hence the procedure
of the training data acquisition still requires the experimenter’s
participation.

As an alternative to BP-based approach, some authors prefer
the well-known self-organizing maps (SOMs; Kohonen, 1997)
as core components of the cognitive architecture. For instance,
Wermter and Elshaw (2003) propose a model of the self-organizing
memory for a robot called MirrorBot, inspired by cortical assem-
blies and mirror-neurons. In this model, strongly influenced by
neuropsychological findings of Pulvermüller and colleagues (e.g.,
Pulvermüller et al., 2001), verbally labeled actions are clustered
according to the body parts they are associated with. It consists
of multiple interconnected SOMs, each representing either a body
part or an association area. First a map of the whole body projects
to the maps for body parts, which, together with a linguistic mod-
ule project to a higher-level association area on top. The model
was trained on sensor readings from Mirror-neuron Robot Agent
(MIRA; Wermter and Elshaw, 2003) using the standard Hebbian
learning and was evaluated for some primary parts of the net-
work. Unfortunately, Wermter and Elshaw (2003) do not provide
results for the whole model, so its functionality has not been fully
proved. Recently, Morse et al. (2010) proposed a cognitive robotics
framework (ERA), based on hierarchically interconnected SOMs
as well. In this model, one SOM represents a lower-level struc-
ture (for instance a sensory modality, some of its aspect, etc.) and
is connected to a higher-level “hub” SOM. In ERA architecture,
multiple SOM structures are hierarchically connected through the
associative hubs. Morse et al. (2010) evaluated the architecture
on a simple naming experiment with infants called the “modi”
experiment (Smith and Samuelson, 2010). Here the child watches
the experimenter showing two toys in particular locations (left
and right). Later on, the child’s attention is brought to a specific
location, and a name (for a toy) is uttered. Results from such exper-
iments with children, as well as with a simulated iCub endowed
with a body-posture hub architecture, showed that an infant (or
iCub) could learn the names of objects accordingly to the object’s
typical spatial location without the presence of the object.

An impressive piece of work related to grounding language in
sensorimotor behavior has been done by Dominey and his col-
leagues (see, e.g., Dominey and Boucher, 2005; Lallee et al., 2010)
and references therein). Dominey and Boucher (2005) developed
a neural-network based system for language learning with a min-
imal pre-wired language-specific functionality. The meanings (of
events and spatial relations) are extracted from video images in
terms of low-level primitives, and are linked with descriptive sen-
tence forms via learning grammatical constructions. The system
was shown to reproduce various observations from developmental

studies. Lallee et al. (2010) extend their framework for embodied
language and action comprehension by including a teleological
representation that allows goal-based reasoning for novel actions.
This work demonstrates the advantages of a hybrid, embodied–
teleological approach to action–language interaction, both from a
theoretical perspective, and via results from human–robot interac-
tion experiments with the iCub robot. The novelty of the teleolog-
ical approach consists in the representation of the subcomponents
of actions, which includes relations between initial enabling states
and final resulting states for actions. The paper also explains how
language comes to reflect the structure of action, and how it can
subsequently be used as an input and output vector for embodied
and teleological aspects of action.

The motivation for our work was to ground the meaning of
action-related commands in robot’s sensorimotor behavior, using
an approach in which the sensorimotor behavior is treated as
inherently sequential and the learning is based on an ecologi-
cally justifiable feedback. Our model shares some features with
the above mentioned models but its most distinguishing feature is
the action learning module that is based on a continuous ver-
sion of the RL paradigm (Sutton and Barto, 1998) that lends
itself to generalization and moreover is biologically inspired. As
explained below, the RL approach is based on a reward function
that can lead to desired behavior by exploring the state space. The
RL approach distinguishes our model from earlier models that
are mainly restricted to the supervised learning paradigm, which
requires a priori generation of the training data. The exception is
the grasping module in Tikhanoff et al. (2011) where the data is
generated online based on the feedback. Our task of action learn-
ing is inspired by Sugita and Tani (2005) which is neither reaching
nor grasping but something in between (point, touch, and push
actions). Details of our model are described below.

2. MATERIALS AND METHODS
For our experiments we used the iCub simulator, activating 4 DoF
in its right arm (the rest of robot’s body was motionless). The
experimental setup involved the robot facing three objects in its
peripersonal space (lying on a table), as displayed in Figure 1.

Figure 2 displays the model. It comprises three neural net-
work modules, which are trained for their respective subtasks. (1)
Target localizer (TL) detects the position of the target object on
the scene based on a low-level visual information about the scene
and on the description of features of the target object. (2) Action
learning (AL) module is responsible for motor control. Based on a
command about action type and the information about the target
object position, it produces a sequence of movements to execute
the command. (3) Action naming (AN) module learns to generate
the linguistic description of the executed action. TL and AN mod-
ules can be seen as “auxiliary,” whereas the AL module is the most
distinguishing part of our model.

2.1. LOCALIZATION OF TARGET OBJECT
The TL module is a standard multi-layer perceptron with one
hidden layer. It maps three groups of input – [image,colour,tar-
get] onto the target object position. image is a bitmap displaying
a selection retrieved from the original visual percept of the iCub,
processed with the OpenCV library as described in the following
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text. target encodes which object should be acted upon. Using a
localist encoding with 6 neurons,target can be represented either
by its color (red, green, blue) or shape (box, cylinder, sphere),
which can be seen as concepts, that the agent has in its mind. The
whole input vector of the TL module is depicted in Figure 3.

FIGURE 1 | Example of a scene with the simulated iCub acting on

objects.

FIGURE 2 |The scheme of the proposed model in terms of neural

network modules (TL, target localizer, AN, action learning, AN, action

naming).

FIGURE 3 |The schema of the input vector for target localizer. In the
simulations, the dimensionality of the object color and the target
information was increased to counterbalance the effect of the
high-dimensional image part.

Altogether, the input layer comprises 1200 neurons for image
pixels (concatenated in a line), at least 9 neurons for coding colors,
and 6 for the target (but see Section 3.1 regarding the multipli-
cation of dimensions). The three output position neurons have
a sigmoid activation function with output values in the range 〈0,
1〉, and after winner-takes-all evaluation they encompass one-hot
encoding of the target position (left, middle, right).

In our experiments, the standard visual output of 320× 240
pixels from one of the iCub’s cameras encompasses a scene with
three objects lying on the table, within the reach of the robot’s
right arm. This image is then processed using the OpenCV library
using a pre-programmed procedure (image processing is not
the focus of our model), consisting of the following steps (see
Figure 4): (1) conversion to black-and-white image, (2) cropping
the objects as a group, (3) color inversion, and (4) edge extrac-
tion. The output of step 4 serves as (part of) input to the TL
module.

2.2. ACTION LEARNING
The AL module is based on the reinforcement learning para-
digm (Sutton and Barto, 1998), which does not require prior exact
knowledge about the sequences of joint positions leading to the
target movement. It operates in a continuous space of states and
actions, using the CACLA algorithm (Van Hasselt and Wiering,
2007). The AL module has an actor-critic architecture, consisting
of two modules (function approximators). The actor’s task is to
select optimal actions leading to the desired outcome (hence max-
imizing the reward). The critic’s task is to estimate the evaluation
(reward) of the agent’s state. The actor is, unlike standard super-
vised learning with pre-given targets, adjusted on the basis of the
adaptive critic’s evaluation.

Both actor and the critic consist of a two-layer perceptron. The
actor maps the input [state, action, position] (together 11 neu-
rons) onto state-change output (4 neurons). The critic maps the
same input [state, action, position] into evaluation of the cur-
rent state value. Both networks contain the sigmoid activation
function in all neurons.

The state vector of both actor and critic network is depicted in
Figure 5. The state variables represent four joints of the robot’s
arm (the hand remains still with fingers extended) and the hand’s
touch sensor (which turns to 1 when the hand touches an object,
otherwise it remains 0). The joint values are scaled from the degrees

FIGURE 4 | Processing of the input image using the OpenCV library.
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FIGURE 5 |The input vector for the AL module. The agent is in the state
of making the push action on the middle object.

to the interval [−1, 1] using the formula

ji = 2 ∗ j ′i + |Mini |
|Mini | + |Maxi | − 1, (1)

where Mini and Maxi denote the minimal and maximal joint
angles, respectively. These limit values, related to joints 1 through
4, determine the intervals [−95; 90], [0; 161], [−37; 100], [−6;
106], respectively.

The action input represents the pre-processed external lin-
guistic input denoting which action should be taken, using three
neurons (with localist encoding). Finally, position denotes the
output from the TL module, representing the position of the
attended (target) object (left, center, right), together with action
input comprising the whole action command (e.g., “push red”).

2.2.1. Training the module
The value function V (s), computed by the critic, is updated based
on temporal differences between agent’s subsequent states, using
the equation

Vt+1 (st ) = Vt (st )+ αt δt , (2)

where δt= r t+1+ γVt(st+1)−Vt(st) is the temporal-difference
(TD) error, 0≤αt≤ 1 denotes the learning rate and 0≤ γ ≤ 1
is the discount factor. The reward r t+1 is received by the agent
immediately after executing the chosen action, which results in a
state transition from st to st+1. It is known that using the update
given by equation (2) for the discrete RL will result in convergence
of the values to the actual expected rewards for a fixed policy (Sut-
ton and Barto, 1998). CACLA extends the usability of this update
in continuous RL by yielding accurate function approximators (of
both the critic and the actor).

Critic’s parameters (weights), expressed by a vector θC
i,t are

updated using a gradient-based learning rule

θC
i,t+1 = θC

i,t + αδt
∂Vt (st )

∂θC
i (t )

(3)

The actor chooses an action at(st) given by its parameters θA
i (t ),

but is also allowed to explore the environment by choosing a novel
action ã, taken from Gaussian distribution

π (st , ãt ) = 1√
2πσ

exp
(−(ãt −at (st ))

2/
(
2σ 2)) . (4)

Then the update rule for the actor’s weights is applied if δt > 0:

θA
i,t+1 = θA

i,t + α (ãt −at )
∂at (st )

∂θA
i,t

(5)

The training procedure for the AL module is summarized in
Algorithm 1.

Algorithm 1: CACLA learning algorithm

S0← initial state
Initialize parameters θA

i,0 and θC
i,0 randomly

for t= 0, 1, 2. . . do
ãt ← at (st ) using exploration
perform action ãt and move to st+1, get new rt+1 and
Vt(st+1)
update critic’s parameters (eq. 3)
if Vt+1(st)> Vt(st) then
update actor’s parameters (eq. 5)

end if
end for

CACLA differs from other actor-critic architectures in some
respect. Most other actor-critic methods use the size of the TD
error and also the update in the opposite direction when its sign
is negative. However, this is usually not a good idea for CACLA,
since this is equivalent to updating toward some action that was
not performed and for which it is not known whether it is bet-
ter than the current output of the actor. An extreme case would
be considering an actor that already outputs the optimal action
in each state for some deterministic Markov decision processes.
For most exploring actions, the temporal-difference error is then
negative. If the actor were updated away from such an action, its
output would almost certainly no longer be optimal (Van Hasselt,
2012, p. 238). Using only positive delta can hence be seen as a
drive for improvement, and the improper behavior is implicitly
unlearned by learning a new behavior.

So, CACLA only updates the actor when actual improvements
have been observed. This avoids slow learning when there are
plateaus in the value space and the TD errors are small. It was
shown empirically that this can indeed result in better policies
than when the step size depends on the size of the TD-error (Van
Hasselt and Wiering, 2007). Intuitively, it makes sense that the dis-
tance to a promising action is more important than the size of the
improvement in value. Overall, CACLA has been developed for
continuous spaces but it has also been shown to compare favor-
ably to commonly used discrete TD methods such as SARSA or
Q-learning (Van Hasselt and Wiering, 2009).

2.2.2. Reward function
It appears that the design of the agent’s reward function plays an
important role in learning the desired behavior. Learning should
not be too complicated, otherwise it might be problematic for the
critic to learn it. The first complication we encountered in this task
was to make the agent distinguish between quite similar point and
push actions. Therefore we designed a separate reward function
for each action.

(1) During the push action the agent receives reward in the form
of negative Euclidean distance of the palm from the origi-
nal position of the target object, so in order to maximize the
reward, the agent has to displace the object.
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(2) For the touch action, the reward is again based on the negative
Euclidean distance of the palm from the original position of
the target object. Additionally, the agent receives a (constant)
penalty if it touches another object during the movement (we
used a value of−0.5). Somewhat counter intuitively, the agent
was designed to receive a small penalty (−0.3) even when
touching the target object, because this method yielded best
results. The explanation is that in case of reward after touch-
ing the object, the agent would attempt to repeatedly touch
the object which would tend to be displaced after each con-
tact, because it has no knowledge about the absolute position
of the objects. So when we introduce a small penalty factor
for touching the object, the robot’s reward increases when it
is getting closer and finally it stabilizes cyclically touching the
object without displacing it. Another solution could be to use
a recurrent network that would provide a memory for agent’s
past positions, or include the object position into the agent’s
state representation.

(3) The point action should be best rewarded when the robot’s
hand is pointing at the target object, for which the above
mentioned negative Euclidean distance turned out to be inap-
propriate. The reason is that the proximity of the palm to the
target object does not guarantee the correct orientation of the
fingers. Therefore, we first stored the information about the
joint angles corresponding to fingers pointing to the desired
position. Then the agent received a reward on the basis of
negative Manhattan distance (i.e., in L1 norm) between the
current joint configuration and the target joint configuration.
This method enforced the correct orientation of the hand with
respect to the target.

2.3. ACTION NAMING
For implementation of the ANN module we chose an echo-state
network (ESN; Jaeger, 2001) as an efficient recurrent network that
can process sequences. The task of the AN module is to name the
executed actions by learning the mapping of [m1-hid, m2-hid]
to the output sentence. m1-hid is the hidden-layer activation of
the TL module, that allows to name the target property (color or
shape). m2-hid is the hidden-layer activation of the actor of the
AL module, that allows to predict and hence name the type of exe-
cuted action. sentence is the representation at the AN’s output
layer comprising 3 units for action and 6 units for shape and color.
The sentences consist of two words, so for each sentence two units
(out of 9) are supposed to be active, one for action and the other
for object identification.

The generic ESN architecture includes also weights from the
input layer to the output layer, as well as feedback weights from
outputs back to the reservoir, but we did not include these. Hence,
the activation dynamics of the units in the reservoir is given by the
equation

xt+1 = F(Winut+1 +Wxt ), (6)

and the ESN output is computed as

yt = F out (Wout xt ), (7)

At both layers, we experimented both with sigmoid (tanh) and
linear activation functions f and f out; F and Fout are vectors of
these functions, respectively. ESN requires proper initialization of
recurrent weight in order to induce echo states as responses to
input stimulation (Jaeger, 2001; Lukosevicius and Jaeger, 2009).
This is achieved by proper scaling of recurrent weights such that
the spectral radius of W is smaller than one. (The closer the radius
to one from below, the slower is the signal attenuation.)

For training the ESN output weights, we applied the analyti-
cal approach, based on computing the matrix pseudoinverse. ESN
is trained to map sequential data to static targets (representing
two-word sentences). For each step in sequence, we computed the
reservoir activations x which were concatenated (as column vec-
tors), resulting in the matrix X. These were paired with appropriate
targets d collected in the matrix D. The analytical method yields
the output weight matrix in the form

Wout = (X+D)T (8)

where X+ is the pseudoinverse of X. The details of data preparation
are described in the Results section.

3. RESULTS
In all modules we systematically searched for optimal parameters.
We used two thirds of data patterns for training and the remaining
one third for testing, and the reported results of averages over 5
runs with a particular set of model parameters and random initial
weights. The specificities of each module follow.

3.1. TARGET LOCALIZER
For training the TL module we used data from all 3 possible object
locations, 3 possible object colors, and 6 target commands, making
together 216 different configurations. The MLP was trained using
standard back-propagation algorithm. The order of the inputs was
shuffled for each run. The training of the displayed network took
600 epochs (i.e., sweeps through the training set) with the learning
speed 0.1. Figure 6 depicts the network accuracy on the test data
as a function of the number of hidden neurons. It can be seen
that going beyond 50 neurons does not on average lead to further
increase of accuracy above 95%. Further improvement depends
more on the selected stopping criterion and the learning speed.

Interestingly, these results were achieved with certain modifi-
cations of input encoding (without which the accuracy would not
get over 75%). We observed that the MLP output was very sensitive

FIGURE 6 | Network accuracy on the testing data as a function of the

hidden-layer size.
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to the variability of shape information (high-dimensional inputs),
so we multiplied the number of neurons encoding the color and
target by various factors (n) as shown in Figure 7. The best results,
i.e., around 95% on testing data, were obtained for n= 20 (yielding
the input dimensionality for TL module 1200+ 15× 20= 1500).
However, higher values of n already lead to performance deteri-
oration. The parameters revealed by our analysis used for final
training of this modules are displayed in Table 1.

We trained the TL module for 500 epochs. The root-means-
square-error (RMSE) tended to decrease significantly as early as
during the first 50 epochs and then continued to decrease slowly.
Since the testing error does not grow with time, the network with
50 hidden units did not show evident signs of over-training. The
error on single output neurons in comparison with the desired
value was 0.037 in average on the training data and 0.136 on the
testing data.

We also briefly tested the robustness of the TL module with
respect to noise. We ran some additional simulations with noisy
inputs in which there was a 10% chance for each image pixel to be
flipped. We observed that the training accuracy remained at 100%
and the testing accuracy dropped to approximately 75% (probably
due to overfitting).

3.2. ACTION LEARNING
In training the AL module, we first focused on finding optimal
parameters (the learning rate and the hidden-layer size) for the
critic and actor networks. Since the learning of AL module is a
sequential task (unlike TL), we count its length in terms of episodes
(one episode, related to an action type and the target, is a sequence
of a number of time steps). The results for the critic trained for
500 episodes, each lasting 75 time steps (or iterations), for various
learning rates, are displayed in Figure 8A. The best results were
achieved with the discount factor γ = 0 and using the learning
rate around 0.01. For smaller rates, the learning turned out to be
too slow. Figure 8B shows the critic learning as a function of the
hidden-layer size. For each size, the training was set to last 250
episodes, using the previously chosen learning rate 0.01. It can be
seen that any size above 10 neurons leads to similar results. For the
final configuration we used the critic with 20 hidden neurons.

FIGURE 7 | Network accuracy on testing data as a function of

multiplication of non-visual units (for explanation see the text).

Table 1 | Final parameters for training of theTL module.

Architecture Learning rate Activ. function Multipl. factor

1500-50-4 0.1 sigmoid 20

We proceeded analogically in the case of the actor. Figure 9A
reveals that the actor, trained for 200 episodes, learned best for a
fairly wide range of rates between 0.01 and 0.0001. For subsequent
tests, we chose the value of 0.001. Similarly, Figure 9B shows that
setting the suitable number of hidden neurons is not critical. We
chose 40 hidden neurons. The parameters revealed by our analysis
used for final training of this modules are displayed in Table 2.

We trained the AL module using the CACLA algorithm (Algo-
rithm 1) in two phases. In phase 1, we trained the actor only
in states resulting in higher rewards from the environment
(r t+1 > rt), rather than reward estimates from the critic. The goal
was, again, to speed up the training, because at the beginning
of training, the critic is a very bad predictor. Interestingly, this
modification led to the accelerated learning of the critic as well.
After approximately 150 episodes we switched to phase 2, in which
the training was based on the original CACLA algorithm during
another 300 episodes.

Each episode represents the execution of one randomly chosen
action-target pair. The length of one episode during the training
consisted of 75 time steps (iterations, or movement instructions).
If the agent touched and moved a wrong object, the episode was
reduced to a few extra steps and terminated. In the remaining

FIGURE 8 | Error of the critic for various network parameters. RMSE as
a function of (A) learning rate, (B) hidden-layer size.

FIGURE 9 | Error of the actor for various network parameters. RMSE as
a function of (A) learning rate, (B) hidden-layer size.

Table 2 | Final parameters for training of the AL module.

Architecture Learning rate Activation function

Actor 11-40-4 0.001 tanh

Critic 11-20-1 0.01 tanh
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steps the agent should “figure out” which actions will lead to the
increase in the reward, which was penalized by the previous move-
ment. Since the agent has no specific knowledge about the changes
in object positions, it was necessary to terminate the episode before
its end to avoid learning an improper behavior.

For a randomly initialized agent at the beginning of training,
the proposed actions are large (in terms of angle changes) and
random in terms of direction. Since the exploration finds the right
directions only randomly, we decided to reduce the “magnitude”
of the proposed actions into one third of it. An even better solu-
tion could be to initialize the actor’s weights to smaller values (as
commonly used in connectionist simulations) which would lead
to smaller actions in terms of actor outputs.

In sum, we were able to successfully train the model to pro-
duce all three desired actions, having used various speed-up tricks.
Figure 10 depicts the rewards during the execution of the trained
actions for all positions of the objects. Typical characteristics for
all positions is that actions are at first large in size and gradually
they become smaller. The point action was executed perfectly. The
reward grows during each episode, and the final joint angles per-
fectly match optimal values. The reward for touch action grows at
first, until the agent touches the object. Afterward, the reward starts
to oscillate which is due to repeated agent’s effort to touch it, com-
bined with slight object displacement (caused by reward design).
The magnitude of oscillations corresponds to the distance between
palm and the target object. The magnitude could have been made
smaller by decreasing the penalty upon touch. The execution of
the push action was very good. As soon as the object was touched,
the agent started to displace it. We can observe a minor decrease of
the reward after touching which occurs because pushing the object
makes it move away from the target position (the agent does not
see the target object). If the object could have been moved without
becoming an obstacle, the arm could have moved to the object
target position where the reward is maximal.

Figure 11 displays the generalization of the “point-left” action
from five different starting positions. The starting point of the
robot’s arm was the same for all training episodes, but after training

FIGURE 10 | Reward obtained during the execution of learned actions,

as a function of discrete time steps.

the agent was able to perform the desired action from any other
starting position. The graph on the left displays the changes in
the joint angles. The graph on the right displays the values of the
reward during the action. Interestingly, the agent chooses a cor-
rect trajectory even if the arm moves to another position during
the action execution. The agent was observed to manifest similar
behavior for other actions as well.

This generalization property also ensures the robustness of
the robot’s behavior with respect to random noise. Indeed, if we
initially induced a small amount of white noise into motor com-
mands, this only had a negligible effect on correct performance,
because noise only caused the arm shift in the (continuous) state
space. Of course, large noise (reaching the magnitude of AL out-
puts) affected the arm dynamics and the compensation for noise
was insufficient.

Next, in order to get insight into actor’s internal representa-
tions, we analyzed the activations on the actor’s hidden layer as
action characteristics, and projected these high-dimensional data
onto a 2D grid using a standard SOM with toroid topology (i.e.,
making the pairs of parallel borders of the map connected). The
resulting SOM is displayed in Figure 12. It is the same map shown
twice, with different labels shown (to increase transparency). The
clearly identifiable spots of brighter color represent the concrete
actions (left figure) and positions (right figure). The size of the

FIGURE 11 |The joint angles and reward values during the execution of

the “point-left” action from different starting positions, as a function

of discrete time steps (iterations).

FIGURE 12 |The visualization of the activations on the actor’s hidden

layer using the self-organized map with toroid topology. The two plots
correspond to the same SOM, with different labels shown.
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spot reflects the number of respective activations. In each action
spot there are some smaller and bigger marks, of which the largest
ones represent the target position in which the arm of the robot
remained already from the middle of an episode assigned for the
testing action execution. The smaller marks indicate the trajectory
of the arm during the execution of the action before reaching the
target position. It can be seen, that in both displays of the SOM,
each category (action type or target position) forms a compact
cluster, reflecting the internal organization of actor’s hidden layer.

We tested the behavior of the trained model in case of chang-
ing the action type and/or target position, to see whether the agent
can react appropriately. Recall that the AL module has learned
a kind of parametrized mapping toward the goal where the goal
is kept active (and constant) at the AL input. Hence, we went
systematically through all 3 actions and target positions (for 100
steps) and at step 20 we randomly changed action type or target
position to another value. We measured the instantaneous reward
(i.e., at the current step) of the model as an indicator of its perfor-
mance. The results are shown in Figure 13. It can be seen that the
reward always dropped at the moment of change and then started
to increase toward the end of new action/target execution. Since
the agent does not use any online visual feedback, it could bump
into an obstacle, for instance when the change was made from the
left to the right object (knocking down the middle object).

Last but not least, since the above learning scenario exploited
various tricks to speed up and facilitate learning, we checked
whether CACLA algorithm will succeed also without them, that is,
in case of simultaneous learning of both AL components. There-
fore, we ran a few simulations during which the actor only relied
on critic’s value function from the very beginning. We observed
that the model had learned the task and could generalize equally
well, as with the sped-up scenario. The only disadvantage was the
computing time: it took approximately four times longer to train

FIGURE 13 |The behavior of the trained AL module (in terms of

reward) in response to the sudden change of the action type or the

target position. The growing value of the instantaneous reward,
immediately after the change, serves as an indicator that the agent
successfully responses to the new goal.

(∼2000 episodes). Actions and the target position were chosen
randomly for each episode. Figure 14 shows an example of the
training procedure where each action occurred between 160 and
180 times (i.e., each point stands for one episode). The graph
reflects the stochastic nature of learning, but the gradual increase
of the cumulative rewards is discernible in all cases toward the end
of training.

3.3. ACTION NAMING
As the AN module, the ESN was used with 50 units in the reservoir,
with the spectral radius 0.9 and connectivity 20%. The matrix of
input weights was initialized randomly from the interval [−1, 1].
ESN was designed to contain linear units at both the reservoir and
the output layer. ESN behavior was observed to be quite robust
with respect to model parameters. For training ESN we used a
batch algorithm described in Section 2.3. Before training we pre-
pared data (216 activations in total for all combinations of inputs)
from the other two modules, i.e., 40-dimensional hidden-layer
activations from the TL module and corresponding sequences
of 50-dimensional hidden-layer activations of the actor network
from the AL module of length 100 steps each. The parameters of
the AN module are summarized in Table 3.

Each of the 216 hidden-layer activations of the TL module cor-
responds to a concrete target position that can be subject to three
actions (yielding 3× 100 hidden-layer activations). The input data
for AN module is hence composed of 216 blocks of length 300. The
blocks are serially concatenated and each hidden-layer activation
vector of AN module is associated with one block (of length 300).
As a result, each block contains 300 two-component activation vec-
tors of length 90, whose first 40 components are dynamic (coming

FIGURE 14 |The development of rewards decomposed into

action/target combinations. x -axis denotes episodes, y -axis denotes the
cumulative rewards (during an episode).

Table 3 | Final parameters for training of the AN module.

Architecture Activ. function Radius Reservoir

90-50-9 linear 0.9 20%
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from the AL module, as a function of the just-executed action)
and the remaining 50 components are static (coming from the TL
module). For each input vector of the training set we stored the
target output consisting of 2 active units.

We experimented with various ways of computing the matrix
of output weights (see equation 8). The mapping task here involves
the linking of dynamically changing reservoir activations with sta-
tic targets. The choice could be made whether to concatenate all
reservoir activation vectors during each episode (in columns of
matrix X) or only a subset of them. The best results were obtained
if we collected all activation vectors. In this way we achieved the
accuracy on both the training and testing sets over 99%. During
testing, AN module was always initialized at a random position.
The outputs of the trained AN module tested on sphere-related
actions are shown in Figure 15. The first row shows the graph of
the output on the training set. The second row shows the action
naming initiated at random positions. The graphs show that the
linguistic output converges very rapidly (during a few steps) to
desired activations. Actually, this should not be surprising, given
that the AN module receives not only the information about the
current action in terms of motor command, but also the high-level
information about action type and the target position. As a result
of AL learning, different actions operate in different subspaces of

the actor state space, hence allowing the differentiation. In other
words, the performing agent has access to its internal representa-
tions and hence knows from the very beginning what it is doing and
is able to unambiguously name the action from the very beginning.

We can observe that for randomly initialized actions the settling
process takes a bit longer, compared to the training sequences. For
touch and push actions we observe at around the 40th step the con-
tact with the target object. At this point the arm motion changes,
which is reflected by slight oscillations not only at units coding the
actions but also units coding the target object.

The situation would be different, though, for the observed
actions. If we wanted to model the agent attempting to name the
observed action, it could only have access to actor’s output of AL
module, and only in the form of visual rather than proprioceptive
information. In this case, the ability to name the action could be
limited to the time step when the trajectory could already be differ-
entiated visually. We could predict that the naming of the correct
target position would precede the naming of the action type.

4. DISCUSSION
We presented a connectionist model whose goal was to make the
simulated iCub robot learn object-directed actions and to link this
ability with language, hence grounding the linguistic meanings.

FIGURE 15 |The linguistic output of AN module, during actions targeted at a sphere, as a function of discrete time steps (iterations). The actions start
from (A) positions used during training, or (B) from random positions (B).
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The given task was learned with high accuracy. The model can
be decomposed into three modules whose properties we will now
discuss. The target localizer (TL) converts visual information to
spatial information. It rests on a biologically relevant assumption
that the shape and color of objects are processed separately in the
visual system, so they are provided as parallel inputs. In our model
the binding problem is avoided because during training, the MLP
can learn to link the object shapes with corresponding colors (by
associating the input components). The simplifying feature of our
training data is the assumption that the target is always unam-
biguous (no two objects in the scene can have the same color or
shape) so the target can be referred to by its color or its shape. On
the other hand, any object of any color can be at any position in
the visual field, which makes the task complexity somewhat higher
than that used in Sugita and Tani (2005).

The feature of the target is assumed to be a high-level top-
down information that serves as an additional (symbolic) input
to the robot. Regarding the data dimensionality, from the compu-
tational perspective, it is an interesting observation, that we had
to significantly extend the dimensionality of symbolic inputs to
counterbalance the influence of the high-dimensional shape (con-
tour) data. It is a question how biological systems, if understood
in computational terms, solve the problem of merging data from
multiple sources while maintaining the balance between them.
The output of the TL module can be seen as the symbolic infor-
mation (given by one-hot codes). The natural extension would be
to use real-valued outputs that would allow the target to be placed
anywhere in the robot’s visual field.

The action learning (AL) module is the main distinguishing
part of our model. It takes two high-level (symbolic) inputs –
action type and target location – that serve as fixed parameters
of the motor behavior to be learned. The learning is based on
RL which differs from supervised scenarios (e.g., RNNPB), which
assume that target sensorimotor trajectories are available for the
training. On the contrary, RL assumes a more realistic feedback
available to the system. In our experiments, the robot was observed
to learn required behaviors and to generalize well in the given task.
Although during the training of this module the robot does not
actually see (it has no direct visual input), it still is assumed to
receive some visual information (at each step), reflected in the
reward which is based on the distance between robot’s right hand
and the target. What we reliably tested with our AL module, is that
sudden change of the AL input parameters immediately led to a
required change of the trajectory, either to a new target position,
or resulting in a new target action.

It is clear that biological systems also evaluate the distance to the
target, but they probably also use more detailed visual information
(see, e.g., Oztop et al., 2004, for a model of grasping). The typical
feature of these approaches is that they involve internal models for
motor control (e.g., Kawato, 1999; Castellini et al., 2007). Such a
step would be a natural extension of our model, giving it an ability
to update the trajectory during execution, e.g., if the target moves
(in our model the target is assumed to be static). This feedback
could also be used for overcoming our difficulties in distinguish-
ing between touch and push actions that would require even more
fine-tuned motor actions to prevent the arm from oscillating when
touching the target. Another improvement could include faster,

“goal-oriented” learning rather than more-or-less blind search (at
the initial phase) over the state space.

The action naming (AN) module learns to generate linguistic
description of the performed action, taking information from the
other two modules, about the action type (from AL) and the target
(from TL). Both pieces of (input) information are pre-processed
and become distributed (at the hidden layers), the former being
sequential and the latter being static. The action naming task can
be considered simple, since the ESN only needs to extract the
(conceptual) information from AL and TL modules, and to map
it onto the symbolic output (words). It is true that in our model
the linguistic information (at AN output) is not sequential, as for
instance in the case of twin RNNPBs (Tani et al., 2004). However,
it could be made sequential with an appropriate change of the
AN module architecture and the training scenario. In the current
model, we did not consider this feature important.

The nature of conversion between subsymbolic sensorimotor
information in both directions is hence qualitatively different,
unlike the case of RNNPB, where the two modules are more-or-
less symmetric both in terms of architecture and training (Sugita
and Tani, 2005). In the behavior-to-language direction, we deal
with mapping sequences to spatial patterns. In the language-to-
behavior direction, the static symbolic information drives the
appropriate sequence generation. Actually, our model mingles the
linguistic information (words describing actions) with conceptual
information (intended goals, given by action type and the target
identity, presented as top-down inputs for AL and TL modules,
respectively), both of which are coded localistically. Of course, in
realistic systems these two types of information are different, with-
out a one-to-one mapping between the two. In our model, this
correspondence is hence simplified. We trained the three modules
in our model separately in order to have a better control over the
performance. It might be interesting to consider a more interactive
scenario in which all modules would develop simultaneously, in
which case we would be facing a more difficult task (can the robot
learn actions that are not yet well parametrized/coded?).

One important feature of connectionist modeling is related to
the training scenario. In our model, the learning of AN module fol-
lowing the AL module (which renders the former to be a posteriori
categorizer of learned motor actions) differs from the synchronous
action–language learning scenario used in RNNPB. The underly-
ing motivation in RNNPB was to let the model converge to com-
mon“triggering”codes (via PB node learning) used for both action
execution and action naming. This makes sense but on the other
hand, we think that in this particular case this synchronous train-
ing is not necessary, nor justified. It is known from developmental
psychology and neurophysiology (see, e.g., Jeannerod, 1997) that
object recognition ability and object-related actions such as reach-
ing and grasping are prelinguistic. For instance, reaching develops
at around month three, early grasping and manipulation soon
after, the hand is adjusted to the object’s size at around month nine
and they are finally integrated in a single smooth action at around
month 13 of age (Cangelosi et al., 2010). So, it is not unreason-
able to assume that a child first acquires certain motor behaviors
(at least to a certain level of proficiency) before it learns to name
them, hence grounding the meaning of words. At the same time,
we acknowledge that language can and does affect cognition as
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such also early in life, for instance in object categorization (see
evidence in Waxman, 2003), and that the influence of language on
cognition remains active throughout life (e.g., in spatial cognition;
Landau et al., 2011). On the other hand, the TL and AL modules
could be trained simultaneously, which would better correspond
with infants’ scenario. The development of reaching and touching
objects in infants overlaps significantly with learning the concepts
and recognizing physical objects.

One interesting option that emerged in developmental robotics,
concerns the type of feedback used for learning motor behavior.
We argued that RL uses a biologically more plausible feedback (in
terms of rewards), rather than required motor trajectories such as
those used in RNNPB and some other models. Technically, one can
use these trajectories in human–robot interaction, for example by
manually controlling robot’s arms and storing the proprioceptive
data to be used for training the robot later (as demonstrated with
iCub in some works). It seems that this scenario could be some-
times adopted in AI to facilitate learning in robots. It depends on
the goal of the effort (working technical solution or a model of
child development). Actually, this practice is also usable to a lim-
ited extent in humans (for instance in teaching dance postures),
but humans learn primarily by observation and self practicing. On
the other hand, RL can be rather slow in convergence and becomes
difficult in high-dimensional state spaces, so it is a remaining
challenge to improve the existing algorithms or design new ones.

One drawback of our model, often present in similar works,
is that in order to name the action, the agent has to execute it as
well. On the other hand, in a real life one may need to name the
action that is observed. To enhance the model with the capabil-
ity to produce an action name when just observing it, a mirroring
mechanism could be introduced. This could be based on the motor
resonance (Van der Wel et al., in press), a partial activation of
the neural circuitry for motor control during non-motoric tasks,
which can be related to the functionality of the mirror-neuron sys-
tem. From the computational point of view, the mirror-neurons
were considered using various approaches, for instance by Tani
et al. (2004), Chersi et al. (2010), or Wermter and Elshaw (2003).

Our perspective, influenced by the common coding theory (Prinz,
1997; Hommel et al., 2001), is mostly similar to the model of
Wermter and Elshaw (2003) described in the Introduction. To
implement common coding, the activations on the hidden layers
of the constituting modules could be, together with other percep-
tual information, projected onto a higher-level association area
(using some kind of Hebbian learning), which could then influ-
ence the behavior of the modules by projecting back to the hidden
layers. As we have already demonstrated, activations in the hidden
layer of the AL module projected on a 2-dimensional SOM tend
to form clusters characterizing various actions the agent is able to
produce.

Another interesting issue worth discussing is the nature of
reward. In the context of the RL approach, the reward is assumed
to be the property of the environment, and the agent attempts to
maximize it. Humans are also sensitive to rewards, but probably
they can differ in what counts for them as a reward. The reward
seems to be task-dependent and also agent-dependent. Related to
our work, we assumed that the reward contains two generic com-
ponents: the vision-related reward (the distance) and the haptic
reward. This specification of reward can be seen as the designer’s
intervention without which the robot could not learn. It could
be interesting to look at the inverse RL whose goal is, based on
agent’s behavior, to recover the underlying reward function that is
maximized (Ng and Russell, 2000).

To conclude, we believe that cognitive robotics approach using
neural networks is a promising path toward scalable cognitive
architectures, embedded in simulated or real robots. The expected
challenge could be to use ecologically plausible training algo-
rithms and representations, with a goal to make the learning
robots as autonomous as possible, hence minimizing the designer’s
intervention.
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