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Curiosity Driven Modular Incremental Slow Feature Analysis (CD-MISFA; Kompella et al.,
2012a) is a recently introduced model of intrinsically-motivated invariance learning. Artificial
curiosity enables the orderly formation of multiple stable sensory representations to
simplify the agent’s complex sensory input. We discuss computational properties of the
CD-MISFA model itself as well as neurophysiological analogs fulfilling similar functional
roles. CD-MISFA combines 1. unsupervised representation learning through the slowness
principle, 2. generation of an intrinsic reward signal through learning progress of the
developing features, and 3. balancing of exploration and exploitation to maximize learning
progress and quickly learn multiple feature sets for perceptual simplification. Experimental
results on synthetic observations and on the iCub robot show that the intrinsic value
system is essential for representation learning. Representations are typically explored and
learned in order from least to most costly, as predicted by the theory of curiosity.
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1. INTRODUCTION
We describe a model called CURIOUSity-DRiven, Modular,
Incremental Slow Feature Analysis (Curious Dr. MISFA),
which autonomously explores various action contexts, learn-
ing low-dimensional encodings from the high-dimensional sen-
sory inputs (i.e., video) that result from each such context.
Autonomous behavior in this regard requires the coordinated
interaction between a number of subsystems which enable an
agent to balance exploration-exploitation, to engage in useful
contexts while disengaging from others, and to organize repre-
sentations such that newly learned representations do not over-
write previously learned ones. Ultimately, an agent making use
of Curiosity Driven Modular Incremental Slow Feature Analysis
(CD-MISFA) learns to seek out and engage contexts wherein it
expects to make the quickest progress, learns an appropriate com-
pact, context-dependent representation, and upon fully learning
such a representation, disengages from that context to enable fur-
ther exploration of the environment, and learning of subsequent
representations. The goal of such an agent is to maximize intrinsic
reward accumulation, and as a byproduct learn all such repre-
sentations that are learnable given the contexts available to it.
We not only show why the interacting subsystems of CD-MISFA
are necessary for the kind of unsupervised learning it under-
takes, but moreover, we show how the subsystems that enable the
model to autonomously explore and acquire new sensory repre-
sentations, mirror the functional roles of some of the underlying
cortical and neuromodulatory systems responsible for unsuper-
vised learning, intrinsic motivation, task engagement, and task
switching.

Although difficult, attempts to integrate such disparate func-
tional subsystems are not only helpful in understanding the brain,
but are increasingly necessary for building autonomous artificial
and robotic systems. It does not suffice, for example, to know

the cortical mechanisms responsible for unsupervised learning
of sensory representations, if these mechanisms aren’t linked to
the systems responsible for exploring one’s environment. In the
absence of external rewards, how should an agent decide which
actions and contexts to explore, in order to determine which
representations are relevant and learnable? If a sensory represen-
tation is deemed overly complex or even unlearnable, what are
the mechanisms by which the agent can disengage from explor-
ing its current context, in order to allow it to explore others?
Although CD-MISFA is an algorithmic approach to developmen-
tal robotics, and does not explicitly model the neural mechanisms
by which these functions are realized in the brain, it is notable that
the functional roles of the various subsystems in CD-MISFA find
counterparts in neurophysiology.

In the following, we first discuss background on CD-MISFA,
Artificial Curiosity, and developmental learning, then provide
a detailed computational description of how the various sub-
systems in CD-MISFA operate and interact, followed by a descrip-
tion of the neurophysiological correlates whose functional roles
mirror those of CD-MISFA; namely, the interactions between
the neuromodulatory systems involved in intrinsic motiva-
tion, task engagement, task switching, and value approximation.
CD-MISFA is implemented in two situations: an environment
composed of synthetic high-dimensional visual contexts, and a
real-world environment, with an actively exploring humanoid
iCub robot. A method for measuring the learning cost in the
different contexts is introduced, and it is shown that the model
is most likely to engage within the context where it can learn
an as yet unlearned representation, where the cost is least
among all possible contexts; this type of behavior is predicted
by the theory of curiosity, and may be a general principle of
development. The second result shows that IM-based explo-
ration enables the embodied agent to learn interesting sensory
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representations, again in the predicted order, all while operating
on high-dimensional video streams as sensory input.

2. CURIOUS Dr. MISFA
2.1. BACKGROUND
2.1.1. Artificial curiosity
Consider a setting in which an agent operates without a teacher
or any other type of external motivation, such as external reward.
In this case, an agent needs to be self-motivated, or curious. The
Formal Theory of Fun and Creativity (Schmidhuber, 2006, 1991,
2010) mathematically formalizes driving forces behind curious
and creative behaviors. This theory requires that a curious agent
have two learning components: an adaptive predictor/compressor
of the agent’s growing history of perceptions and actions, and
a reinforcement learner (Sutton and Barto, 1998). The learning
progress or expected improvement of the compressor becomes
an intrinsic reward for the reinforcement learner. To maximize
intrinsic reward accumulation, the reinforcement learner is moti-
vated to create new experiences such that the compressor makes
quick progress.

2.1.2. Curiosity and development
Such a creative agent produces a sequence of self-generated tasks
and their solutions, each task still unsolvable before learning, yet
becoming solvable after learning. Further, there is an expected
order in task-learning. Since the value function of the intrinsic
reward contains the cost of learning, in the sense of an estima-
tion of what type of progress it can expect, a task with the lowest
cost of learning is preferentially learned next, among all possible
tasks.

An orderly acquisition of competence can be seen as a devel-
opmental process. An important aspect to development is the
gradual emergence of more and more types of skills, knowl-
edge, etc (Schmidhuber, 1997, 2002; Prince et al., 2005). Such
emergence, referred to as developmental stages, can observed
through behavioral competence (Lee et al., 2007). More specifi-
cally, by developmental stages we mean that certain competencies
are always seen to precede later ones, although the earlier com-
petencies are not necessarily prerequisites for those learned later
(which would be the case in continual learning Ring, 1994).

It has been shown in an n-armed bandit scenario that a sys-
tem based on Artificial Curiosity undergoes developmental stages
(Ngo et al., 2011). Further, when the goal is to maximize expected
improvement of the predictor or other world model, it was shown
that it is optimal to concentrate on the current easiest to learn task
that has not yet been learned Lopes and Oudeyer (2012) (also in
a bandit scenario).

However, the bandit setting involves initial knowledge of the
number of possible tasks, in which case the learner can initially
reserve learning resources for each task. This is unrealistic for
open-ended autonomous development, in which the number of
different tasks is initially unknown. What is learned in one part of
the environment could apply to another part of the environment.
To enable open-ended learning, CD-MISFA learns one module at
a time, and if it finds a context that is represented well by one
of its already stored modules, it will not need to assign learning
resources or time to that context.

2.1.3. Developmental robotics
Developmental Robotics aims to discover and implement mech-
anisms that can lead to emergence of mind in a embodied
agent (Lungarella et al., 2003). The underlying developmental
program has several general requirements:

• Not Task Specific. The task(s) that the robot will handle, i.e., the
skills that it can learn, are not explicitly coded in the program.
In CD-MISFA, we have such a situation, as the perceptual
representations that emerge are dependent on the statistics
of the image sequences that are generated from autonomous
exploration of the different contexts.
• Environmental Openness. Can the system handle a wide vari-

ety of possibly uncontrolled environments that the designers
might not have explicitly thought of? Currently, CD-MISFA
specifically requires a designer to define the environment con-
texts that the robot can explore over, and so this is a drawback
of the system.
• Raw Information Processing. Learning is on raw (low-level)

information, such as pixels and motor activation values. CD-
MISFA slow features are updated directly from pixels, not
symbolic inputs or hand-designed feature outputs. On the
motor end, the active joints are extremely constrained, but this
aspect is low-level as well.
• Online Learning. Batch data collection is avoided com-

pletely through the incremental slow feature analysis
(IncSFA) technique, IncSFA (Kompella et al., 2012b),
with which a perceptual representation is updated after each
image.
• Continual Learning Ring (1994). For scaling up the machine’s

intelligent capabilities, it is necessary that learned skills lead to
(or are combined to create) more complex skills. CD-MISFA
has not yet demonstrated this, but skill development (albeit
in a limited sense) has been shown (Kompella et al., 2012a)
to be enabled by its representation learning (i.e., exploiting
the learned representations for external reward). Potentially, a
framework for continual learning can be built in here; this is to
be explored in future work.

With respect to development, a main contribution of this paper is
to show how non-task-specific and low-level visuomotor interac-
tions can give rise to emergent behaviors, which are at a higher
(but not yet conceptual) level. In a set-up environmental con-
text, an agent’s randomly moving effectors (motor babbling) lead
to observable consequences involving interactions with the envi-
ronment not directly controllable by the agent. Slowness learning
leads to the emergent “higher-level” representations, since the
learning is forced to pay attention to the events that occur on the
slower time-scale instead of the regular, but more quickly chang-
ing parts of the sensorimotor data stream. For example, a robot
that watches its arm can learn causality between its joint controls
and the images quite quickly, since there is an abundance of data
in babbling — in a sense, this is highly salient. But for the robot to
learn about something external to it (i.e., an object), that it inter-
acts with more infrequently, without human supervision, is more
difficult, but nonetheless enabled by slowness learning.
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2.1.4. Unsupervised visuomotor representation learning
There are many works on representation learning, but we are
specifically interested in representation learning from high-
dimensional image sequences where the sequence results from
an agent’s actions. Slow Feature Analysis (SFA; Wiskott and
Sejnowski, 2002), is well-suited to this case. SFA applies to image
sequences, and it provides invariant representations, unlike e.g.,
Principal Components Analysis (PCA; Jolliffe, 2005), which pro-
vides a compressed representation, but not invariance. SFA is
also an appearance-based approach (Turk and Pentland, 1991;
Murase and Nayar, 1995). Appearance-based approaches learn
analog world properties (object identity, person identity, pose esti-
mation, etc.) from a set of views. In the setting of a developmental
embodied agent, SFA provides emergent invariant representa-
tions that resemble symbolic world knowledge; IncSFA provides
this autonomously. When an agent is placed in the loop, such that
its input sequence is caused by its selected actions, the emergent
slow features have been shown to be useful decompositions of the
environment (Mahadevan and Maggioni, 2007; Sprekeler, 2011),
specifically for reinforcement learning (Sutton and Barto, 1998).

2.1.5. Related works
Related to CD-MISFA in terms of having similar motivations
and being based in developmental principles (Weng et al., 2001)
are the biologically-constrained intrinsic motivation model, and
robotic implementation, of Baldassarre et al. (2012)1, and the
Qualitative Learner of Action and Perception (QLAP; Mugan and
Kuipers, 2012). Powerplay (Schmidhuber, 2011; Srivastava et al.,
2013) was also important in terms of motivating CD-MISFA.

The QLAP is a developmental robotics system designed to
learn simplified predictable knowledge (potentially useful for
skills) from autonomous and curiosity-driven exploration. It
discretizes low-level sensorimotor experience through defining
landmarks in the variables and observing contingencies between
landmarks. It builds predictive models on the low-level experi-
ence, which it can use to generate plans of action later. It either
selects its actions randomly or such that it expects to make fast
progress in the performance of the predictive models (a form of
artificial curiosity). A major difference between this system and
ours is that we operate upon the raw pixels directly, rather than
assuming the existence of a low-level sensory model. In QLAP, for
example, the sensory channels are preprocessed so that the input
variables track the positions of the objects in the scene. Through
IncSFA, features emerge for raw visual processing, and this fea-
ture development is tightly coupled with the curiosity-driven
learning.

The recently formulated PowerPlay can be viewed as a greedy
variant of the Formal Theory of Creativity. In PowerPlay, an
increasingly general problem solver is improved by searching
for the easiest to solve, still not yet known, task, while ensur-
ing all previously solved tasks remain solved. By its formulation,
PowerPlay has no problems with forgetting, which can easily occur
in an open-ended learning setup (Schaal and Atkeson, 1998; Pape
et al., 2011). In CD-MISFA, when each new representation is

1A detailed comparison with the model of Baldassarre et al is presented in
Section 4.3.

learned well enough to be internally predictable (low error), it is
frozen and added to a long-term memory storage, and therefore
there will be no destruction of already learned representations.
Further, CD-MISFA searches for the context corresponding to
the easiest to encode new representation, thereby acting in a
PowerPlay-esque manner.

2.2. CD-MISFA OVERVIEW
CD-MISFA (Kompella et al., 2012a) combines representation
learning with curiosity-driven exploration.

The agent autonomously explores among m contexts, and
builds a representation library, denoted as

�L = {�L
1 ,�L

2 , . . . ,�L
n }. (1)

There are, lets say n(≤ m) different representations to learn in the
environment (but the agent does not know n). So, one represen-
tation can suit more than one context. Learning resources are not
assigned to each context individually. Instead, the agent learns one
representation at a time.

Each representation �L
i is composed of two subsequent map-

pings. The first takes a sensory input vector (e.g., pixels) x(t)
(where t indicates discrete time), and encodes it via slow features.
A straightforward example is linear SFA, which projects x from
I to J dimensions (J << I) via matrix W = (

w1, . . . , wJ
)
, com-

posed of J column vectors which are the slow features. In this case,
for the i-th representation,

yi(t) = xT(t)Wi. (2)

The second mapping produces internal state si from slow fea-
ture output yi. To this end, it has a set of cluster centers C =(

c1, . . . , cξ

)
in the slow feature output space, and assigns the cur-

rent state as the one with the smallest error from the current
output:

si(t) = arg min
j
‖yi(t)− ci

j‖. (3)

These mappings provide a simplification of the raw sensory data
expected to be perceived when the agent is within the context.
The first provides invariance, suppressing irrelevant informa-
tion. The second provides specificity in the remaining (relevant)
information.

2.2.1. Contexts
The agent explores different contexts, by switching between them.
Example contexts are rooms to explore, objects to interact with,
or types of videos to perceive. As a specific example context, see
Figure 1. We do not specifically define context, but note the fol-
lowing. (1) For convenience, a context can be thought of as having
some state and action space, that is known to the agent. Thus,
each context involves a set of states, a set of actions, and transi-
tion probabilities, from one state to another, given some action.
(2) There is some exploration policy, internal to the context, by
which the agent interacts with this environment. Exploration
policies define how the randomized exploration (i.e., motor bab-
bling) will occur on the given states and actions, e.g., Brownian
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FIGURE 1 | Setup of an environmental context, in which the robot

randomly moves its right arm (via single joint babbling). The robot is
not equipped with an object detection module, so it does not initially
“know” about the object in its field of view. In each episode, the arm
reliably displaces the object, and through training on this image data, a slow
feature representation emerges that provides information about the state
of the object (perturbed or not), invariant to what the robot already “knows”
about (its shoulder joint settings).

motion on a mobile robot’s wheel velocities with an innate reflex
to turn away from obstacles sensed through the distance sen-
sors (Franzius et al., 2007). (3) There is a potentially unobservable
world state that defines the high-dimensional observations that
will be the input to IncSFA. In Figure 1 is defined an example of
a robot perched over an object. Here, a state space is a discretiza-
tion of the right arm shoulder joint angles to 20 states, while the
actions are (1) increase or (2) decrease the joint angle enough to
move to an adjacent state. The world state includes the condition
of the object, which is not known to the agent initially. But this
becomes “known” through the slow feature encoding, after it is
learned. Another example context is a simple grid world (Sutton
and Barto, 1998) where the agent explores via random selection
of one of four actions (up, down, left, and right). Its state space is
given by the grid with observations of high-dimensional images
showing the grid and the agent as viewed from above (Lange and
Riedmiller, 2010; Luciw and Schmidhuber, 2012).

Each interaction with a context is an episode. There is a start
condition to the episode, and an ending condition, which must
occur at some point in the random exploration. After the ending

condition, the agent must decide whether to continue exploration
of this context, or to move to another2.

The agent uses curiosity to explore among multiple contexts.
Rewards and motivation are intrinsic to the agent, and this intrin-
sic reward is calculated from representation learning progress.
The agent can choose to remain engaged in its current context
(exploitation), or seek to engage in another context (exploration).
These decisions are due to utility judgements, where the utility is
an estimate of expected learning progress of remaining engaged
in the current context versus the expected learning progress of
another contexts. If the former is higher, remaining engaged
within the current context is most valuable, and, if the latter is
higher, disengagement and switching is the more valuable choice.

Figure 2 shows the architecture of CD-MISFA. The “adap-
tive module” encompasses the unsupervised learning part, which
involves a combination of IncSFA and Robust Online Clustering
(ROC). The representation library is shown by the “trained
modules.” Estimation errors are denoted by ε, while intrinsic
reward is denoted by ε̇. The intrinsic reward signal feeds into
the value function estimation module. The possible environmen-
tal contexts are shown at the bottom, the current context is the
“state” (with respect to the higher-level value function), while
the “action” is either to remain engaged in that context, or to
disengage and go to another.

Next, in Section 2.3, we discuss learning of a single represen-
tation. Specifically, we use IncSFA and the ROC method, respec-
tively. Some details of these algorithms are described below, but
more thorough descriptions can be found elsewhere (Guedalia
et al., 1999; Weng et al., 2003; Peng and Yi, 2006; Zhang et al.,
2005; Kompella et al., 2012b).

2.3. UNSUPERVISED REPRESENTATION LEARNING: IncSFA
SFA is concerned with the following optimization problem:

Given an I-dimensional input signal x(t) =
[x1(t), . . . , xI(t)]T , find a set of J instantaneous real-valued
functions g(x) = [g1(x), . . . , gJ(x)]T , which together generate
a J-dimensional output signal y(t) = [y1(t), . . . , yJ(t)]T with
yj(t) := gj(x(t)), such that for each j ∈ {1, . . . , J}

�j := �(yj) := 〈ẏ2
j 〉 is minimal− (4)

under the constraints

〈yj〉 = 0 (zero mean), (5)

〈y2
j 〉 = 1 (unit variance), (6)

∀i < j : 〈yiyj〉 = 0 (decorrelation and order), (7)

with 〈·〉 and ẏ indicating temporal averaging and the derivative of
y, respectively.

2We note that there are some similarities with the options framework Sutton
et al. (1999) here. One could link the start condition idea to an initiation state,
and the end condition would correspond to having a termination probability
of one at some state, and zero elsewhere. Indeed, one can view the problem of
representation learning as analogous to abstraction learning in options, which
remains an important open problem. However, we do not need to formalize
contexts as options in this paper.
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FIGURE 2 | Architecture of CD-MISFA.

The goal is to find instantaneous functions gj generating dif-
ferent output signals that are as slowly varying as possible. The
decorrelation constraint (7) ensures that different functions gj do
not code for the same features. The other constraints (5) and (6)
avoid trivial constant output solutions.

In a linear sense, the optimization problem can be solved
through an eigenvector approach, involving two uses of principal
component analysis (PCA)—first, of the covariance matrix of the
inputs (for whitening) and, second, of the covariance matrix of
the whitened approximate derivative measurements (Wiskott and
Sejnowski, 2002). IncSFA uses incremental algorithms for the two
required PCAs. For the first, Candid Covariance-Free Incremental
PCA (Zhang and Weng, 2001; Weng et al., 2003), is used, which
can also reduce the dimensionality by only computing the K high-
est eigenvectors. For the second, Minor Components Analysis
(MCA; Oja, 1992; Peng and Yi, 2006; Peng et al., 2007 ) updates
the J slowest features.

The overall framework of IncSFA is shown in Algorithm 1.
IncSFA needs to update the signal mean (learned incrementally
by simple online average estimation), the K principal compo-
nents, and the J slow features. In general K < I and J < K — and
K and J are parameters of the algorithm. The learning methods
use “amnesic” learning rate schedule, so they are potentially

suited to non-stationary input sequences. IncSFA uses Hebbian
(CCIPCA) and anti-Hebbian (CIMCA) update rules Dayan and
Abbott (2001) to compute slow-features from a time-varying
input signal.

CCIPCA updates estimates of eigenvalues and eigenvectors
from each centered observation. CCIPCA combines a statisti-
cally efficient Hebbian update with the residual method (Kreyszig,
1988; Sanger, 1989) to generate observations in a complemen-
tary space in order to update components besides the first,
dealing with the requirement that any component must also
be orthogonal to all higher-order components. The CCIPCA
algorithm is presented in Algorithm 2. The principal com-
ponent estimates are used to construct a whitening matrix.
After whitening, the signal is (approximately) normalized and
decorrelated.

Minor Components Analysis preferentially learns the least sig-
nificant principal components. The update for each slow-feature
vector wi from 1 to J, is

wi ← (1− ηMCA)wi − ηMCA

⎛
⎝(ż · wi) ż+ γ

i− 1∑
j

(wj · wi)wj

⎞
⎠
(8)
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Algorithm 1: IncSFA(J, K, θ)

//Incremental update of J slow features from

samples x ∈RI

// V : K columns: PCs of x

// W : J columns: SFs

// vγ : First PC in ż-space

// x̄ : Mean of x

1 {V, W, vγ, x̄}← INITIALIZE ()

2 for t← 1 to∞ do
3 x̆← SENSE(worldstate)

4 {ηPCA
t ,ηMCA

t }← LRNRATESCHEDULE (θ, t)

5 x← (1− ηPCA
t ) x̄+ηPCA

t x //Update mean

6 u← (x− x̄) //Centering

//Candid Covariance-Free Incremental PCA

7 V← CCIPCA-UPDATE (V, K, u,ηPCA
t )

8 S← CONSTRUCTWHITENINGMATRIX (V)

9 If t > 1 then (zprev← zcurr) //Store prev.

//Whitening and dim. reduction

10 zcurr← ST u

11 if t > 1 then

12 Pz← (
zcurr − zprev

)
//Approx. derivative

//For seq. addition (γ)

13 vγ← CCIPCA-UPDATE (vγ, 1,Pz, ηPCA
t )

14 γ← vγ/‖vγ‖
//Covariance-free Incremental MCA

15 W← CIMCA-UPDATE (W, J, ż, γ, ηMCA
t )

16 end

17 y← zT
currW //Slow feature output

18 end

Algorithm 2: CCIPCA-Update (V,K,u,η)

//Candid Covariance-Free Incremental PCA

1 u1← u
2 for i← 1 to K do

//Principal component update

3 vi← (1− η) vi + η

[
ui · vi

‖vi‖ ui

]
//Residual

4 ui+1 = ui −
(

uT
i

vi

‖vi‖
)

vi

‖vi‖
5 end
6 return V

where ηMCA is a learning rate. This update is based on anti-
Hebbian learning with an additional Gram–Schmidt term inside
the summation that enforces different features to be orthogonal.
After updating, a feature is normalized for stability.

The feature output is an instantaneous function,

y(t) = z(t)T w(t). (9)

2.4. ADAPTING THE STATES WITH ROC
In a context’s pre-defined state space, each state has its own
instance of an online clustering algorithm. Clustering is done in
an associative space that combines this pre-defined state space with
the slow feature output space. These clusters, once learned, act
as augmented internal states, potentially providing information
about invariants captured with IncSFA.

As an example, consider again the robot viewing its arm move
eventually toppling an object in the scene. The state space here
is a quantization of the joint angles of the shoulder into 20
bins, thereby providing 20 states, leading to 20 instances of the
clustering algorithm. A developed slow feature output here is a
step function, e.g., when the object is not toppled, the feature
output equals zero, and when the object is toppled the feature
output equals one. Upon convergence of, first, IncSFA and, sec-
ond, the clustering, each joint-angle state will be replaced by
two internal states, which inform whether the object is or is not
toppled.

Learning these clusters is not as straightforward as the above
example makes it seem, since the signal is highly non-stationary
during the early learning phases, due to its input being a function
of adapting slow features. The slow feature outputs can change
rapidly during the training phase. The estimator therefore has to
be able to change its estimates to this non-stationary input, while
converging to a good estimate when the input becomes stable. To
this end, we use a clustering algorithm to specifically handle non-
stationary data, called ROC (Guedalia et al., 1999; Zhang et al.,
2005).

ROC is similar to an incremental K-means algorithm—a set of
cluster centers is maintained, and with each new input, the most
similar cluster center (the winner) is adapted to become more
like the input. Unlike k-means, with each input, it follows the
adaptation step by merging the two most similar cluster centers,
and creating a new cluster center at the latest input. In this way,
ROC can quickly adjust to non-stationary input distributions by
directly adding a new cluster for the newest input sample, which
may mark the beginning of a new input process.

But is this plasticity at the cost of stability? No. In order
to enforce stability, clusters maintain a weight, which increases
faster for more similar (to the cluster center) inputs. A
large weight prevents a cluster center from changing that
much. When two clusters are merged, their weights are also
combined.

A sketch of the ROC per-sample update is in Algorithm 3. The
ROC algorithm repeatedly iterates through the following steps.
For every input sample, the algorithm finds the closest cluster
winner and updates the center cwinner toward it, also increasing
the weighting parameter awinner . Next, the closest two clusters are
merged into one cluster. Then, a new cluster is created around
sample y. Finally, all clusters weights decrease slightly. Parameters
required are ξ , the maximum number of clusters, an amnesic
parameter φ to prevent convergence, and the response function
for similarity measurement.
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Algorithm 3: ROC-Amnesic(y, s, ξ, φ)

// Cluster SFA-encoded samples y ∈RJ

// y : Slow feature encoded input

// s : Context state

// ξ > 1 : Maximum number of clusters

// 0 ≤ φ ≤ 1 : Amnesic parameter

//Determine which set of clusters to use

// C : Set of cluster centers

// a : Set of cluster weights

1 {C, a} ← GETCLUSTERINGINSTANCE (s)

2 if |C| < ξ then
// Cluster center is y, weight is 0

3 {C, a} ← ADDNEWCLUSTER (y, C, a)
4 else
5 winner← arg max

i
RESPONSE(y, ci)

6 cwinner← cwinner + y− cwinner

awinner + 1
7 awinner← awinner + RESPONSE(y, cwinner)

// Merge the two closest

8 {γ, δ} ← arg max
γ,δ,γ 
=δ

RESPONSE(cγ, cδ)

9 cγ← cγaγ + cδaδ

aγ + aδ

10 aγ← aγ + aδ

// Latest input becomes new cluster

11 cδ← y
12 aδ← 0

// Forgetting (leak)

13 for i← 1 to ξ do
14 ai ← ai(1− φ)

15 end
16 end

2.5. INTRINSIC REWARD
The intrinsic reward is expected learning progress. Learning
progress is approximated as the decrease in context-specific
cumulative estimation error. Each context state i has an associ-
ated error εi

est . These errors are updated whenever the agent visits
that state—

εi
est(t) = min

j
||y(t)− cj|| (10)

where y(t) is the slow-feature output vector and cj is the j-th
cluster center associated with this state. The context’s current
estimation error is the sum of stored errors, over all M context
states,

εest(t) =
M∑

i= 1

εi
est(t), (11)

and the intrinsic reward is the derivative of the total estimation
error ε̇est = εest(t)− εest(t − 1). Figure 3 shows an example with
a 20-state estimator.

2.6. MODULE STORAGE AND GATING
Once the slow feature outputs stabilize, the estimator clusters
converge and the error will become very low. Next, estimator
clusters with small weights ai are eliminated, to avoid having spu-
rious internal states. Finally, this overall representation module is
frozen, considered learned, and placed in long-term memory.

The already trained set of modules are the abstraction library
�L (Equation 1). If one of these module’s estimation error within
a context is below a threshold, that context is assigned that mod-
ule’s representation and the adaptive training module will be
prevented from learning, by this gating signal. There will no
intrinsic reward in this case. On the other hand, if the estimation
error of all the trained modules for the incoming data is above
the threshold, the gating signal enables the single adaptive mod-
ule to be trained on the input data. Hence the training module
will encode only data from input streams that were not encoded
earlier.

2.7. ENGAGE/DISENGAGE MECHANISM
Every time the agent exits a context, the agent needs to make
a decision. To this end, the agent can take two internal-actions,
Ao = {engage, disengage}. The internal-action engage allows the
agent to stay in the same context (starting over), while disengage
causes the agent to switch to another context. For the purposes
of our model, we do not allow the agent to select the con-
text it will switch to, instead having it randomly selected. Thus,
the transition-probability model P of the internal environment
(modeling transition probabilities between all pairs of contexts i
and j, conditioned on the two internal-actions) is given by:

P
engage
ij =

{
1, if i = j

0, if i 
= j
(12)

P
disengage
ij =

{
0, if i = j

1
N−1 , if i 
= j

(13)

∀i, j ∈ [1, . . . , N].
2.8. REWARD AND VALUE FUNCTION
The agent maintains an estimated reward function, which is the
expected change in estimation error when transitioning from
context o to context o′ (and o = o′ is possible). The agent’s reward
function is updated at every engage-disengage decision, from the
intrinsic rewards, as a sample average:

Ro,o′
a := (1− η) Ro,o′

a + η

t+T∑
t

−ε̇est(t) (14)

where 0 < η < 1 is a learning rate, T was the duration of the
previous context until its termination, (o, o′) ∈ {O1, . . . , On} and
a ∈ {engage, disengage}.

Using the current updated model of the reward function R
and the internal-state transition-probability model P, the agent’s
policy (O ×Ao → [0, 1]) is updated.

It is important that the policy adapts quickly enough to adapt
to the quickly changing reward function. Intrinsic rewards can
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FIGURE 3 | Intrinsic reward is calculated from reduction of

context-specific cumulative estimation error. (A) The change in
estimation error over time in a context with 20 states (M). With more

experience, the features stabilize and estimator errors decrease. (B) The
sum of estimation errors. The subsequent difference is the intrinsic
reward.

change quickly as learning progresses, and the RL must adapt
quicker than the underlying representation learner. We used
model-based Least Squares Policy Iteration (Lagoudakis and Parr,
2003), which is an efficient value-estimation technique, although
in principle the more biologically-plausible temporal-difference
(TD) methods could also work.

2.8.1. Epsilon-greedy
The agent cannot take the value-maximizing decision from the
very beginning, since it needs time to build its value estimates
to a more accurate level. Early on, it can make decisions more
or less randomly so that it can gather experience in the different
contexts, and to learn good estimates of value over all contexts.
Given good value estimates, it can choose to engage within the
context where it should learn quickly, in other words, make the
fastest learning progress, and to lead to a quick learning of the
next representation. To this end, the model augments its internal
action selection with decaying ε-greedy exploration.

3. NEURAL CORRELATES TO CD-MISFA
3.1. SFA AND COMPETITIVE LEARNING—ENTORHINAL CORTEX AND

HIPPOCAMPUS
Slow Feature Analysis variants have been used to simulate rep-
resentation learning in a number of biological scenarios. Based
on the general principle that underlying driving forces manifest
through slow changes in sensory observations, the features that
emerge from SFA often encode important invariants. Hierarchical
SFA has been shown to develop grid cells from high-dimensional
visual input streams (Franzius et al., 2007). Grid cells, found
in entorhinal cortex (EC) (Hafting et al., 2005), have a pattern
of firing that effectively represent hexagonal codes of any two-
dimensional environment. As such, grid cells are effective general
representations for spatial navigation in typical environments.

A competitive learning layer, over the top-layer of slow fea-
tures, leads to features acting as place cells or head-direction cells,
depending on what changes more slowly from the observation
sequences. A place cell will fire when the animal is in a specific

location in the environment, typically invariant to its heading
direction. Head-direction cells fire when the animal faces a cer-
tain direction, no matter what coordinate position it is in. Place
cells and head-direction cells are found in hippocampus (O’Keefe
and Dostrovsky, 1971; Taube et al., 1990), which has input from
EC. It’s been hypothesized that hippocampus acts as a rela-
tively fast encoder of specific, episodic information, on top of
cortex, which learns general structure from lots of data over a
long period (Cohen and O’ Reilly, 1996)—“It has been pro-
posed that this universal spatial representation might be recoded
onto a context-specific code in hippocampal networks, and that
this interplay might be crucial for successful storage of episodic
memories (Fyhn et al., 2007).”

SFA’s biological plausibility was furthered by IncSFA, which
avoids batch processing and has Hebbian and anti-Hebbian
updating equations. Hierarchical SFA (Franzius et al., 2007) and
IncSFA (Luciw et al., 2012), with competitive learning on top,
was shown to develop place and head-direction cell representa-
tions. For the representations learned in CD-MISFA, we use the
basic structure suggested by these results: A slow feature learner
(possibly hierarchical) for global features (IncSFA), inputs into a
competitive learner for development of local features (ROC).

3.2. NEUROMODULATORY SUBSYSTEMS FOR INTRINSIC REWARD
AND CONTEXT SWITCHING

3.2.1. Intrinsic rewards: dopamine and learning progress
Dopaminergic projections originate from the ventral tegmental
area (VTA). Dopamine has been implicated in reward predic-
tion (Schultz et al., 1997), leading to plausible relation to the
theory of reinforcement learning (Sutton and Barto, 1998)—
specifically, dopamine may be acting as a TD error signal.
However, this account remains controversial (Redgrave et al.,
1999; Kakade and Dayan, 2002). A major deviation from the
dopamine as TD-error theory comes from data implicating
dopamine in responding to novel salient stimuli (Schultz, 1998;
Redgrave and Gurney, 2006), even for stimuli that are not pre-
dictive of reward. Dopaminergic responses to such stimuli fade
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over subsequent trials. It has been proposed that this charac-
teristic serves the purpose of a “novelty bonus”—e.g., a reward
addendum serving as a “optimistic initialization.”

These data present intriguing correlations to the curiosity
theory. Dopamine release in response to novel stimuli could
potentially signal a predicted intrinsic reward—an expectation
of learning progress. Could DA in some situations signal the
intrinsic reward? Dopamine’s potential role in intrinsic moti-
vation has been discussed before (Redgrave and Gurney, 2006;
Kaplan and Oudeyer, 2007), but not with respect to the for-
mal theory of curiosity Schmidhuber (2010), which predicts
that intrinsic reward should be proportional to compression
progress. Computational models in neuroscience often treat
intrinsic reward as resulting from the novelty of a stimulus. If
intrinsic reward really does result from novelty, we would expect
persistent high levels of dopamine in response to unpredictable
noisy stimuli (as it remains novel from moment to moment). On
the other hand, if intrinsic rewards encode compression progress,
we would expect decreases in the level of dopamine as the pre-
dictive model becomes unable to learn anything more about the
structure of the noise3.

3.2.2. Engagement and disengagement (and switching):
norepinephrine

Neurons of the locus coeruleus (LC), in the brainstem, are the sole
source of norepinephrine (NE). NE is linked to arousal, uncer-
tainty, vigilance, attention, motivation, and task-engagement.
The LC-NE system is more traditionally thought to affect levels
of arousal, but more recently has been implicated in optimization
of behavioral performance (Usher et al., 1999; Aston-Jones and
Cohen, 2005; Sara, 2009).

In that context, the activity of the LC-NE system can be under-
stood as modulation of exploration-exploitation. The tonic dif-
ferences in LC-NE response are associated with levels of arousal.
Tonic NE response is correlated with task performance lev-
els (Usher et al., 1999). Low tonic activity coincides with low
attentiveness and alertness (Aston-Jones et al., 1991), while high
tonic activity coincides with agitation and distractibility (Aston-
Jones and Cohen, 2005). Good task performance coincides with
an intermediate tonic level during which phasic bursts of activity
are observed, while poor task performance due to distraction is
associated with high tonic activity. In phasic mode during peri-
ods of intermediate tonic NE activity, NE is released in response
to task-relevant events (Dayan and Yu, 2006). As suggested by
Usher et al. and others (Usher et al., 1999; Aston-Jones and
Cohen, 2005), the phasic modes might correspond to exploita-
tion, whereas high tonic states of NE activity might correspond to
exploration.

When it is beneficial for the agent to remain engaged in the
current task, the tonic NE level stays moderate, and only relevant
task stimuli will be salient. However, when it is not beneficial to
remain engaged in the current task, the NE level raises and task-
irrelevant stimuli become more salient. This drives the agent to
distractibility, and task performance suffers. Attending to some
distractor stimuli could have the effect of causing the agent to

3To our knowledge, this has not been tested yet.

switch to another task in which this distractor becomes rele-
vant, ostensibly with the purpose of exploring among available
tasks (i.e., it “throws the ball in the air so another team can take
it” Aston-Jones and Cohen, 2005).

In CD-MISFA, the agent’s two internal-actions, (engage or
disengage), and the reasons they are taken, links to the NE-
driven task engagement/disengagement model. Boredom (low
NE) indicates that a good representation already has been learned,
leading to low estimation error, and thereby low potential intrin-
sic reward. Distractibility (high NE) indicates that the errors
are too high, not decreasing quickly enough, or they cannot be
reduced. In this case, it becomes valuable to disengage and find
some other context, where learning may progress faster (or at all).
When the agent has found a good context, the estimation errors
decrease regularly, providing intrinsic reward that leads to a high
value estimate (and a desire to remain engaged in that context).

3.3. FRONTAL CORTEX: VALUE FUNCTION AND REPRESENTATION
SELECTION

The NE and DA neuromodulatory systems each have recip-
rocal connectivity with the prefrontal cortex—executive areas,
which deal with cognitive aspects such as decision making, and
top-down control of other functions, such as selective atten-
tion (Miller, 2000). If the LC-NE system is handling task-
engagement and disengagement based on some value judgement,
then this system needs to be controlled by another system that
is estimating these values. The prefrontal cortex (PFC) plausibly
plays a role in value estimation, and might use the utility infor-
mation to provide top-down regulation of the activities of the LC
neurons (Ishii et al., 2002).

PFC and nearby structures, specifically the anterior cingulate
cortex (ACC) and the orbital frontal cortex (OFC), are impli-
cated in value-based judgements. The ACC is involved in error
detection (i.e., recognizing a prediction error) and estimating the
costs of these errors (Bush et al., 2002). OFC is thought to be of
import in motivational control of goal-directed behaviors (Rolls
et al., 1996)—OFC damage leads to responses to objects which
are no longer rewarding (Rolls et al., 1994; Meunier et al., 1997).
The dorsolateral pre-frontal cortex (DLPF) is implicated in value-
based working memory (Rao et al., 1997). Thus, these structures
could possibly work together to estimate a value function, in the
RL sense (Ishii et al., 2002).

Another important property of PFC is to maintain an appro-
priate task representation, i.e., imposing internal representations
that guide subsequent performance, and switching these for
another when it is no longer appropriate (Miller, 2000; Cohen
et al., 2004). This property requires mechanisms to keep goal-
relevant information (i.e., what should be considered salient and
what should be considered a distractor) enabled in resonance with
lower structures. Further, it requires a mechanism to maintain
a context despite bottom-up disturbances, and a mechanism to
switch the context. The PFC has connections from and to higher-
order associative cortices, so it is in a good position to impose
task-relevant representations from the top-down. Such “execu-
tive attention” enables memory representations to be “maintained
in a highly accessible state in the presence of interference, and
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these representation may reflect action plans, goal states or task-
relevant stimuli in the environment (Kane and Engle, 2002).”

4. EXPERIMENTS AND RESULTS
4.1. SYNTHETIC SIGNALS
In other works, we have studied the types of representations
uncovered by IncSFA, and their applicability (Kompella et al.,
2012b; Luciw and Schmidhuber, 2012). The experiments here
will focus moreso on the curiosity-driven behavior, especially in
comparison to what the formal theory of curiosity predicts. We
also explore the potential link of CD-MISFA to neuromodula-
tory task-switching—what quantities in our experimental results
might be analogous to associated neuromodulators dopamine
and norepinephrine?

CD-MISFA’s typical behavior involves cycles of exploration,
exploitation, and module storage. Exploration involves context
switching, enabling accumulation of learning progress estimates
about each context. The exploitation period has it settle into a
single context where progress is easiest, until the representation
is stored in long-term memory. Based on the formal theory of
curiosity, we expect CD-MISFA to learn the representations in
inverse order of their learning difficulty. Further, it will not waste
time on anything unlearnable, corresponding to noise—which we
note is novel and surprising in the traditional sense of Shannon
et al. (1949), however, uninteresting since no learning progress
can be made.

To this end, the first experiment involves a synthetic learning
environment, with four types of sources—also known as driving
forces Wiskott (2003). The simple driving forces are the funda-
mental “causes” of the complex observations. For example, an
observation sequence given by an onboard camera of a mobile
robot is “caused” by the robot’s position, orientation, and camera
angle. One cannot reconstruct the observations from the driving
forces alone, of course, but tasks and rewarding conditions are
often associated with the driving forces, and knowledge of the
driving forces leads to useful (potentially rewarding) predictive
power.

At any time the agent is experiencing one of five contexts. Two
contexts are generated based on the same driving force, while the
other three each have a different driving force. In Figure 4A, the
2× 1000 (dimension by time steps) signal sources can be seen
(S-A, S-B, S-C, S-D), ordered via learning difficulty, with the eas-
iest signal at the top. The blue curve shows the first dimension,
while the red dotted curve shows the second dimension. At the
bottom, we have a highly non-stationary source, which changes
irregularly, so as to be unlearnable to IncSFA. We want to hide
each of these sources within a different high-dimensional pro-
cess, albeit linearly, so that linear IncSFA will be able to extract
them and it will take enough effort to do so. A high-dimensional
observation is generated from a source by multiplication with one
of four 400× 2 matrices, which are randomly generated before
each experiment. The 400 resulting values are rearranged into a
20× 20 and value-normalized from zero to one to be pixel values
for each image. Each input observation x(t) is an image of 20× 20
pixels. In Figure 4B, one can see a few sample observations. The
task for CD-MISFA is to extract all three learnable driving force
signals from a single stream of high-dimensional observations.

Figure 4C shows the CD-MISFA agent’s environment, which
contains the five contexts (C1–C5; which can be considered states
in the RL sense), and has two actions—stay (engage) or switch
(disengage). Each time a context is entered, 100 steps of observa-
tions are fed to IncSFA. Each context has a local clock, so that the
local time step will pick up where it left off if the agent returns
from another. At the end of the 1000 time steps, the local time
step resets4.

4.1.1. Measuring learning difficulty
In order to test predictions of the Formal Theory of Curiosity,
we need to analytically establish a definition of learning cost for
slow features, by which we will measure the relative complexity
of the signals within each context. We introduce here a measure
denoted as �, to quantify the learning progress of IncSFA.

�(x) =
[

1− ηmca(λn−1 − λn)

1− ηmca − ηmcaλn

]
(15)

where λn, and λn−1 are the eigenvalues corresponding to the
lowest-order and second lowest-order (respectively) principal
components in the whitened derivative space. We will discuss the
origins of � further in Section 4.4, with full derivation.

In this experiment, the three learnable signals are quantified
as �A = 0.9933 (for S-A), �B = 0.9988 (for S-B), and �C =
0.9997 (for S-C). They are quite close due to the similarities
of the last and second to last eigenvalues in each distribu-
tion, however, there is a non-linear relationship between � and
learning time. For S-A, about 2–3 epochs are needed. For S-B,
about 15 epochs are needed. For S-C, about 40 epochs are
needed.

4.1.2. Experiment setup
The experiment setup is as follows. Since there are 1000 differ-
ent time-steps, we use 1000 states for the clustering. Thus, there
will be 1000 different clusterers, each with maximum number of
clusters set as 2. The estimator error is measured as an average
of the estimation errors after each episode—an interaction with
a single context of 100 time steps. The intrinsic reward estimates
and policy are updated after each episode. Once the estimation
error gets below the threshold 0.3, the module is frozen, and a
new module created. The initial setting for ε-greedy is 0.6, which
decreases via multiplication with 0.995 after every episode, and
is reset when a new module is created. The learning rates for
IncSFA: for CCIPCA, a 1/t learning rate is used, with amnesic
parameter l = 2 (Weng et al., 2003), the MCA learning rate is
a constant ηMCA = 0.05. We collected results over 25 different
runs. Each run has a different initializations of all aspects, wherein
CD-MISFA operates for time 3.5× 105.

We note here some implementation details about the gating
system. The gating system prevents corruption of the adapting
IncSFA with samples from an already known/learned representa-
tion. This is implemented as a buffer that fills during each episode,

4We use “time step” in a local sense—it refers to one of 1000 steps that make
up each context. We will use “time” to refer to global time (over all contexts).
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FIGURE 4 | Experimental setup and results of Curious Dr. MISFA with synthetic data. See text for details.

at the end of which the 100 observations are sent to all feature sets,
from which the output is calculated. That output is then sent to
the clusters in each SF output space, enabling error calculation
for all modules. If the minimum module error is less than 0.3,
the previous 100 samples are not used for learning, and a negative
reward of −100 given. Otherwise, the samples are fed to IncSFA

for learning. In this case, the intrinsic reward is calculated as the
difference between the current estimation error of the adaptive
learner and the same context’s previously measured estimation
error. The negative reward serves only to speed up the learning
process. If it were removed, each run would simply take longer to
complete.
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4.1.3. Behavior
In all 25 runs behavior of CD-MISFA involved alternating phases
of mostly exploration among all contexts, and exploitation once
it settles on a context where it expects to make the most
progress. We will call this exploitation-exploration process a cycle.
Exploration is caused by the initial high amount of change in
the adapting slow features, so that the estimator, which is on
top of the slow features, cannot make progress. Once CD-MISFA
remains within a context for enough time, the features become
predictable enough so that an advantageous intrinsic reward can
result. Due to ε-greedy, it continues to switch between contexts,
allowing it to accumulate good estimates for all (the previous
intrinsic reward accumulations are captured in the reward func-
tion). As ε decays, the policy converges to the simple but optimal
strategy to disengage from all contexts except the easiest to learn
new context.

4.1.4. Results
Results are shown in Figures 4D–G.

Part (D) shows the average cumulative estimator error (a single
run is also plotted for perspective). In each cycle, the error starts
high, then trends down as representations are learned; finally a
module is created. Within each run, this is a rather noisy signal,
as the agent jumps from context to context. The end of each run
has only the unlearnable context remaining, so the error cannot
reduce enough to store another module.

Part (E) shows the run-averaged and temporally-averaged (for
smoothness) intrinsic reward. Each cycle (notably except the first)
involves a rise and fall. Relatively low intrinsic reward that trends
higher is associated with disengagement behavior. Relatively high
intrinsic reward that trends lower is associated with engagement
behavior. The high punishment for boring experiences within a
learned context tends to drag the values down, moreso later in
each run, when more representations have been learned. The first
cycle seems to lack the typical rise, which we posit is due to the
simplicity of the signal.

Part (F) shows average learning times and standard deviations
for the three learnable signals. The ordering tends to be as pre-
dicted, but not always: A module for S-A emerges first all 25 times,
S-B’s module occurs second 18 times, and third 7 times, while S-
A’s module is mostly third (18/25). Due to the 7 runs when S-B
and S-C were learned opposite as expected, the average learn-
ing time for S-B is higher than the average time when the second
module is typically learned (as can be seen in Figure 4D), and the
average learning time for S-C is lower than when the third module
is learned.

Part (G) illustrates the reward function for run number 15,
which is a fairly typical run. C1 and C2 are associated with ini-
tial rising reward. Once the shared source (S-A) is learned, both
have their expectations of reward drop. We see C3 subsequently
rise, followed by C4, then C5 (unlearnable).

4.1.5. On invariance
There are two independent dimensions to each source, which
together generate the observations. The corresponding represen-
tation thereby also contains two parts. One part of the driving
force is (trivially) invariant to the other part, and, after learning,

the invariance property is observable at the representation out-
puts. For example, if (after learning) the first dimension of our
source is held constant but the second allowed to change, then
the observations will change, but the output of the first feature of
the corresponding component will be constant, while the second
changes. Figure 5 illustrates this concept. As a real world exam-
ple, consider place cells and head-direction cells. The output of
the place cells are invariant to changes in orientation, and vice
versa.

4.1.6. On neuromodulators
The estimation error profile observed in Figure 4D and associ-
ated behavior mirrors the findings regarding the LC-NE system
and the “inverted U.” High levels of estimation error correspond
with predominantly disengagement and switching (“agitation”),
while low levels of estimation error correspond with switch-
ing (“boredom”). There is a “sweet spot” of error, where the
agent mostly engages in a single context. In this sweet spot, the
intrinsic reward, representing learning progress, is at its rela-
tive peak. The intrinsic reward signal could link to dopamine,
although, as we mentioned, there is no conclusive evidence
about this.

4.2. EMERGENT REPRESENTATION FROM SENSORIMOTOR
LOOPS—AN iCub EXPERIMENT

This experiment uses an embodied agent (iCub) with real high-
dimensional images (grayscale 75× 100), from the robot’s eyes.
There are two contexts here. In each, the iCub explores via ran-
dom movement of its shoulder joint, causing the outstretched
hand to eventually displace the single object in its field of view.
It then observes the outcome while the hand continues to move.
It is not given any prior knowledge about the objects, itself, or
any concepts at all. It merely observes the pixel values, and uses
CD-MISFA for learning and decision making. In one context,
the object is a cup, which topples over upon contact with very
predictable outcome. In the other, the object will roll in different

A B C

D E F

FIGURE 5 | An illustrative example of invariance, in the context of our

synthetic signal experiment. A two dimensional driving force (A)

generates high-dimensional observations (B), from which IncSFA learns
features that extract the original driving force. (C) The output of the first,
slowest, feature. After learning, the second part of the driving force is
replaced by noise (D), causing different images (E). However, the
previously learned first feature output does not change (F).
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directions. About 70 episodes of image sequences were collected
for each context. The eventual slow features, emergent from the
holistic images, will code for the state of the objects.

Three example images from each of the two contexts are shown
in Figure 6A. Each episode involves random exploration and
an object-robot interaction event, and has between 50 and 250
images. We can say the “topple” context is easier to learn than the
other, since the � value for the “topple” images is 0.9982, and the
� value for the “push” images is 0.9988.

For the desired encoding to emerge requires careful setup,
since IncSFA (and SFA, generally), applied to images with no pre-
processing, is an appearance based vision technique (Turk and
Pentland, 1991). To enable learning, we need to keep certain
aspects of the images consistent. First, the robot’s head is kept
stable, so the image background doesn’t noticeably shift. If the
image shifts, it is possible the features would code for head posi-
tion. Second, at the beginning of the episode, the object is always
placed in the same position.

4.2.1. Setup
The joint angles were quantized into 20 distinct bins, yield-
ing 20 states for each context, leading to 20 different clustering

algorithms operating. Each clustering implementation had its
maximum number of clusters set to 3. The estimation error
threshold, below which the current module is saved and a new
module is created, was set to 2.3. The initial ε-greedy value was
0.6, with a 0.93 decay multiplier. CCIPCA used learning rate 1/t
with amnesic parameter 0.4, while the MCA learning rate was
0.01. CCIPCA did variable size dimension reduction by calcu-
lating how many eigenvalues would be needed to keep 98% of
the input variance — typically this was between 10 and 15—
so the 7500 pixels could be effectively reduced to only about 10
dimensions.

Unlike in the synthetic signals experiment, the slowest feature
here encodes the context identity, which is to be expected when
the input signals from widely different clusters; in a sense this
is similar to a multiple rooms case (Mahadevan and Maggioni,
2007), where the features code for room ID. In order to prevent
learning progress from continual switching, the following rule
was implemented: when the agent decided to remain in its cur-
rent context, it experienced two subsequent episodes, but when it
decided to switch to the other, it only experienced one. In other
words, the agent is given more time to learn by staying rather than
by switching.

A

B C D

FIGURE 6 | This experiment uses image sequences from our iCub’s cameras, while it moves its arm and interacts with objects. See text for details.
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4.2.2. Results
Fifteen experimental runs were performed. Figures 6B–D show
results. Part (B) shows the average estimation error during the
first module’s learning, while part (C) shows average estima-
tion error for the second. Part (B) has a higher error, with
more fluctuation than part (C), which mostly involves learn-
ing in a single context, since it will learn to quickly disengage
away from the already learned context due to boredom pun-
ishment. In part (D), one can see the easier representation was
indeed mostly learned first (in 14 of the 15 runs, this was
the case).

Examples of the context-specific representations over time
are shown in Figure 7. Both representations eventually encode
whether the object is displaced or not. Most of the information
in the image sequences can be broken down into three com-
ponents: a baseline (the background), the object, and the arm.
The object changes slower than the arm, so it is preferentially
extracted by SFA. Moreover, the object-based features are invari-
ant to the arm’s position. Generalization is also possible, in a
limited sense. If the arm were replaced by some other object (e.g.,
a stick), the feature output would not be perturbed. For more
robust generalization, a better pre-processing is probably needed,
as is typical with appearance-based vision techniques (Cui and
Weng, 2000).

Once the features are learned, the feature output space cre-
ates a reduced-dimension state space for reinforcement learning
techniques, if an external reward is in play. For examples, see our
illustrative video of state-space simplification 5 Kompella et al.

5http://www.idsia.ch/~luciw/videos/IncSFAArm.mp4

(2012a,b) for an example of using RL to maximize external reward
upon the previously learned features.

4.2.3. On concepts
How do the learned representations relate to concepts? CD-
MISFA could be the basis for something more substantial in the
direction of concept learning, but, by itself, it is limited.

The representations learned by CD-MISFA correspond to
compressed descriptions of image feeds, emerging from an eigen-
decomposition of the covariance of temporally subsequent image
differences. In some cases the resulting representations loosely
resemble concepts, as when the slowest feature is shown to invari-
antly capture the state of some object in the images. But we are
hesitant to explicitly refer to these representations as concepts,
for a number of reasons. First, the notion of concept is itself
up for debate. Arguments about what constitutes a concept will
necessarily jump disciplinary boundaries, including philosophy,
linguistics, and artificial intelligence. We do not wish to wade
into this debate however, and we instead concern ourselves with
the manner in which an agent or robot, starting with little prior
knowledge, might direct its own behavior so as to increase what
it knows about the world around it. Second, the types of repre-
sentations learned by CD-MISFA are generally too low-level to be
considered conceptual. For example, if CD-MISFA used intrinsic
rewards to guide it to areas which enabled it to develop low-level
feature detectors, such as edge detectors (which SFA can learn
from a moving fovea Berkes and Wiskott, 2002), would we want
refer to the edge detectors or the edges themselves as concepts?
Likely not, despite the fact that it could develop from the same
learning mechanisms that led to a representation for a toppling
event.

FIGURE 7 | Example emergence of object-centric slow features for both contexts. The final result encodes two states of each object—upright or displaced.
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4.3. COMPARISON
Baldassarre et al. (2012) recently presented a biologically-
constrained model of IM, which is also applicable to develop-
mental robotics. Although the Baldassarre model (TBM) is more
closely tied to neuroanatomical function than CD-MISFA, we
argue that a number of functional and theoretical drawbacks of
TBM make CD-MISFA a superior choice.

TBM was implemented on an iCub robot, and tested in an
environment motivated by psychological studies, which includes
a box with 3 buttons, 3 doors, and a series of lights. The robot
can take 6 oculomotor actions (eyes fixating at either of the 3
buttons or 3 boxes) and 3 arm-motor actions (“reach and press,”
“reach and point,” “reach and wave”). The IM reward function
is modeled based on illumination change, considered as an auto-
matically extracted salient event, and is a value that decays with
recurrence of the salient event. In a learning phase, the model is
allowed to explore by selecting any of its oculomotor/arm-motor
actions, and observing the result (i.e., the opening of a door). In a
test phase, external rewards are “hidden” inside one of the doors,
and the goal of the agent becomes: press the correct button to
retrieve the reward.

A primary drawback of TBM and its experimental validation
is, although it makes use of IM, it is not clear to what extent (if
any) IM is necessary for appropriate learning to occur. The model
is not tested without an IM reward function, and in principle,
the task undertaken would be learnable simply through random
exploration without any IM reward whatsoever. Conversely, the
role of IM in CD-MISFA and its associated experiments is essen-
tial, since if CD-MISFA is not presented with intrinsic reward, the
model will not stay in any particular context long enough to learn
the underlying representations. If CD-MISFA simply explores its
environments in a random fashion, it is incapable of learning any
meaningful representation.

A major advantage of CD-MISFA over TBM is the former’s
grounding in the Formal Theory of Fun and Creativity. Whereas
the decay of the intrinsic reward value in TBM arbitrarily depends
on the number of times the agent repeats a given action, CD-
MISFA makes use of the more appropriate learning progress
measure. In CD-MISFA, information ceases to be intrinsically
rewarding as a function of how and when those visits lose infor-
mational value.

Lastly (and perhaps most importantly), TBM does not operate
on realistic sensory/motor spaces. Whereas CD-MISFA explicitly
shows how IM can operate in a model learning from high-
dimensional input streams, and how action selection can operate
on low-level motor outputs, TBM only shows how a model of
IM can learn a small subset of predefined actions, operating on
abstract representations of visual input.

4.4. QUANTIFYING THE LEARNING COST
We discuss here the measure denoted as �, which is used to quan-
tify the learning cost of various types of signals for IncSFA. For
simplicity, we consider here signals with similar input-variance
but that have a different temporal structure. This assumption
allows CCIPCA to approximately have a similar progress for the
signals. Therefore, our focus remains here only on the progress of
the CIMCA algorithm.

In an approach similar to the proof provided by Peng et al.
(2007) for the convergence of MCA, we present here an analysis
on quantifying the learning progress of the CIMCA algorithm.
For the sake of simplicity, we just consider here only the first
output component, but this can trivially be extended for higher
output components.

The weight-update rule of CIMCA is given by:

wmca(k) = (
1− ηmca) wmca(k− 1) (16)

−ηmca (x(k) · wmca(k− 1)) x(k)

wmca(k) = wmca(k)/‖wmca(k)‖ (17)

To analyze the “average” dynamics of Equation 16, we reformu-
late it to a deterministic discrete time (DDT) system by taking the
conditional expected value

E[wmca(k+ 1)|wmca(0), x(i), i < k] (18)

at each iteration:

wmca(k) = (
1− ηmca) wmca(k− 1) (19)

−ηmca E[x(k)x(k)T]wmca(k− 1)

Here, E[xxT] is the correlation matrix (R) of the input data
(x ∈ Rn). The weight vector wmca(k) is shown to converge to
minor component of input data Peng et al. (2007), if the following
conditions are satisfied:

ηmcaλ1 < 0.5, ||wmca(0)||2 = 1,

0 < ηmca ≤ 0.5, wmca(0)Twmca∗ 
= 0 (20)

where λ1 is the largest eigenvalue of R, wmca(0) is the initial weight
vector and wmca∗ is the eigenvector with the smallest eigenvalue
of R. Since the correlation matrix R is a symmetric non-negative
definite matrix, it can be factorized into QDQ−1, where Q is
the eigenvector matrix (columns representing unit-eigenvectors
vi) and D is a diagonal matrix with corresponding eigenvalues
(λi). In addition, the eigenvectors {vi|i = 1, 2, . . . , n} form an
orthonormal basis spanningRn. The weight vector wmca can then
be represented as

wmca(k) =
n∑

i= 1

ai(k)vi (21)

where ai(k) are some constant coefficients.

Definition 1. Given a stationary input distribution x ∈ Rn and its
eigendecomposition: {vi, λi}, ∀i ∈ {1, . . . , n}, where v denotes the
set of eigenvectors and λ their corresponding eigenvalues (such that
λ1 > · · · > λn ≥ 0). Then, we define �(x) as a measure to indicate
the learning progress of CIMCA for the input distribution x.

The following lemmas are useful to derive an analytical expression
for �. Note that for all the following lemmas to hold true, the
convergence conditions in (20) have to be satisfied.

Frontiers in Neurorobotics www.frontiersin.org May 2013 | Volume 7 | Article 9 | 15

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Luciw et al. Curious Dr. MISFA

Lemma 1. Let Vi be denoted as

Vi =
[
1− ηmca − ηmcaλi

]
(22)

then,

ai(k) = Vk
i ai(0)√∑n

j V2k
j a2

j (0)
,∀i ∈ {1, 2, . . . , n} (23)

Proof: We prove the result by mathematical induction.
k = 1: Substituting (21) in (19) for k = 0, we get

ai(1) = Viai(0), ∀i ∈ {1, 2, . . . , n}

At each update, the weight vector wmca(k) is normalized according
to (17).

ai(1) = Viai(0)√∑n
j V2

j a2
j (0)

, ∀i ∈ {1, 2, . . . , n} (24)

Therefore, (23) is true for k=1.
k = m: Assuming the result to be true for some k = m > 1

ai(m) = Vm
i ai(0)√∑n

j V2m
j a2

j (0)
, ∀i ∈ {1, 2, . . . , n}

let P denote

P =
√√√√ n∑

j

V2m
j a2

j (0)

k = m+ 1: Substituting (21) in (19) for k = m, we get

ai(m+ 1) = Viai(m) = Vm+ 1
i ai(0)

P
(25)

Upon normalizing,

ai(m+ 1) =
Vm+1

i ai(0)

P√∑n
j

V2m+ 2
j a2

j (0)

P2

= Vm+ 1
i ai(0)√∑n

j V2m+ 2
j a2

j (0)
, ∀i ∈ {1, 2, . . . , n}

which is same as substituting k = m+ 1 in (23). Therefore, by the
principle of mathematical induction the result (23) is true for any
k > 1.

Lemma 2. Let σi be denoted as

σi =
[

1− ηmca(λi − λn)

1− ηmca − ηmcaλn

]
(26)

then,

0 < σ1 < · · · < σn−1 < 1 (27)

Proof: If we show that

0 <
ηmca(λi − λn)

1− ηmca − ηmcaλn
< 1 (28)

then the condition (27) is straightforward.
We first prove the left inequality. Clearly, since λ1 > · · · >

λn ≥ 0 and 0 < ηmca ≤ 0.5, the numerator

ηmca(λi − λn) > 0, ∀i ∈ {1, . . . , n− 1} (29)

and the denominator

1− ηmca − ηmcaλn > 1− ηmca − ηmcaλ1

> 0.5− ηmcaλ1, ∵ ηmca < 0.5

> 0, ∵ ηmcaλ1 < 0.5 (30)

To prove the right inequality, it holds

iff, ηmca(λi − λn) < 1− ηmca − ηmcaλn

iff, ηmca(λ1 − λn) < 1− ηmca − ηmcaλn

iff, ηmcaλ1 < 1− ηmca

iff, 0.5 < 1− ηmca, which is true

Lemma 3. Let Ci =
[

ai(0)
an(0)

]
then,

ai(k) = Ciσ
k
i an(k), ∀i ∈ {1, . . . , n− 1} (31)

an(k) = 1√∑n−1
j σ2k

j C2
j + 1

(32)

Proof: Using Equation (23) and the condition (30), we get

ai(k+ 1)

an(k+ 1)
=

[
1− ηmca − ηmcaλi

1− ηmca − ηmcaλn

]
·
[

ai(k)

an(k)

]
,

∀i ∈ {1, . . . , n− 1} =
[

1− ηmca(λi − λn)

1− ηmca − ηmcaλn

]
·
[

ai(k)

an(k)

]

= σi ·
[

ai(k)

an(k)

]

= σk+1
i ·

[
ai(0)

an(0)

]

This implies,

ai(k) = Ciσ
k
i an(k), ∀i ∈ {1, . . . , n− 1}
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Using the result from Lemma 1 and substituting for i= n,
we get

an(k) = Vk
nan(0)√∑n

j V2k
j a2

j (0)

= 1√∑n−1
j

( Vj

Vn

)2k( aj(0)

an(0)

)2 + 1

= 1√∑n−1
j σ2k

j C2
j + 1

Lemma 3 gives an expression for each of the coeffi-
cients. Since an(k) is bounded (0 < an(k) < 1), ai(k)’s
(∀i ∈ {1, · · · , n− 1}) belong to a family of exponential-decay
functions: Cian(k)e−kln(1/σi). Therefore,

lim
k→∞

ai(k) = 0, ∀i ∈ 1, . . . , n− 1 (33)

lim
k→∞

an(k) = 1 (34)

Therefore, from (21) wmca(k) converges to the minor-component
vector vn.

Theorem 1. Let τ
1/2
i denote the half-life period of ai(k), then the

following inequality holds:

τ
1/2
1 < · · · < τ

1/2
n−1 (35)

Proof: Since an(k) is bounded (0 < an(k) < 1), ai(k)’s (∀i ∈
{1, . . . , n− 1}) belong to a family of exponential-decay func-

tions: Cian(k)e−kln(1/σi). Half-life period τ
1/2
i is the time when the

value ai(k) becomes equal to half its initial value. Therefore,

Cian(k)σk
i = Cian(0)/2

Using Lemma 3 and simplifying we get,

k = − ln(2)

lnσi
+ 0.5

lnσi
×

∑n−1
j σ2k

j C2
j + 1∑n−1

j C2
j + 1

(36)

Let us denote the term

∑n−1
j σ2k

j C2
j + 1∑n−1

j C2
j + 1

as ξ . It is clearly evident

by using Lemma 2 that for k > 0, 0 < ξ < 1 and ξ is a mono-
tonically decreasing function w.r.t k. However, for larger values
of k and for consecutive σi’s, ξ can be assumed to be a constant.
Substituting the term ξ in Equation (36), we get

τ
1/2
i = − ln(2)− 0.5 ∗ ln(ξ )

lnσi

= ln(2)− 0.5 ∗ ln(ξ )

ln(1/σi)
(37)

Therefore, from Equation (37) and Lemma 2 we have,

τ
1/2
j−1 < τ

1/2
j , ∀j ∈ {2, . . . , n− 1} (38)

Theorem 1 gives the order in which the individual components
ai(k) decay over time.

Theorem 2. Given two input distributions x1, x2 ∈ Rn and the
eigendecomposition of their corresponding expected correlation-
matrix: {v1

i , λ
1
i }, {v2

i , λ2
i }, ∀i ∈ {1, . . . , n}, where v denotes the set

of eigenvectors and λ their corresponding eigen-values (λ1 > · · · >
λn ≥ 0). For an ηmca that satisfies,

ηmcaλ1
1 < 0.5 , ηmcaλ2

1 < 0.5 (39)

Then, the signal with a lower σn−1 will have quicker convergence
and therefore quicker learning progress.

Proof: From Theorem 1, it is clear that, the weight-vector wmca(k)
converges to the minor component vn when the penultimate coef-
ficient an−1(k) tends to 0. Therefore, a signal with lower σn−1 will

have a lower half-life period τ
1/2
n−1 and hence the weight-vector

wmca(k) converges quicker.

Definition 2. We therefore define �(x) as a measure to indicate
the learning progress of CIMCA for an input-distribution x equal to
σth

n−1 value, that is,

�(x) =
[

1− ηmca(λn−1 − λn)

1− ηmca − ηmcaλn

]
(40)

5. CONCLUSIONS
A CD-MISFA agent autonomously explores multi-context envi-
ronments. Compact context representations are learned from
high-dimensional inputs through incremental slow feature anal-
ysis. Intrinsic rewards for measurable learning progress tell the
agent which context is temporarily “interesting,” and when to
actively engage in/disengage from a context or task. Such mech-
anisms are necessary from a computational perspective, and
biological systems have evolved methods of achieving similar
functional roles. In particular, while cortical regions of the brain
are involved in unsupervised learning from sensory data (among
other things), neuromodulatory systems are responsible for pro-
viding intrinsic rewards through dopamine, and regulating levels
of attention to allow for task engagement and disengagement
through norepinephrine. As artificial and robotic agents become
increasingly sophisticated, they will not only look to biological
solutions for inspiration, but may begin to resemble those solu-
tions simply through the pressure of computational constraints.
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