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Animal behavior often involves a temporally ordered sequence of actions learned from
experience. Here we describe simulations of interconnected networks of spiking neurons
that learn to generate patterns of activity in correct temporal order. The simulation consists
of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit
short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural
architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural
activity that persist for tens of milliseconds. In order to generate and switch between
consecutive firing patterns in correct temporal order, a reentrant exchange of signals
between these areas was necessary. To demonstrate the capacity of this arrangement,
we used the simulation to train a brain-based device responding to visual input by
autonomously generating temporal sequences of motor actions.
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INTRODUCTION
A growing body of neurophysiological evidence suggests that pat-
terns of activity in vertebrate brains observed during movement
are commonly composed of temporal sequences of periods with
steady-state firing rates lasting several hundred milliseconds sep-
arated by sharp transitions (Tanji, 2001; Averbeck et al., 2002;
Nakajima et al., 2009). This pattern of activity is also observed
during sensory perception in gustatory cortex (Jones et al., 2007),
and the operation of working memory (Seidemann et al., 1996).
Although network models composed of mean-firing-rate neu-
rons have been used to model sequential neural activity (Rhodes
et al., 2004; Salinas, 2009; Verduzco-Flores et al., 2012), biological
networks are composed of spiking neurons. Therefore, under-
standing spiking networks with this capability requires further
exploration (Liu and Buonomano, 2009; Chersi et al., 2011).
Given open questions regarding the stability and robustness of
networks which learn to generate sequences (Verduzco-Flores
et al., 2012), testing such networks in Brain-Based-Devices (BBD)
is warranted (Edelman, 2007; McKinstry et al., 2008).

In this paper we describe how our previous models of Winner-
Take-All (WTA) spiking networks (Chen et al., 2013) can be
coupled together and trained to generate segmented and sequen-
tial neural activity (see Rutishauser and Douglas, 2009 for a
mean-firing rate WTA network that generates sequences). The
neural system is composed of thousands of simulated biolog-
ically realistic excitatory and inhibitory spiking neurons. The
single compartment neurons modeled in these simulations dis-
play voltage dynamics similar to those seen in cortical neurons.
Activity of the simulated neurons reflects the conductance of
ion channels in the model including: AMPA, NMDA, GABAa,
and GABAb (Izhikevich and Edelman, 2008). Model synapses
were subject to short-term synaptic plasticity (Zucker, 1989).
Spike-timing dependent plasticity (STDP) modeled long-term

synaptic changes that allowed the system to learn temporal
sequences.

We found that networks composed of spiking neurons of this
sort, when trained to respond to repeated sequences of sensory
cues, generate temporally ordered patterns of neuronal activity
consisting of brief steady states separated by sharp transitions
that resemble those observed in functioning brains. We found
that the present model could be used to control specific motor
sequences in a brain-based device. The population activity pat-
tern in this modeled neuronal system has similarities to those
observed in primate pre-frontal cortex during multi-segmented
limb movements (Averbeck et al., 2002).

MATERIALS AND METHODS
SPIKING NEURONAL NETWORKS
Each modeled network (Figure 1A) is comprised of up to three
interconnected populations of spiking neuronal units (Izhikevich,
2010) distributed over two-dimensional square grids. Each pop-
ulation is composed of units simulating one of three functional
classes of spiking neurons: input, excitatory, and inhibitory. The
parameters of simulated neurons in each class are tuned so that
the voltage waveform mimics its biological counterpart. The
synapses display STDP and short-term plasticity dynamics as
previously described in detail (Izhikevich and Edelman, 2008).
The neuron model equations, short-term synaptic plasticity equa-
tions, and STDP equations are presented after a description of the
network connectivity.

NEURONAL NETWORK ARCHITECTURE
Each of the three major structural and functional components
of the modeled nervous system (Figure 1B) consisted of a net-
work of spiking neuronal units (Izhikevich) distributed over a
two-dimensional (2 mm by 2 mm) grid. The networks function
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FIGURE 1 | Sequence generation network architecture. (A)

Center-Annular-Surround (CAS) network architecture that produces WTA
dynamics. The CAS network architecture consists of interconnected spiking
neurons, excitatory (green ovals) and inhibitory (red ovals). Each population
is arranged in a two-dimensional grid. Connections from representative
cells are illustrated. Axons from excitatory neurons (green arrows) project
to neurons within green areas. Axons from inhibitory neurons (red arrows)
project to neurons in the transparent red annular areas. The CAS
connectivity leads to WTA dynamics, in which small regions of high activity
are surrounded by large regions with little activity. (B) The sequence
generation network is comprised of two reentrantly interconnected
Center-Annular-Surround (CAS) spiking networks, Areas A and B. Arrows
indicate directions of neural connectivity, while the circle and the donut
shape indicate the inter-network connectivity (projection field) from single
points in the projecting network. The input area projects
non-topographically to Area A. Area A projects topographically to Area B, as
indicated by the small oval in Area B. In turn, Area B projects
topographically and widely back to area A, but not to the same spot from
which it received input, as indicated by the donut-shaped ring in Area A.
Avoiding projections to the corresponding spot helped prevent the network
from locking into a single activity pattern due to self-amplification. Rather it
allowed the network to switch smoothly between patterns in a sequence.

as analogs of a thalamic nucleus (Input area), and two intercon-
nected cortical areas (Area A and Area B).

The Input network contained 484 simulated neurons provid-
ing topographic excitatory input to Area A. Current levels to cells
of the Input area were adjusted by trial and error to assure that the

network responded to abstract patterns or video camera input by
generating distinct response patterns of neuronal activity with a
maximum firing rate of ∼100 Hz. The Area A and Area B net-
works were each made up of 1600 excitatory cells as well as 400
inhibitory cells having fast-spiking behavior.

Areas A and B had similar connectivity. Each was composed of
a Center-Annular-Surround (CAS) network, a variant of center-
surround networks, that we have found (Chen et al., 2013) to
effectively generate WTA dynamics (Dayan and Abbott, 2001) in
large-scale networks of spiking neurons. Any distinctive pattern of
neural activity in the input area evoked enhanced neural activity
within a few localized patches in both areas A and B. This CAS
network architecture is illustrated in Figure 1A. Connectivity
between the model neurons fell into two classes: either local-type
or surround-type. Local-type connections are between nearby
neighbors, whereas surround-type connections come from neigh-
bors in a surrounding annular region. Excitatory cells receive both
local-type projections from excitatory cells and surround-type
inhibitory projections (Figure 1A). Inhibitory cells also received
local-type projections from the excitatory cells and surround-type
input from other inhibitory cells. The CAS connectivity confers
WTA properties to both areas A and B. A complete description
of all connectivity parameters is provided in the Supplementary
Material.

To create a network capable of storing and generating
sequences of neural activity, we added reentrant connections
between Areas A and B in the following way. In Area A
(Figure 1B), both excitatory and inhibitory cells also receive sim-
ulated feed-forward input that was approximately all-to-all. Area
B neurons, on the other hand, do not receive connections from
the input. Instead, they receive non-plastic, local-type input that
is topographic from Area A. Area B excitatory neurons project
back to Area A with plastic and widespread surround-type con-
nectivity. Synaptic changes resulting from STDP at these connec-
tions form a link between temporally adjacent patterns of neural
activity within the sequence. These excitatory reentrant connec-
tions from Area B to Area A are widespread and cover most of the
region since each activity pattern in Area B has two bumps, sim-
ilar to the activity pattern shown in Figure S5. This widespread
connectivity enables the network to learn to associate arbitrary
temporally adjacent patterns. This was useful for the BBD exper-
iment, since the patterns that emerged within Area A during the
initial training phase were not under experimenter control.

NEURONAL DYNAMICS
Spiking dynamics of each neuron were simulated using the phe-
nomenological model proposed by Izhikevich (2003). The model
has only 2 equations and 4 dimensionless parameters that could
be explicitly found from neuronal resting potential, input resis-
tance, rheobase current, and other measurable characteristics. We
present the model in a dimensional form so that the membrane
potential is in millivolts, the current is in picoamperes and the
time is in milliseconds:

Cv̇ = k(v− vr)(v− vt)− u− Isyn (1)

u̇ = a {b(v − vr)− u} (2)
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where C is the membrane capacitance [in picofarads (pF)], v
is the membrane potential (in mV), vr is the resting potential
(in mV), vt is the instantaneous threshold potential (in mV), u
is the recovery variable (the difference of all inward and out-
ward voltage-gated currents in pA), Isyn is the synaptic current
(in pA) defined below, a and b are unitless parameters. When
the membrane potential reaches the peak of the spike, i.e., v >

vpeak, the model is said to fire a spike, and all variables are reset
according to v← c and u← u+ d, where c (mV) and d (pA)
are parameters. Table SI lists each of the neuron model param-
eters used in all experiments. At the start of all simulations, v
was set to –60 for all neurons, whereas u was set to a differ-
ent random value for each neuron, drawn uniformly from the
range 0–100.

SHORT-TERM SYNAPTIC PLASTICITY
The strength of synapses varied as a function of the pre-synaptic
neuron’s recent firing history independent of long-term synap-
tic changes as found in biological synapses (Zucker, 1989). We
assume that the synaptic conductance (strength) of each synapse
can be scaled down (depression) or up (facilitation) on a short
time scale (hundreds of milliseconds) by a scalar factor x. This
scalar factor, different for each pre-synaptic cell, is modeled by
the following one-dimensional equation

ẋ = (1− x) /τx, x← px when pre-synaptic neuron fires.
(3)

x tends to recover to the equilibrium value x = 1 with the time
constant τx (in ms), and it is reset by each spike of the pre-
synaptic cell to the new value px. Any value p < 1 decreases
x and results in short-term synaptic depression, whereas p > 1
results in short-term synaptic facilitation. The parameters, τx, in
ms, and scale factor p, for each combination of pre-synaptic and
post-synaptic neuron type were as follows: exc.→ exc.: 150, 0.8;
exc.→ inh.: 150, 0.8; inh.→ exc.: 150, 0.8; inh.→ inh.: 150, 0.8;
thalamic→ exc.: 150, 0.7; thalamic→ inh.: 200, 0.5.

SYNAPTIC KINETICS
The total synaptic current to each neuron is simulated as,

Isyn = gAMPA(v − 0)+ gNMDA
[(v + 80)/60]2

1+ [(v + 80)/60]2 (v − 0)

+ gNMDAVI

[(v + 100)/60]2
1+ [(v + 100)/60]2 (v− 0)

+ gGABAA(v+ 70)+ gGABAB (v+ 90) (4)

where v is the post-synaptic membrane potential, and the sub-
script indicates the receptor type. Each millisecond, each synaptic
conductance is updated according to Equation 5.

gr(t) =
⎧⎨
⎩

gr(t − 1)− gr(t − 1)/τr + gainr xs(t − 1) when the
presynaptic neuron fires

gr(t − 1)− gr(t − 1)/τr otherwise
(5)

where subscript r indicates the receptor type, τr = 5, 150, 6, and
150 ms for the simulated AMPA, NMDA, GABAA, and GABAB

receptors, respectively. The voltage-independent NMDA chan-
nel (NMDAVI) is based loosely on the type of channel found
between excitatory cells in layer 4 of visual cortex (Binshtok et al.,
2006); we used τr = 150 ms for this simulated receptor as well.
s(t) is the synaptic weight at time t. x is the short-term depres-
sion/potentiation scaling factor as above; gainNMDA is the ratio
of NMDA to AMPA conductance and is found experimentally
to be less than one (Myme et al., 2003). Similarly, gainGABAB is
the ratio of GABAB to GABAA receptors. The values of gainAMPA

and gainGABAA were always one. The values of gainNMDA and
gainGABAB used in the simulations are shown in Tables SII, SIII.

STDP
The long-term change in conductance (weight) of each synapse in
the model is simulated according to STDP: the synapse is potenti-
ated or depressed depending on the order of firing of the pre- and
post-synaptic neurons (Bi and Poo, 1998). We use the following
equations to update the state of each plastic synapse, s(t), in the
network every millisecond:

y(t) = y(t − 1)− y(t − 1)/τc + αSTDP(t)δ(t − tpre/post) (6)

s(t) =
{

s(t − 1)+ y(t) if mod(t, 50) = 0

s(t − 1) otherwise
(7)

where δ(t) is the Dirac delta function that step-increases the vari-
able y. Firings of pre- and post-synaptic neurons, occurring at
times tpre, tpost, respectively, change y by the amount αSTDP(t)
where α is the learning rate for the synapse, t = tpost − tpre is the
interspike interval, and

STDP(t) =
{

A+exp(− 1/τ+)t, t > 0
A−exp(− 1/τ−)|t|, t ≤ 0

}
. (8)

where A+ = 0.005, A− = 0.001, τ+ = τ− = 20 ms. The variable
c decays to 0 exponentially with the time constant τc = 1000 ms.
Each synapse is updated only once every 50 ms for computational
efficiency. Note that for simplicity, each synapse was modeled
with a single weight, s; therefore the STDP rule changed both
AMPA and NMDA components of the synapse proportionally.
In addition, each synapse was prevented from exceeding smax or
going below 0, regardless of learning rules and normalization (see
synaptic scaling). Values of smax for each connection pathway are
provided in Tables SII, SIII.

SYNAPTIC SCALING
Synaptic strengths at time t, s

j
i(t), were scaled for each synapse i,

in order to maintain the total of all synaptic strengths on a given
connection pathway to neuron j, stotal, at a constant value:

s
j
i(t) = s

j
i(t − 1)

⎛
⎜⎜⎜⎝

stotal
nj∑

k= 1
s
j
k(t − 1)

⎞
⎟⎟⎟⎠
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where nj is the number of synapses on the connection pathway
to neuron j. This scaling was performed for every neuron each
time the synapses were updated with Equation 7. Values of stotal

for each connection pathway are provided in Tables SII, SIII.

DATA ANALYSIS
To evaluate how accurately the network regenerated individual
activity patterns within a sequence, we calculated the similarity
between the network response to each individual segment (pat-
tern), and the population response during sequence training and
recall. To measure similarity between two neural activity patterns
in a given population at two different times, t1 and t2, the follow-
ing steps were performed. The mean firing rate of each neuron
in the population at time t1 was calculated within some small
window, yielding a number for each neuron; this list of numbers
formed a vector, f1. The same was done at time t2, yielding vec-
tor f2. A match score was computed between the two population
vectors by taking the normalized dot-product as follows:

match =

n∑
i= 1

f 1i · f 2i

∥∥∥f 1
∥∥∥ ∥∥∥f 2

∥∥∥
where n is the number of neurons in the population, and ‖x‖
computes the length of the vector x. This match score provides
a measure of similarity where one is a perfect match, and 0 is a
complete mismatch.

The mean firing rate of each Area A excitatory neuron in
response to each input stimulus in the sequence was recorded
during the first epoch of sequence training during which there
was no overlap in the input patterns presented or in the cor-
responding network responses to those patterns. Subsequently,
during sequence training and free recall phases, these templates
were used to quantify how closely an observed pattern of neu-
ral activity resembled each individual segment of a sequence. To
do this, the mean firing rate vector of Area A neurons was com-
puted every 50 ms of sequential behavior. A match score was then
calculated between each of the sub-pattern templates and the tem-
plate of each 50-ms population firing rate segment. This method
can detect whether ongoing spiking activity reflects multiple sub-
patterns of a sequence at the same time. It makes no assumptions
about the time-course of sequence generation.

BRAIN-BASED DEVICE
To investigate a simulated nervous system in a real-world device,
we designed and constructed a humanoid BBD (Figure 2). This
device is ∼20 inches high and uses a black and white wireless
webcam for vision. Each arm contains eight Dynamixel motors
(Robotis, Irvine, CA, USA). In the experiments described here
only the two shoulder motors function; all other joints remain
stationary with the arm extended. Shoulder joint angles provided
by the motors determine the posture of the arms. A miniature
PC (VIA Technologies, Fremont, CA, USA) mounted on the
back of the BBD-maintained wireless communication between
the device and the spiking neuronal networks simulated on a
Mac-Pro (Apple, Inc. Cupertino, CA, USA). The robot operated
∼3 times slower than real-time during experiments.

FIGURE 2 | Custom humanoid robot, or brain-based device, used for

behavioral tests of the sequence generation network. The BBD has a
grayscale camera which monitors the location of the bright object in its
hand in order to learn “hand-eye” coordination of its left hand. During
experiments the left arm was moved repeatedly in a sequence of four
different postures. See Materials and Methods for a detailed description of
the device.

To test the sequence generation network in the BBD, a motor
area in addition to area A and B was added to enable the
system to generate motor sequences (see Figure S1). This net-
work was the same size as the excitatory-inhibitory networks
in Areas A and B, with 1600 excitatory, and 400 inhibitory
spiking neurons, and had similar parameters as well. Different
patterns of spiking of motor area neurons specified distinct equi-
librium postures of the left arm using population vector coding
as described in the Supplementary Material. Since the video cam-
era was aimed at the robotic hand and remained fixed during
the experiments, each of these postures, in turn, evoked a dis-
tinct pattern of visual input to the system. The motor region
received non-topographic connections from the output of Area
B in the sequence generation network. These connections were
also subject to STDP and homeostatic plasticity, which allowed
arbitrary sensorimotor transformations to develop during train-
ing. A more detailed description of the network along with the
parameter settings used in the experiments can be found in the
Supplementary Material.

RESULTS
SIMULATED NEURAL ACTIVITY DURING TEMPORALLY SEGMENTED
BEHAVIOR
Before describing the BBD experiment, we illustrate the capa-
bility of the sequence network to learn to generate sequences
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of simulated responses to sensory inputs. The system of reen-
trantly coupled CAS networks can learn to reproduce a temporal
sequence of eight consecutive input patterns. These individual
patterns were simulated by means of current injections into Area
A excitatory cells (see Figure S2 for resulting network activity
patterns). Multiple presentations of a given temporal sequence
to the network constituted a training regimen. A given sequence
consisted of an ordered series of eight distinct, randomly gener-
ated input patterns. Each pattern was presented for 1 s. After 32 s
of training, the input was discontinued. At this point, the net-
work continued to regenerate the eight patterns in correct order.
Figure 3A shows a raster plot of the spiking of all excitatory and
inhibitory neurons in the simulation as the system autonomously
cycled through the trained sequence for 700 ms. The pattern of
activity of the neuronal population consisted of a series of stable
microstates—periods in which each neuron fires at a steady rate—
each lasting∼100 ms, flanked by briefer, more complex transition
states.

A brief account of the mechanisms by which the network
develops sequence generation ability will aide in understanding
what follows. One way to form a network that recognizes and
generates temporal sequences of input patterns is to establish
serial connections between distinct neuronal groups. If each neu-
ronal group responds to a different input pattern—due to WTA
dynamics—and a sequence of unique patterns is presented, then
the neuronal groups will be activated successively. Given sufficient
temporal overlap between the activity in successively responding
neuronal groups, Hebbian mechanisms will act to strengthen the
connections between them. These connections favor activation of
the next neuronal group in the sequence in the absence of the
external input, allowing for internal pattern generation of an arbi-
trary temporal sequence learned through experience. Separating
the network into two populations, Area A reflecting the current
pattern, and Area B reflecting the prior pattern, allows simultane-
ous activity in temporally adjacent neuronal groups, one in each
WTA area, facilitating synaptic change via Hebbian learning.

Figure 3A illustrates the mechanisms underlying the
microstate transitions between neuronal group activations
within a temporal sequence after training. At the time labeled T1

in Figure 3A, the activity in area A that reflected pattern 4 (blue
dots) ceased. Active neurons in area B no longer received input
and ceased to fire at time T2 when voltage-independent NMDA
currents, which characterize this network, decayed. Due to the
loss of lateral inhibition, neurons in Area B giving rise to pattern
5 (green) began to fire at time T3 in response to input from area
A. Once these Area B cells for pattern 5 were activated, they
triggered the firing of cells in Area A that correspond to pattern
6 (red) at time T4. At time T5, cells in Area A corresponding
to pattern 5 no longer received input from Area B and ceased
to fire. The network continued to advance through a series of
microstates in this fashion until all patterns were generated.

Figure 3B reflects an analysis of spiking data from this simu-
lated network, acquired over a longer period, 24 s. Each row in
the figure plots the match score (in 50 ms time bins) to one of the
eight training patterns. White is a perfect match, while black indi-
cates a complete mismatch. The last training repeat is from t = 24
to t = 32. Subsequently, external stimulation was removed and

STDP was discontinued in order to test whether training was suc-
cessful. Nevertheless network activity continued autonomously.
After presenting any one pattern in the sequence, the network
repeatedly cycled through the patterns until another input stimu-
lus was presented. Because the network had been presented with
repeated transitions from pattern 8 to pattern 1 during train-
ing, the network cycled through all eight patterns repeatedly
until it was interrupted. In order to test that these results were
reproducible, the simulation was performed five times in total
using different pseudorandom number seeds from the standard
C library (Kernighan and Ritchie, 1988) to distribute the initial
synaptic connectivities and strengths in the networks; in every
case the system recalled eight patterns in the correct order.

Although the system of networks repeatedly regenerated the
learned sequence autonomously, it nonetheless remained respon-
sive to novel external input. To demonstrate this, we interrupted
the autonomous activity every 8 s by presenting the input corre-
sponding to a different member of the set of learned patterns. For
example, as shown in Figure 3B at t = 37 s, pattern 6 was pre-
sented out of order for 1 s to reset network activity. Subsequently
the sequence continued in the trained order. Thus, after being
presented with a repeated series of input patterns, this system
of networks correctly anticipated the next pattern in a temporal
sequence. Figure 4 shows plots of the average match score of each
pattern in a sequence during the 1 s presentation of the previ-
ous pattern. During the second presentation of the sequence from
t = 9 to t = 16, the match score is 0 (blue solid line), but during
the fourth training trial from t = 25 to t = 32 the match score to
the anticipated pattern increases after 250 ms (red dashed line),
indicating that the system has formed an association between
temporally adjacent patterns in the sequence. Similar results were
obtained in all five simulations with different initial conditions.

MOTOR CONTROL OF A BBD
To demonstrate the use of this system of simulated neuronal net-
works to regulate real-world behavior in real-time, the spiking
output of the sequence generation network was used to control
three-dimensional movements of a BBD. The task for the device
was to learn to move its hand autonomously in a pre-specified
order through four different locations in its visual field. Visual
input from the BBD’s camera was used to drive a retina model
that projected topographically to the Input area of the sequence
generation network. This allowed the BBD to learn a sequence
of visual stimuli (see Supplementary Material for details of the
retina model). The BBD was placed in a seated position with its
camera looking toward its left side. A bright object was placed
in its hand to provide salient stimulation at the location of the
BBD’s left hand in the visual field. Figure 5 shows examples of
the raw video input from the camera with the arm in each of
the four postures used in the experiment. To generate the desired
sequence of segmented arm movements, the pattern of spiking
excitatory cells of Area B was used as input to the simulated motor
network. To establish the hand-eye coordination that this task
requires, two angles of the right shoulder of the robot were succes-
sively manipulated to position its hand for 1 s in each of the four
locations in the visual field. This was accomplished by injecting
appropriate current into groups of neurons within the simulated
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FIGURE 3 | A large-scale network of ∼4000 spiking neurons

autonomously transitions between states reflecting a learned sequence.

(A) Spike rastergram of all neurons in Networks A and B showing the
population activity recorded over 700 ms. as the network spontaneously
generated the learned sequence. Each spike is shown as a colored dot and
each neuron is assigned a color to indicate the pattern to which it responds
maximally. Networks A and B transitioned spontaneously between
stable-states corresponding to three learned input patterns in the sequence
as indicated by the three colors blue, green, and red associated with patterns
four, five, and six, respectively. [The few magenta dots are associated with
neurons responding best to another pattern, but which are also activated by
pattern four (blue)]. The four neural populations in the network are labeled on
the right of the diagram. Inh., Inhibitory; Exc., Excitatory. The labels T1

through T5 mark transition times referred to in the text. (B) After training, the
coupled networks spontaneously generate a sequence of eight patterns in

the correct order, and that sequence can be interrupted or shifted by
presenting an external stimulus. Each row of the figure indicates, by
brightness, the match score over time for one of the eight patterns that make
up the sequence. The match score for pattern number X for example
indicates how closely the neural population activity pattern in the Area A
excitatory neurons matched the activity in the same population recorded
when pattern X was presented to the network for the first time during
training. White is a perfect match, while black indicates a complete
mismatch. The network was trained from t = 0 to 32 s by stimulating the
eight patterns in order. The times of stimulus presentation are indicated by
black bars under the figure. The internally generated sequence is
interruptible. When presented with one pattern in the sequence, pattern 6,
for 1 s at t = 37 s and t = 45 s, the network activity immediately reflected the
stimulus, and when the stimulus was removed the network generated the
sequence from pattern 6 onward.

motor area. This was repeated a total of 5 times. During this first
training stage from t = 1 to t = 20 s, this system learned to dis-
criminate between the four different spatial visual patterns. STDP
was activated on the pathway from the Input area to Area A. The

CAS network operating in Area A developed sparse activity pat-
terns discriminating these four Input area patterns (Chen et al.,
2013) (see Figures S3–S5 for example of activity patterns from
one simulution). Non-plastic topographic connections from Area
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FIGURE 4 | After training, the simulated neural system anticipates

upcoming patterns in the sequence. The average match strength of
individual patterns in the sequence is plotted over time during the
presentation of the prior pattern. Data was obtained during the second
presentation of the sequence from t = 9 to t = 16 s (blue solid line), and
during the fourth presentation of the sequence from t = 25 to t = 32 s (red
dashed line). During the fourth presentation, 250 ms after each new pattern
was presented, the activity of neurons in Area A began to match that of the
next pattern in the sequence. Error bars show the standard error of the
mean match response.

FIGURE 5 | The four arm postures of the BBD as viewed through its

video camera. The BBD was trained to move its hand consecutively in
numerical order to the 4 spots outlined in red. The images show all four
arm postures of the BBD. During training, a bright object placed in the hand
made the hand positions salient against the dark background (The lighting
was increased when these images were taken to provide sufficient
contrast to see the arm). During a test for spontaneous recall of the learned
sequence, the bright object was removed to eliminate visual input.

A to Area B essentially create a copy of Area A’s pattern of activity
in Area B.

A second training stage was used to allow the system to learn
hand-eye coordination. The stimulation patterns from stage one
were repeated from t = 21 to t = 40 s while STDP was activated
on the pathway from Area B to the motor area. During this
stage, this system came to associate the visual responses in Area

B evoked by different postures with the pattern of motoric output
that generated and maintained these postures (Figure 5). After
this training stage, hand-eye coordination was established, but
sequence learning had not yet been achieved.

A final training stage was used to train the visual sequence net-
work to generate the sequence of visual patterns corresponding
to a sequence of arm movements. During this stage, from t = 41
to t = 60 s, STDP was activated on the pathway from Area B to
area A for the first time. The system was trained by moving the
arm of the device once again five times through the sequence
of four postures, pausing 1 s at each posture. Subsequently, after
the camera input to the system was discontinued, the BBD con-
tinued to autonomously generate motor commands that evoked
movements similar to those used during the training phase. Each
segment of the autonomous gestures lasted ∼400 ms, the experi-
ment was performed five times incorporating different initial net-
work parameters. Each time it reproduced the correct continuous
sequence of movements. Figure 6 shows a trace of the movements
made by the hand of the BBD during the five experiments, plot-
ted in Cartesian coordinates both during the last training stage
(green), and for 20 s after training during autonomous motor
sequence generation (red). Positions were calculated from joint
angles recorded every 200 ms during the simulation. One of the
five subjects showed some error and consistently “cut” the upper
corner, generating a different shape than the other four subjects.
The self-generated arm trajectories approximate the training
trajectories.

We verified that the system remained responsive to exter-
nal visual stimulation while it continued to generate the trained
sequence autonomously. For each of the five subjects, visual stim-
ulation was resumed at t = 100 s. While the BBD continued to
cycle through the trained sequence, the bright object used for
training was moved sequentially by the experimenter to each of
the locations in space it occupied during training and was held
in place from 3 to 10 s. In 19 of 20 trials (five subjects tested at
four locations) the BBD moved its hand to the location of the
object and held it there until the experimenter removed the object
from the visual field, at which point the BBD resumed the learned
sequence from its present location. In one trial, the BBD moved
its hand to the object, but then resumed the sequence prior to
stimulus removal.

DISCUSSION
The robust recognition and regeneration of motor sequences
known to occur in animals is accomplished by networks of spik-
ing neurons. Here we show that this basic capability can be
simulated using large-scale networks of spiking neurons. The
computational model employed here can be further elaborated
to explore sequence recognition and generation in networks
consisting of groups of reentrantly connected neurons. The sim-
ulations demonstrate how networks composed of thousands of
densely interconnected spiking neurons can respond adaptively to
patterned sensory input by generating autonomous, temporally-
ordered sequences of neural activity. We found that the operation
of STDP to shape the distribution of synaptic strengths within
and among WTA networks can give rise to network responses able
to control complex behavior in a robotic device.
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FIGURE 6 | The BBD self-generates a learned sequence of arm motions

using the sequence generation network model. The BBD was trained to
move its arm through four different postures such that its hand traced out a
quadrilateral in space. The figure shows the superposition of hand positions
recorded during 20 s of training (green line) and during 20 s of self-generated

movements after training (red line) for all 5 subjects. Lines are drawn
between temporally adjacent data points recorded at 50 ms intervals. One of
the five subjects showed some error and consistently “cut” the upper
corner, generating a different shape than the other four subjects. The
self-generated arm trajectories approximate the training trajectories.

The system described here builds upon our previous work
with large-scale spiking networks (Chen et al., 2013). The prior
work explored the use of WTA networks for visual pattern
categorization and feed-forward mappings between a sensory
and motor map. The prior system was not capable of learn-
ing sequences. The present work demonstrates that coupling
two WTA spiking networks together with specific reentrant
connections leads to the ability to regenerate sequences after
experience. The prior system was entirely sensory driven, while
the present work allows internally generated network activ-
ity in the absence of sensory input (Figure 3), yet remains
responsive to external input. Further, the rapid microstate tran-
sitions observed in this network are consistent with cortical
microstate transitions.

Several theoretical models of behavioral sequence genera-
tion have been reported in the literature. Rhodes et al. (2004)
proposed a mean-firing-rate model, N-STREAMS, which repro-
duces the physiological results of Averbeck et al. (2002). Salinas
studied a mean-firing-rate simulation that incorporates rank-
order-selective (ROS) neurons into a network and showed that
the model could learn sequential motor actions given such neural
responses. The activity of the ROS neuronal units was built-into
the model, and did not emerge through learning. Verduzco-Flores
et al. (2012) created a small mean-firing-rate network with 200
neurons that could learn multiple sequences with shared subse-
quences. Their model required temporally adjacent input patterns
to partially overlap in time. Finally, Chersi et al. (2011) investi-
gated a spiking network model that generates chains of temporal
sequences of neural activity similar to those in our model and
comparable to neurophysiological responses found in the intra-
parietal lobe in primates. They used four separate pools of 500

neurons each to represent one of four different actions. Sparse
connections between the 4 pools were subject to STDP. They
showed that repeated activation of the neurons in the 4 pools in
a given temporal order via simulated current injection eventu-
ally lead to correct recall of the remaining sequence after injecting
only the first pattern. Our model does not require the use of dis-
crete pools of neurons; rather such pools emerge automatically
within each network through a WTA competition in the CAS
architecture.

It is interesting to consider wither there is a benefit to using
spiking neurons instead of rate-based neurons in the brain-
based device. The sequence generation network may have worked
just as well with a model incorporating mean-firing rate neu-
rons. Nevertheless it is important to demonstrate that spiking
networks can generate such behavior, because animal nervous sys-
tems incorporate spiking neurons. This work demonstrates that
spiking networks incorporating STDP can be reliably trained to
generate sequences in the real-world.

By using simulated neuronal networks to control the behavior
of a BBD we found that a real world device can be trained to gen-
erate autonomous, multi-segmented behavior. After training the
system by presenting the target pattern of video input in 1-s time
steps, the BBD regenerates this sequential input pattern, but at a
faster rate. The BBD was able to recreate movements composed
of four consecutive steps in the correct order. Although the device
can remember and reproduce multiple sequences of behavior,
each posture within any sequence must be unique. Otherwise
the subsequent posture would be ambiguous. Learning more
complex behaviors will require incorporation of longer tempo-
ral contexts than those provided by the immediately preceding
pattern.

Frontiers in Neurorobotics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 8

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


McKinstry and Edelman Sequence learning in spiking networks

The spiking activity corresponding to consecutive equilibrium
postures in the behavioral sequence overlap in time, similar to
activity reported in primates (Averbeck et al., 2002). This can be
seen in Figure 3B from second 24 to 32. For example, shortly
after the network responds with a high match score to input
pattern 3 at t = 26, network activity begins also to match pat-
tern 4. The match scores (shades of gray) to each subsequent
pattern begin to increase well before the pattern is presented
to the network. In primates, this overlap in neural responses
reflects current and future gestures made by the animal as it
draws shapes “in the air.” Averbeck et al. (2002) also reported that
the neural activity pattern corresponding to the current gesture
was more strongly represented than the activity pattern reflecting
the upcoming movement. This behavior is seen in our network.
The match score for the current pattern, pattern 3, in Figure 3
at t = 26 is higher than the match score for the upcoming
pattern 4.

Over time, spiking activity in the model network transits
through a series of microstates, each characterized by a stable
unique pattern of steady-state firing rates (Figure 3A). Similar
behavior has been observed in mammalian cortex. For example,
neurons in the gustatory cortex in rodents (Jones et al., 2007),
and in the pre-frontal cortex of primates (Seidemann et al., 1996)
progress through sequences of states, identifiable in examina-
tions of simultaneously recorded neuronal ensembles. As in the
simulation reported here, these states lasted for hundreds of mil-
liseconds, with rapid transitions on the order of 50 ms. Our model
suggests that such microstate transitions may be explained as

reentrant interactions (Edelman, 1978) between multiple WTA
networks.
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