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A common idea in models of action representation is that actions are represented in

terms of their perceptual effects (see e.g., Prinz, 1997; Hommel et al., 2001; Sahin et al.,

2007; Umiltà et al., 2008; Hommel, 2013). In this paper we extend existing models of

effect-based action representations to account for a novel distinction. Some actions bring

about effects that are independent events in their own right: for instance, if John smashes

a cup, he brings about the event of the cup smashing. Other actions do not bring about

such effects. For instance, if John grabs a cup, this action does not cause the cup to “do”

anything: a grab action has well-defined perceptual effects, but these are not registered

by the perceptual system that detects independent events involving external objects

in the world. In our model, effect-based actions are implemented in several distinct

neural circuits, which are organized into a hierarchy based on the complexity of their

associated perceptual effects. The circuit at the top of this hierarchy is responsible for

actions that bring about independently perceivable events. This circuit receives input

from the perceptual module that recognizes arbitrary events taking place in the world,

and learns movements that reliably cause such events. We assess our model against

existing experimental observations about effect-based motor representations, and make

some novel experimental predictions. We also consider the possibility that the “causative

actions” circuit in our model can be identified with a motor pathway reported in other

work, specializing in “functional” actions on manipulable tools (Bub et al., 2008; Binkofski

and Buxbaum, 2013).

Keywords: causative actions, motor learning, event codes, neural networks, hand/arm actions, ventro-dorsal

motor pathway

1. Introduction

A common idea in models of action representation is that an agent’s actions are encoded in a way
which makes reference to the sensory effects they bring about. This idea has a long history, but in
recent research it is most strongly associated with Prinz’s (1997) theory of “common coding” and
Hommel et al.’s theory of “event codes” (Hommel et al., 2001). The key idea uniting these models is
that motor programs are not defined purely within the motor domain: their neural representation
includes a representation of the effects they are expected to have on the world, as apprehended
by the perceptual system. This idea has been supported in a variety of experiments, and modeled
computationally in a number of different ways, as we will summarize below.

In this paper our aim is to extend existing computational models of effect-based action
representations to account for a distinction that has so far been overlooked. Some causative
actions bring about effects that are independent events in their own right. For instance,

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://dx.doi.org/10.3389/fnbot.2015.00004
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:alik@cs.otago.ac.nz
http://dx.doi.org/10.3389/fnbot.2015.00004
http://journal.frontiersin.org/article/10.3389/fnbot.2015.00004/abstract
http://loop.frontiersin.org/people/240963/overview
http://loop.frontiersin.org/people/162593/overview


Lee-Hand and Knott A neural network model of causative actions

if John smashes a cup, he brings about the event of the cup
smashing. This is an event which in other circumstances could
happen independently of any action of John’s: it involves the
cup changing state in a certain way. In the right circumstances,
John could perceive the event of the cup smashing simply by
passively observing the cup. Similarly, if John opens a door, he
brings about the event of the door opening, in which the door
undergoes a change of state, which in other circumstances John
could perceive independently of any action of his own. On the
other hand if John touches or grasps a cup, he does not bring
about any event involving the cup that is independent of his own
action. Crucially, touching or grasping the cup does not have to
bring about any specified change of state in the cup (If there are
changes of state, they are incidental to the action, rather than
part of its definition). The distinction we want to highlight can
be summarized as follows: “to smash a cup” means “to cause the
cup to smash,” and “to open a door” means “to cause the door
to open.” But “to touch a cup” doesn’t mean “to cause the cup”
to do anything (It certainly doesn’t mean “to cause the cup to
touch”). And “to grasp a cup” doesn’t mean “to cause the cup” to
do anything.

Nonetheless, actions like touching and grasping can certainly
be thought of as defined by the perceptual effects they bring
about, as we will discuss. In fact, a lot of the research into effect-
based representations of motor actions has focussed on simple
actions like touching and grasping. We must therefore conclude
that there are at least two different types of effect-based action
representation, which are structurally distinct. In this paper we
will develop a model of causative actions that captures this
distinction.

In the remainder of this section, we review current
empirically-derived and computational models of effect-based
action representations, and in the light of these, we introduce
some design principles governing the new model we develop.

1.1. Experimental Evidence for Effect-based
Motor Representations
Experimentally, the idea that actions are defined by their effects
has been supported in several ways. For instance, there have been
many studies exploring variations on the well-known stimulus-
response compatibility effect (Simon, 1969). A good example is
a study by Hommel (1993). Here subjects had to respond to an
auditory stimulus by pressing a button, either with the left or
right hand. The tone of the auditory stimulus indicated which
button the subject should press. But as a distracting factor, the
stimulus was also presented either on the left or the right. The
classical stimulus-response compatibility effect is that subjects
are slower to respond if the spatial location of the stimulus is
incompatible with the hand which must respond. In Hommel’s
experiment, button presses generated a reafferent visual stimulus
whose location could be decoupled from the location of the hand
pressing the button, to explore whether the compatibility effect
operates in the domain of motor movements or that of their
sensory consequences. Button presses consistently produced a
visual stimulus: illumination of a light. In one condition the light
appeared on the same side as the hand (e.g., left button presses
illuminated a light on the left), while in another it appeared on the

opposite side (e.g., left button presses illuminated a light on the
right). Hommel found that the stimulus-response compatibility
effect depended on compatibility with the perceptual effects of
button-presses, rather than on the hand which was used. This
shows that the way subjects encode actions does make some
reference to their sensory consequences—at least enough to
interfere with stimulus-response mappings.

The idea of effect-based representations of motor actions
is also supported by several animal studies of the neural
representation of actions. For instance (Umiltà et al., 2008)
observed the activity of neurons in premotor area F5 of monkeys
performing grasp actions with specially constructed tongs. F5
neurons respond to a range of grasp movements made by
the hand (see e.g., Rizzolatti et al., 2000). But under normal
circumstances, executed grasp movements correlate strongly
with visual signals. The experiment was designed to decouple
motor movements from their observed effects. In one condition
monkeys used a regular pair of pincers, which closed when
the monkey squeezed. In another, they used reversed pincers,
which opened when the monkey squeezed, and closed when they
relaxed their grip. Most F5 neurons responded in the same way
in both conditions: their activity was a function of the movement
of the pliers rather than the movement of monkeys’ hands. This is
evidence that many neurons in this grasp-planning area encode
the effects of motor movements, rather than their properties as
motor movements.

An interesting type of experimental evidence for effect-
based motor representations comes from studies showing what
is termed an ideomotor response (see Hommel, 2013 for a
review). In these studies, the subject first learns that certain
actions cause certain perceptual effects, and then, after learning,
is presented with these same perceptual effects as independent
perceptual stimuli. These stimuli can be shown to activate
representations of the actions that cause them, for instance by
speeding subsequent execution of these actions, or by influencing
selection of these actions (Elsner and Hommel, 2001). This
triggering of action representations by representations of their
perceptual effects is the so-called ideomotor response. Evidence
for the ideomotor response shows not only that representations
of actions include reference to their perceptual effects, but also
that activation of the associated perceptual effects can actually
cause activity in the action preparation system. The ideomotor
response provides a useful tool for studying the neural structures
involved in linking actions to their perceptual effects. Elsner et al.
(2002) interleaved action effect stimuli in different proportions
with neutral perceptual stimuli. They found that activity in
the supplementary motor area (SMA) and right hippocampus
correlated with these proportions, suggesting that these areas
are involved in the circuit that maps perceived effects onto
motor programs. Melcher et al. (2013) investigated the process by
which the ideomotor response was learned. They examined brain
activity over time in two groups of subjects: an experimental
group, whose actions generated consistent perceptual effects,
and a control group where there were no consistent perceptual
effects. They looked for brain areas where the ideomotor
response increased as a function of time during learning in
the experimental group but not in the control group. They
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found such effects in the hippocampus, parahippocampal gyrus,
caudate nucleus, and angular gyrus, suggesting that these areas
are additional components of the circuit.

A final perspective on effect-based action representations
comes from studies of the neural circuits subserving the use
of tools. In recent research, evidence has emerged that there
are two distinct pathways in the dorsal circuit that maps visual
representations onto motor actions: a “dorso-dorsal” pathway
generates visually guided reach/grasp actions on a target object,
while a “ventro-dorsal” pathway, sometimes called the “use”
pathway, generates actions that manipulate a target object in
accordance with its conventional use, to achieve particular effects
(see e.g., Bub et al., 2008; Binkofski and Buxbaum, 2013).
These pathways were discovered in neuroanatomical studies
of macaque (see e.g., Rizzolatti and Matelli, 2003): the dorso-
dorsal pathway runs through areas V6 and MIP in the superior
parietal lobule to dorsal premotor cortex, while the ventro-dorsal
pathway runs from superior temporal cortex (MT/MST/STP)
through the inferior parietal lobule (AIP/VIP) to the ventral
premotor cortex. Damage to the two pathways results in distinct
patterns of dysfunction, in both macaques and humans: damage
to the dorso-dorsal pathway results in optic ataxia, a deficit in
visually guided reaching and grasping, while damage to the latter
pathway leads to ideomotor apraxia, a deficit in the ability to
generate functionally appropriate actions on tools (especially if
the tools are not visually present). From these deficits, a model
emerges in which the dorso-dorsal pathwaymaps visually derived
“volumetric” representations of the location, orientation, and
shape of target objects onto suitable reach/grasp actions, while the
ventro-dorsal pathway maps internal representations of object
categories onto functionally appropriate actions1. In this model,
for example, the dorso-dorsal pathway would map a “volumetric”
visual representation of a stapler onto the action required to reach
it or pick it up, while the ventro-dorsal pathway would link an
internal representation of the object category “stapler” to the
specialized manipulatory action that causes a stapler to perform
its function of stapling (The representation of object category can
be generated either perceptually, through the ventral pathway for
object classification, or alternatively via language: see e.g., Masson
et al., 2008; Bub and Masson, 2010; Jax and Buxbaum, 2010;
Binkofski and Buxbaum, 2013). Exactly how the ventro-dorsal
pathway learns such affordances is still a matter for investigation;
however, it is clear that action effects are of central relevance:
the agent must learn the actions that cause the tool to behave in
the way it was designed to—for instance, the action that causes a
stapler to staple.

In summary, there is good evidence that agents represent
motor actions in terms of their effects, and that representations
of perceived effects have a functional role in generating actions.
We also know something about the brain circuits that implement
associations between actions and their effects—and in particular,

1Note that the ventro-dorsal pathway computes its own volumetric representations

of objects, which supplement the high-level functional affordances associated

with the category of the target object with lower-level information about its size,

shape, and orientation (Area AIP has an important role in computing these

representations; see e.g., Murata et al., 2000).

we know there is a circuit that specializes in manipulatory actions
that achieve functional effects on objects of particular categories2.

1.2. Computational Models of Effect-based
Action Representations
The experiments reviewed above do not provide detailed
information about the nature of effect-based action
representations, or about the mechanisms through which
they are learned and triggered. These topics are currently
most amenable to study in computational simulations of
perceptuomotor learning in robots (for reviews see e.g.,
Weng et al., 2001; Asada et al., 2009). There have been several
computational models of how effect-based action representations
develop; in this section we will review some key themes, both
within robotics models and in models that explicitly simulate
neural processes.

In robotics models, the basic idea that actions are defined
by their perceptual effects is often expressed within a model
of Gibsonian affordances. For instance (Sahin et al., 2007)
define an affordance as a relation linking an “action” (a motor
representation) plus a “target” (a perceptual representation of an
external entity) with an “effect” (a perceptual representation of
a change in the external entity), and refer explicitly to Elsner
and Hommel (2001). A similar scheme is adopted by Stoytchev
(2008), in a system that learns to associate actions on target
objects with perceptual changes to these objects. Various different
types of action effect have been explored, including translational
movements of the agent (Dogar et al., 2007) or of the target
(e.g., Stoytchev, 2008; Ugur et al., 2011) and changes to the
configuration of an articulated target (e.g., Katz and Brock, 2008).

In neurally-inspired computational models of motor control
and motor learning, there are several explicit models of the
role of perceptual effects. Tactile effects play an important role
in Oztop et al.’s (2004) model of infant grasp learning: in this
model, touch sensations are inherently rewarding, and focus the
system’s learning on actions that result in touch sensations. Arbib
et al. (2009) discuss how this model can be extended to account
for the process by which an agent learns to use a tool, with
particular focus on the results of Umiltà et al. (2008) discussed
earlier. In this model, an important idea is that when learning
to use a tool, an agent initially uses an “effector-independent”
representation of his/her current task goal to control movements
(using perceptual feedback to ensure the goal is achieved), and
progressively learns a tool-specific forward model to achieve
the same results. An effector-independent representation is
a perceptual representation, so this model certainly accounts
for how an agent learns to associate motor programmes with
perceptual effects, although its focus is on the idea that tool-
specific forward models can be regarded as extensions of the
agent’s body schema. Finally, action effects are also considered
in the TRoPICALS model of Cagliore et al. (2010). This model
also uses touch sensations to control learning of reach and

2We should note that while effect-based action representations play a useful role

in accounts of how agents explicitly simulate actions and their consequences,

we will not be addressing this question in the current paper, which focusses on

the mechanisms involved in actual execution of actions. We discuss simulation

processes in other work (Takac and Knott, 2013, 2015).
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grasp actions: during training, the function mapping a visual
representation of the target to the current motor state is learned
when the agent’s fingers are touching the target. TRoPICALS does
not simulate manipulatory actions on objects, but it does include
a particularly detailed model of the visual pathways that generate
representations of the location and shape of visual stimuli, and
of the visual pathway running though ventral/inferotemporal
cortex to prefrontal cortex, that maps the shape of a perceived
object onto a semantic category representation, and then to a
representation of associated action goals, which we will refer to
when discussing our own model.

Many of the above models construe action-effect learning
within a sequence of developmental stages. For instance, Metta
and Fitzpatrick’s model (Metta and Fitzpatrick, 2003) envisages
three stages. In the first stage, the agent learns about the
immediate visual effects of its own actions: in particular, to
recognize its moving arm as a visual stimulus that is predictable
from its own motor movements. In the second stage, the
agent learns simple visual representations of external objects by
bumping into them with its arm: a visual stimulus representing
an object is defined as a stimulus that predictably changes when
the arm (also represented visually) arrives in its vicinity. In the
third stage, the agent learnsmore complex object representations,
which are linked to particular grasp/manipulation actions that
have their own visual characteristics and can potentially be
identified in other agents. Similar notions of developmental
stages are proposed by other researchers (e.g., Dogar et al.,
2007, building on the formalization of Sahin et al., 2007;
Stoytchev, 2009). Oztop et al.’s (2004) model also envisages
two developmental stages: one for learning reach actions, and
another, building on this, for learning grasp actions.

However, the development of causative actions is
characterized, an interesting observation is that complex
causative actions tend to incorporate, or make reference to,
simpler causative actions acquired earlier in development.
The case of touching/grasping actions is particularly relevant.
In order to achieve an effect on an external object, the agent
must first make contact with this object (In fact most causative
actions incorporate some kind of touch or grasp, though we will
consider some exceptions in Section 4). Some models, such as
that of Arbib et al. (2009), focus on manipulatory actions that
take place once a stable grasp has been established on the target
object. Other models consider the actions that biring the hand
into contact with the object; this is most explicit in the model of
Stoytchev (2008). Stoytchev defines two components of a motor
action: one is a binding behavior, that brings the effector into
some kind of contact with the target object (possibly a stable
grasp); the other is an exploratory behavior that takes place
after binding, that can achieve effects on the target. However,
in Stoytchev’s experiments, binding behaviors and exploratory
behaviors occur in strict sequence: the robot first achieves a stable
grasp on a target object and then explores ways to achieve effects
on it. This approach does not work for all causative actions:
sometimes, to achieve a particular effect on a target object, the
hand must achieve contact in a particular way. For instance, to
cause an object to break or deform, the hand needs to approach
it with a certain force, and perhaps from a certain direction. So

while a breaking action certainly involves a touching action, it
may be quite different from the touch action learned early in
development as an action in its own right. We will return to this
point below.

A final theme in current computational models of action-
effect learning is the idea that the agent must learn categories of
perceptual effect before it can start learning how actions relate
to effects. Recall that what the agent is learning is categories
of action; several computational models express the idea that
these action categories have their origin in perceptual categories.
This idea leads to another notion of developmental stages.
In an initial stage, the agent learns categories of perceptual
stimulus that result from exploratory motor interactions with its
environment. These categories are learned using unsupervised
methods, often involving clustering and/or self-organizing maps
(see e.g., Griffith et al., 2011; Ugur et al., 2011). In a subsequent
stage, the actions that generate stimuli from these perceptual
categories are learned. The learning of all effect-based actions,
whether simple or complex, is best thought of as involving these
two distinct sub-stages. In the TRoPICALS model of Cagliore
et al. (2010), unsupervised methods for learning associations are
also used, in learning a mapping from visual features to object
categories in the ventral pathway, and for learning higher-level
correlations in the prefrontal cortex between object categories
and task in structions.

1.3. Design Principles for a Model of Causative
Actions
A key design principle for our motor model relates to the
distinction discussed at the start, between two kinds of action
that can be performed on a target object. To recap: there are
some actions whose perceptual effects are events involving the
target object that can take place independently in the world
without any intervention by the agent, and there are others
whose perceptual effects are not independent in this way. Actions
of the former kind include smashing, opening, bending and
squashing: “to smash/open/bend/squash X” means “to cause
X to smash/open/bend/squash.” We will call actions of this
kind causative. Actions of the latter kind include touching,
grabbing, slapping, and punching: “to touch/grab/slap/punch
X” does not mean “to cause X to φ,” for any action φ.
Since these actions cannot be represented using this explicitly
causative template, we will call them non-causative. At the
same time, these latter actions can still undoubtedly be defined
in terms of their effects: in fact in the developmental models
of Metta and Fitzpatrick (2003) and Stoytchev (2009), actions
like touching and grabbing are among the earliest effect-based
actions to be learned. Our first proposal is that causative and
non-causative actions are implemented in separate networks in
the motor system, that obtain their information about action
effects from different perceptual modules. We make specific
proposals about the perceptual modules involved in each case.
We propose the network that implements causative actions gets
its representations of action effects from the same perceptual
module that is used to identify independent events taking place
in the world: the network that recognizes changes taking place
in external objects (Beck et al., 2001; Donner et al., 2007), or
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actions being performed by external agents (e.g., Grafton and
Hamilton, 2007; Chong et al., 2008). In our model, this network,
which operates by itself when the agent is passively perceiving the
world, is also recruited for a role in training the causative actions
network. We propose that the network implementing non-
causative actions gets its effect representations from a different
perceptual module, namely the tactile system. The example non-
causative actions introduced above (touching, grabbing, slapping,
and punching) are all actions whose execution results in a well-
defined tactile stimulus. Touching is an action which results in
any tactile stimulus. Grasping, slapping and punching all result in
distinctive tactile stimuli, which arguably fall into well-separated
perceptual classes: a grasp results in stable contact within an
opposition surface of the hand, a slap results in transitory contact
with the open palm, a punch results in forceful contact with the
knuckles.While themodels of effect-based action representations
reviewed in Section 1.1 focus on visual effects, our model will
highlight the role of tactile perceptual representations in the
learning of non-causative action categories.

A second proposal relates to the idea that effect-based
action representations are acquired in a developmental
trajectory, as already discussed above. In our model, the
network implementing causative actions is an extension of that
implementing non-causative actions. In fact we also assume that
there are two separate networks implementing non-causative
actions: a basic network implementing the “touch” action, and
a second network built on top of this network implementing
the other non-causative actions. This assumption is commonly
accepted; there is good evidence that the network implementing
“grasp” actions is an extension of the network implementing
simple reach actions (see e.g., Jeannerod, 1996). In summary,
we envisage that the mechanism for learning effect-based motor
actions includes three distinct sub-networks, that operate on
increasingly complex perceptual representations, and are trained
at successive developmental stages: one controlling reach-to-
touch actions, one controlling simple hand actions, and one
controlling causative actions.

A final proposal in our model is that each of these networks
implements similar computations. In particular, we envisage
a core computation replicated in each network, in which a
perceptual signal, representing the perceptual outcome of an
experimentally executed action, is copied into a motor medium,
representing a simple or complex motor goal. This operation
allows a clear distinction between actual perceptual stimuli and
intended perceptual stimuli. A perceptual stimulus should not
always trigger a motor action. It reliably generates some motor
activity, as shown in experiments demonstrating the ideomotor
response. But this activity is often best viewed as a side-effect
of the agent’s learning, rather than as something functional. It
is only when the agent activates a representation of a perceptual
effect as a goal that it should trigger an actual motor action. The
core circuit in each of our networks represents perceptual stimuli
as they are observed and as they are intended in separate media,
to enforce this distinction. However, thesemedia are linked by 1:1
connections, which allow copying of perceptual representations
into themotor system under specific circumstances duringmotor
learning. In our model it is these copy operations that implement

the principle that actions are defined by their perceived
effects.

An important possibility to consider is that the distinction
we propose between networks for causative and non-causative
actions coincides with the distinction made in earlier work
between a dorso-dorsal “reach/grasp” pathway and a ventro-
dorsal “use” pathway. There are certainly obvious similarities:
the dorso-dorsal pathway produces reach/grasp actions, like
our network for non-causative actions, while the ventro-dorsal
pathway produces actions on tools, which often conform to our
criteria for causative actions. For instance, the tool-use actions
defined as “functional” in Jax and Buxbaum’s (2010) experiment
are nearly all causative in our terms: “using” a stapler involves
causing it to staple, “using” a hole punch involves causing it to
punch, “using” a toaster involves causing it to toast, “using” a
pump involves causing it to pump, “using” a padlock involves
causing it to lock or unlock. The same is true for Bub et al.’s (2008)
“functional” actions: for instance, ringing a bell involves causing
it to ring; firing a water pistol involves causing it to fire. There
are some exceptions—for instance, Bub et al. classify grasping
a beer mug by its handle as a functional action, but this action
doesn’t cause the mug to do anything—but the correspondence
is quite close. Conversely, the “volumetric” actions assumed to
engage the dorso-dorsal pathway in Bub et al.’s experiment are
typically non-causative actions by our criteria: for instance, a
power grasp on a bottle or a precision grasp on a paintbrush don’t
cause the target object to do anything. Again the correspondence
is not perfect: for instance, Bub et al. assume that actions which
move an object are controlled in the dorso-dorsal pathway, but
by our criteria such actions would be causative (“moving an
object” involves causing it to move), and there are many actions
that are non-causative by our criteria that have not been used
in experiments as examples of volumetric actions (for instance
actions of slapping or punching a target object). Nonetheless,
there is enough of an overlap to raise the possibility that the
distinction between actions in the “reach/grasp” and “use” dorsal
pathways is really a distinction between causative and non-
causative actions, and is best characterized in these terms. In fact,
this idea also sits comfortably with our proposal that the effects
of causative actions are delivered by a perceptual module that
recognizes independent events taking place in the world. The
ventro-dorsal network includes areas in the superior temporal
cortex that are involved in classifying the movements of observed
external objects, of both biological and non-biological kinds
(see e.g., Perrett et al., 1989; Beauchamp et al., 2002), and also
inferior parietal areas participating in the “ventral attentional
network” through which an agent’s attention is oriented to
salient stimuli in the external world (Corbetta and Shulman,
2002). Based on these considerations, we will tentatively localize
the causative-actions and non-causative-actions networks in
the ventro-dorsal and dorso-dorsal streams, respectively. This
has several implications. Theoretically, it means that we are
proposing a particular computational model of how actions
are learned in these two pathways. The model of learning
emphasizes the role of perceptual effects in each pathway, in
accordance with the accounts of Hommel and colleagues, but
also offers a new suggestion about the difference between the
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two pathways: actions in the dorso-dorsal network are associated
with effects registered by touch, while actions in the ventro-
dorsal network are associated with effects registered by the
perceptual system that recognizes external events in the world.
Our proposal also has experimental implications: it predicts
that distinctions between actions in the “reach/grasp” and “use”
pathways will emerge more sharply if they are defined using
our metric for causality. Specifically, we predict that actions in
the “use” pathway are actions which cause the occurrence of an
independently observable event in the world, while actions in the
“reach/grasp” pathway are actions which cause a characteristic
tactile sensation. We will review these predictions in Section 4.

2. Methods

2.1. Software Platform
Our simulations were conducted using the GraspProject
environment (Neumegen, 2013). The environment includes a
model of an articulated hand/arm, controlled by the Bullet
physics engine (Bullet, 2012), and a simulated retina, on which
images of the arm and target objects are rendered using
(OpenGL, 2012). The hand/arm as viewed by the retina is shown
in Figure 1. The arm has 3◦ of freedom: an elbow joint, and
a ball and socket joint in the shoulder. The fingers and wrist
are also flexible; the fingers include a novel implementation of
soft fingerpads that are capable of detecting pressure at different
locations on the hand, and distinguishing different patterns of
tactile contact (for details see Lee-Hand et al., 2012). The hand
also includes less sensitive sensors of touch on the back of the
hand and on the palm.

We built several objects in the simulation environment which
could serve as targets for hand actions. One is a simple object (a
cylinder) which serves as the target for the simple motor actions
of touching, grasping, punching, and slapping. The other three
are articulated objects which can undergo various changes in
internal configuration, similar to the objects in Katz and Brock

FIGURE 1 | The GraspProject environment. Shown is the arm model that

is used in our simulations.

(2008). One is a lever which can pivot around a joint, and can be
bent; one is a hinged door in a plane, which can be pushed open;
one is a pair of horizontal plates connected by a spring, which can
be “squashed” by pushing down on the top plate. These objects
are illustrated in Figure 2, again as viewed by the retina.

2.2. Motor Control Without Preplanned
Trajectories
In our model we adopt a particular conception of motor control,
which does not bear directly on our account of causative actions,
but is important to introduce, as it differs from the traditional
conception of motor control.

Traditional models of motor control envisage two quite
separate types of motor learning. One is the learning of a
general motor control function; the other is the learning of a
set of trajectories associated with particular action categories. A
motor controller is traditionally (and conveniently) modeled as
a general function that maps the current motor state at time t
and the goal motor state at time t + i onto a motor command
at t which will lead to the goal state. The motor controller is
given a trajectory, represented as a precomputed sequence of
goal states, and generates a sequence of commands that move
the effector along this trajectory (see e.g., Jordan and Wolpert,
2000). However, there is good evidence that in humans and
other biological agents, preparing an action does not involve
advance computation of a detailed motor trajectory (see e.g.,
Cisek Cisek and Kalaska, 2005). This requires a considerable
revision to the traditional conception of motor control. If motor
trajectories are not fully precomputed, they must be generated
“online,” while actions are under way—in other words, they must
be generated within the system that effects motor control, rather
than separately from it.

Online motor control is known to involve a mixture of
feedforward and feedback control (Kawato et al., 1987). A
feedback controller takes the current motor state and the
goal motor state and generates a motor signal proportional
to the difference between them, in a direction which reduces
this difference; it does not need to be trained. A feedforward
controller develops through motor learning. In a traditional
model, with precomputed trajectories, a feedforward controller
has a relatively circumscribed role: it simply learns about the
properties of the controlled motor plant, so it can generate
commands that more accurately produce the next motor state
in the trajectory. In our model we broaden the concept of a
feedforward controller to give it a role in learning the motor
trajectories associated with different kinds of action, as well as
in modifying the commands delivered by a feedback controller.
In our model, the feedback controller takes a single goal motor
state, associated with the end-point of an action, rather than
a sequence of precomputed goal motor states. We propose
that the learned, feedforward aspects of motor control that
represent action trajectories are delivered by a system that
generates scheduled transformations of this goal state, which
deviate the motor plant from the normal course it would take
under simple feedback control. We call these transformations
“perturbations.” For instance, to generate a trajectory bringing
the hand onto the target from above, the goal state could be
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FIGURE 2 | Objects created for the simulations. From left: a cylinder (for touching, grasping, punching, and slapping); a lever (for bending); a door (for opening); a

compressible object (for squashing).

FIGURE 3 | Architecture of the motor control network.

temporarily perturbed to a point above the target, so the hand
initially moves higher than it would normally do. In this view,
the system that learns to supplement a simple feedback motor
controller is also the system that learns action trajectories. This
approach to motor motor control is described in more detail
and evaluated in Lee-Hand et al. (2012). We adopt it in our
current model of causative actions, although it is not an essential
component of the model, and could easily be replaced by a
more traditional model of motor control, involving precomputed
trajectories.

2.3. Architecture of the Motor Control Network
Our model of the motor system is expressed as a neural network
for learning hand actions directed at target objects. It provides
a simple model of some aspects of infant motor development.
The general architecture of the network is shown in Figure 3.
It consists of three sub-networks arranged in sequence, which
are trained at three successive developmental stages, by reward
signals of different degrees of complexity: a reach network

(shown in red), a simple action network (shown in green) and a
causative action network (shown in blue).We will describe these
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networks in turn (Details of their training methods are given in
Appendix).

2.3.1. The Reach Network

The first network to be trained is called the reach network
(see the red part of Figure 3, and Figure 4). This network
provides a model of the dorso-dorsal visuomotor pathway
discussed in Section 1.1. It learns a function which maps a visual
representation of the location of the target object onto a goal
motor state of the hand and arm. The visual representation is
three-dimensional. Two dimensions come from the centroid of
the projection of the target object onto the simulated retina; the
third dimension (depth) is read directly from the physics engine.
The goal motor state is also three-dimensional: one dimension
for each joint angle of the arm. The network has a hidden layer
with three units, which is fully connected to both input and
output layers; it is trained through back-propagation (Rumelhart
et al., 1986).

During training, a target object (the cylinder illustrated in
Figure 2) is placed in the hand’s perispace and the agent executes
hand/arm actions at random, by activating random goal motor
states of the hand/arm and using a simple feedback controller
(shown on the left in Figure 3) to drive the hand/arm toward
these states. Sometimes the ensuing action results in the hand
touching the target, evoking a touch signal (the simple touch
signal). This signal is intrinsically rewarding (as in Oztop et al.,
2004). The touch signal triggers two operations. First, it causes
a proprioceptive representation of the agent’s current motor state
to be copied into the medium holding its goal motor state (see the
gating link terminating on the connection between the current
and goal motor states in Figure 3). Second, it causes the reach
network to be trained, so that the current visual representation
of the target object is associated with this newly specified goal
motor state, and similar presentations of the target in the future

FIGURE 4 | Detailed architecture of the reach network.

will automatically elicit an appropriate motor goal (see the gating
link terminating on the reach network).

This simple circuit implements a particular version of
Hommel et al.’s model of event codes. Learning in the circuit
creates what can be thought of as a single simple action category,
associated with the sensory representation of a touch to the
hand: after training, when the reach network is presented
with the visual location of a target object, it will activate
a motor goal which when achieved will reliably elicit this
sensory representation. Motor goals in the circuit are associated
with sensory stimuli in three ways. Any representation in the
motor goal medium is implicitly associated with one particular
reward stimulus (a simple touch sensation). Specific motor
goals are associated axiomatically with specific motor states
(sensed proprioceptively) when the reward stimulus is evoked.
And specific motor goals are also associated through learning
with arbitrary sensory stimuli (in this case visual), which carry
information about the motor states associated with reward
signals. Again this happens at the time the reward stimulus is
evoked. The key devices in the circuit are reward-gated copy and
learning operations. These devices are replicated in the other
two networks. After learning in the reach network, the agent
can reliably map the retinal coordinates of a target object onto
a goal motor state in which the hand is touching the target
object. Once this goal motor state is generated, it is passed as
input to the simple feedbackmotor controller, which produces an
action delivering this goal state. The feedback controller takes the
current motor state (derived from proprioception) and the goal
motor state (delivered by the reach network from visual input)
and generates a sequence of motor signals which progressively
reduce the difference between them to zero. We use a PID
controller (see e.g., Araki, 2006) as our implementation of a
feedback controller.

The reach network essentially learns to solve the inverse
kinematics problem. In the general case, this problem has many
solutions, but since our hand/arm has only 3◦ of freedom
there is only one solution, so the network implements a simple
function. However, the networks introduced in the following
sections incorporate methods for choosing between alternative
solutions; these methods could be adopted in the reach network
to configure it for more complex inverse kinematics scenarios.

2.3.2. The Simple Action Network

The second network in our architecture is the simple action
network (see the green part of Figure 3, and Figure 5).
This network also models computations in the dorso-dorsal
visuomotor pathway (Recall that this pathway controls hand
preshape actions as well as arm movements. See e.g., Fattori
et al., 2010 for evidence for specific areas in this pathway that
represent hand shapes). The simple action network learns simple
categories of action to execute on a target object, that are defined
by characteristic tactile effects: these include grasping, but also
actions like punching and slapping. The effects are brought about
by bringing the hand/fingers into contact with the target through
specific characteristic trajectories. As discussed in Section 2.2,
these characteristic trajectories are represented as distinctive
perturbations of the goal motor state delivered by the reach
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network, which influence the motor signals generated by the
feedback controller. The influence of perturbations on the goal
motor state is shown by the “plus” symbol in Figure 3. The
perturbation computed by the simple action network is applied
to the goal motor state at the start of a reach action and removed
when the hand is at a specified distance from the target.

The simple action network takes as input the goal motor state
delivered by the reach network, plus a specification of a more
complex motor goal: a motor program, which in our system is
either “grab,” “punch” or “slap”3. The output of the network is a
perturbation to be applied to the goal motor state. The network
starts to learn when the reach network providing its input can
reliably generate a goal motor state leading to a touch signal. It is
trained to generate perturbations on this goal state that produce
trajectories resulting in specific patterns of tactile feedback on
the hand, corresponding to a grasp, a punch, and a slap. In our
current implementation, we define the three distinctive tactile
patterns by hand, rather than requiring the system to learn them
from scratch; however, since they are quite distinct patterns, there
is some prospect for them being learnable using the kind of
unsupervised methods discussed in Section 1.2.

To train the simple action network, a simple rigid object
(again the cylinder) is presented to the reach network in
a random location, generating a visual representation. The
reach network computes a goal motor state from this visual
representation, which is passed as input to the simple action
network, which produces a perturbation of this goal state.
This perturbation is annealed with noise, which is progressively
reduced to zero during training. The feedback controller moves
the hand toward the perturbed goal state; when it attains a
certain distance from the target, the perturbation is removed,
and the hand approaches the actual goal state. From time to
time, the perturbation applied generates a prespecified rich tactile
signal. Some perturbations result in a grasp or near-grasp, which
generates one class of tactile stimulus. Others result in slapping
movements, which generate another, different, class of tactile
stimuli, or in punching movements, which generate another
distinct class of tactile stimuli (These rich stimuli are almost
never generated through pure feedback control, because they
result from special trajectories). When a rich tactile stimulus
is generated, copy and learning operations take place in the
simple action network which are analogous to those in the reach
network. First, the tactile stimulus is copied to the area holding
“motor programs.” Second, the simple action network is trained
to map the current goal motor state, plus the currently active
motor program, onto the perturbation which resulted in the
reward. After this learning, activating a specific motor program
will generate an action with a characteristic trajectory, that
reliably brings about a particular perceptual effect. We envisage
motor programs competing with one another, with a single
winner being selected.

In the simple action network, the three motor components of
a perturbation are computed one by one, in the three networks

3In Figure 3 we specify a third input, a representation of “volumetric” target shape

that is also computed by the dorso-dorsal pathway; however in our current system

this is unimplemented.

labeled N1, N2, and N3 in Figure 5. This is because there are
typically several possible perturbations which result in any given
tactile reward signal: the network needs to select one of these, and
selection of the different components of a perturbation cannot
be performed independently. So the network N1 computes
the alternative possible values for the first component of the
perturbation, then selects one of these, and passes the selected
value to the network N2 as input, and N2 performs a similar
operation, passing its selected value to N3, which selects the final
component.

Each network N1. . .N3 is a single hidden layer of 15 neurons,
fully connected to the input layer that precedes it and to the
output layer that follows it, and trained by backpropagation.
The output layer of each network is a layer of 10 neurons,
holding a place-coded representation of possible perturbations,
represented as joint angles. The perturbation angles used to train
the network are specified using a coarse-coding scheme. Each
angle is assigned to one of 10 “buckets,” which are associated with
the 10 neurons; each neuron represents the angle at themid-point
of its assigned range. The neural representation of an angle is
generated by strong activation of the neuron corresponding to
this “bucket,” and a lesser activation of the two flanking neurons.
After training, each network generates a distributed pattern on
its output layer. The neuron with the highest activation is used
to select a winning coarse-coded perturbation, consisting of the
winning unit and the units flanking it on either side. This triplet
of activations is converted back to a numerical angle by taking an
average of the angles associated with each unit, weighted by their
activity. All other units have their activity set to zero before the
layer is used as input for the next network.

Note that the simple action network must execute together
with the reach network. It modulates the behavior of the simple
network, in a manner reminiscent of Brook’s (1991) subsumption
architecture. In order to execute a simple motor program, it is
important that the whole simple action circuit is enabled, or
turned on. Accordingly, while different motor programs provide
different input to the simple action network, they also uniformly
generate a control signal to enable the network they provide input
to. This control signal is shown in Figure 3 by the unfilled arrow
leading from the simple motor program medium to the simple
action network.

2.3.3. The Causative Action Network

The final network to be trained is the causative action network
(see the blue part of Figure 3, and Figure 6). This network
implements our model of causative actions: it is intended as a
model of the ventro-dorsal pathway discussed in Section 1.1.
Our key proposal is that above the simple action network there
is a higher-level network trained from still more sophisticated
sensory signals, which derive not from the tactile system, but
from a high-level perceptual module which can classify arbitrary
actions taking place in the external world, relying mainly on
vision and hearing rather than touch. There is a well-studied
perceptual module of this kind in the brain, implemented in
a pathway from sensory cortices (in particular visual cortex)
through the superior temporal sulcus (STS) and inferior parietal
cortex to the “mirror neurons” in ventral premotor cortex (see
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FIGURE 5 | Detailed architecture of the simple action network.

FIGURE 6 | Detailed architecture of the causative action network.

e.g., Keysers and Perrett, 2004). This pathway also overlaps
extensively with the “ventral attentional network,” implicated
in allocating attention to salient external events in the world
(see e.g., Corbetta and Shulman, 2002). We will refer to these
networks jointly as the “action recognition pathway.” This
pathway is normally thought of as being engaged when an
agent is passively observing the external world. But consider
what happens when the agent is attending to an external
object as a target, while directing the hand toward it along a
particular trajectory. Any external actions regularly evoked in
the action recognition pathway in this scenario are likely to be
actions caused by the hand’s movement. We propose that during
action execution, action signals evoked in the action recognition
pathway are hardwired to function as reward signals, which train

the causative action network to bring about particular distal
actions in the world. The action recognition pathway occupies
areas in superior temporal, inferior temporal and inferior frontal
cortex that adjoin or overlap with the ventro-temporal pathway
(see Section 1.1), so it is certainly well-placed to provide training
signals for the causative action network.

Training in the causative action network involves presenting
different articulated objects to the system: a lever that can pivot
around a joint, and can be bent; a hinged door in a plane, which
can be pushed open, and a pair of horizontal plates connected by
a spring, which can be “squashed” by pushing down on the top
plate (see again Figure 2). Training again proceeds by random
generation of perturbations to the goal motor state delivered
by the reach network. In this circuit, sequences of perturbations
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are applied, to generate still more complex trajectories (This
is depicted in Figure 6 by a recurrent input, though in our
implementation we “unroll” this recurrence and generate exactly
two perturbations). Some of these sequences cause particular
patterns of movement in the target object, which are interpreted
as external actions by the action recognition system. Activation of
an action representation in the action recognition system when
performing an action on a target object is hard-wired to generate
a reward signal. This signal has two effects. First, the observed
action is copied to a medium in which action plans are held (the
action planning system). Second, the causative action network
is trained to map the basic goal motor state delivered by the
reach network onto the sequence of perturbations which led to
reward. Note that the network also takes representations in the
action planning system as input. After training, the causative
action network can take a simple goal motor state, plus an action
representation in the action planning system, and generate a
sequence of perturbations which will lead to observation of the
planned action on the attended target.

This network enables a rich repertoire of actions to be learned.
It preserves Hommel et al.’s idea that action representations are
organized around their perceptual effects. But since the action
recognition network generates rich, high-level perceptual signals,
a correspondingly rich set of motor programs can be established.
At the same time, the basic mechanisms through which learning
happens are the same as inmuch simpler motor learning systems.

Part of the design of the causative action circuit is that “cause”
is a motor program in its own right, which competes within the
motor program selection system against regular motor programs
like “grasp” and “slap.” One important difference is that the
“cause” action enables the causative actions network rather than
the simple action network, but other than that it counts as a
regular motor program. This raises some important questions
about how causative actions are planned and executed. When
an agent decides to perform a causative action, presumably he
has some particular caused action in mind. But at the time of
planning, this caused action is in the future: minimally, the agent
must bring his hand into contact with the target object before he
can cause it to move in any way. In order to cause a particular
action in a target object, the trajectory of the hand toward the
object must often be biased from the very start: for instance, to
cause an object to squash, the hand must approach the target
from a particular direction, and with particular force (see the
discussion in Section 1.2). So the movements which bring about
the caused action must be initiated some time before the action is
perceived.

Our way of addressing this issue in the network is to
activate the motor correlates of perceived actions in a medium
holding planned actions, rather than in the medium of
regular motor programs like “grasp” and “slap.” An underlying
assumption in our model, as in many models of motor
control, is that the motor system is hierarchical, mapping high-
level representations of planned actions and action sequences,
predominantly represented in prefrontal cortex, onto lower
level action representations in premotor and motor cortices
(see e.g., Miller and Cohen, 2001; Averbeck et al., 2002; Saito
et al., 2005). In our model, prefrontal cortex stores planned

sequences of attentional and motor operations (Knott, 2012),
which can be activated from visual inputs, through the “object
classification” pathway in ventral/inferotemporal cortex. On this
account, prefrontal cortex is an extension of the ventral object
classification pathway; see Cagliore (Cagliore et al., 2010; Thilla
et al., 2013) for other expressions of this idea. We call the
network that links the ventral object classification system to the
prefrontal action planning system the plan activation network

(Our implementation of this network is very simple, as we do not
compute detailed representations of object shape; the model of
Cagliore et al. is more detailed, and our model should really be
thought of as a stand-in for a more detailed model of this kind).
Note that since the ventral object classification pathway computes
“semantic” representations of object classes, the plan activation
network learns quite high-level functional representations of
objects as tools: the motor affordances generated in this network
are “stable” compared with those computed directly from visual
representations in the dorso-dorsal pathway (see e.g., Borghi
and Riggio, 2009 for relevant discussion). We assume that
planned sequences in prefrontal cortex are selected as wholes,
and that the component actions in a planned action sequence
are active in parallel, even if they are executed in sequence
(This assumption is well-supported by single-cell recordings in
monkeys; see e.g., Averbeck et al., 2002). When the causative
actions network is exploring causative actions, it will activate the
“cause” motor program experimentally, and choose a random
sequence of perturbations. In some cases, this results some time
later in activation of an action in the action recognition system:
say “squash.” This observed action activates a corresponding
planned action. Additionally the plan activation network (see
the bottom right of Figure 3) learns that the sequence “cause,”
“squash” produces observable effects on the category of object
currently present, so that when a similar object is presented
in future, it will tend to activate this planned sequence as a
possible plan in the action planning system, to compete against
other possible plans4. Now consider what happens when the
planned sequence is executed. The agent first executes the motor
program “cause.” This enables the causative action network,
which generates a sequence of perturbations. Crucially, the
causative action network also takes input from the planning
medium in which the caused action (“squash”) is active as part
of the planned sequence. So as soon as it is initiated, the network
is configured to generate the perturbation sequence which led to
the caused action, even before this action actually occurs5.

The key mechanism enabling causative actions to be executed
is one which activates a sensory representation (the squash
action) as a goal some time before it is evoked as a sensory
stimulus. Note that something very similar happens in the other
networks; for instance in the reach network the actual motor state

4In the current paper we do not model the process by which alternative possible

plans compete; this process is the focus of another model (see Takac and Knott,

2013, 2015).
5In Figure 3, the causative action network also takes input from a region

representing object shape, that provides the kind of “volumetric” information

computed in the early stages of the ventro-dorsal pathway, especially in AIP (as

discussed in Section 1.1). Again, since we do not vary the size or orientation of our

target objects, objects, we do not yet implement this input.
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where the touch sensation occurs is activated as a goal motor
state. In the simple network this activation is possible because
visual perception provides information about reward-associated
motor states. In the higher-level causative actions network, the
advance notification of reward comes from the working memory
system which stores prepared actions. But the effect is much the
same.

3. Evaluation of the Model

The reach network performs well after training; its performance
is described in Lee-Hand et al. (2012); in this section we discuss
the performance of the simple action and causative action
networks after training.

The trained simple action network was tested by presenting
a cylinder at the locations seen during training (Figure 9A) and
at a number of new locations (Figure 9B), activating a simple
motor program at random (grasp, slap or punch), and observing
how often the tactile stimulus associated with this motor
program was produced. Results of these tests are summarized in
Figure 7 (left). The trained causative action network was tested
by presenting one of the articulated objects at the seen and
unseen locations shown in Figure 9, and observing how often
the network generated a series of perturbations that led to the
action perception system registering the action appropriate for
the object. Results of these tests are presented in Figure 7 (right).

In general, the systemwas quite successful in producingmotor
actions with the expected perceptual consequences. The simple
action network produced actions resulting in the expected tactile
stimuli for an average of 86.25% of seen target locations and
an average of 81.2% of unseen locations; the causative action
network produced actions resulting in the target undergoing
the expected action in an average of 86.7% of seen locations
and an average of 83.8% of unseen locations. The difference
between seen and unseen locations was statistically significant
for both types of action (p = 0.016 for simple actions and
p = 0.001 for causative actions, by unpaired one-sided t-
tests); the difference between simple and causative actions was
also significant (p = 0.04, by an unpaired two-sided t-test).
Illustrations of representative successful actions of each type are
shown in Figure 8.

The cases where actions do not result in the expected sensory
consequences can be accounted for by two main factors. Most
failures are due to the simplicity of the feedback motor controller
that moves the hand toward a goal state. The hand/arm system is
subject to complex Coriolis forces when in motion, and there are
limits to how precisely it can be controlled by a simple feedback
controller. A few failures result from difficulties generalizing
from training locations to unseen locations, but in general the
networks do this quite well.

4. Discussion

As discussed in Section 1.2, there are many computational
models of how agents learn about the perceptual effects of
their actions. A novelty of our model is its proposal that
there are three qualitatively different types of effect-based motor

action, that are implemented in distinct neural circuits, which
are separately learned one by one. The first two types of
action (reaching-to-touch, then actions involving distinctive
hand preshapes such as grasping, punching and slapping) have
been widely studied, and the idea that they involve distinct
circuits is also widely accepted (see e.g., Jeannerod, 1996). Our
model is novel in characterizing these actions uniformly in
terms of their perceptual effects, in particular their tactile effects.
However, the main novelty in our model is the proposal that
there is a third type of effect-based action, which produces effects
that are perceived as independent events in the world. Existing
computational models are certainly able to learn instances of
actions of this kind—for instance the model of Katz and Brock
(2008) learns actions causing changes in the configuration of
articulated objects, and those of Stoytchev (2008) and Ugur et al.
(2011) learn actions causing changes in the position of moveable
objects. But our model is novel in treating these actions as a class,
distinct from simpler effect-based actions. Since our causative
actions network is trained by the same module that identifies the
actions of independent agents in the world, it subsumes a large
and diverse set of causative actions under a single mechanism:
thus, for instance, it proposes that the same mechanism that
learns how to move an object in space is also the mechanism that
learns how to make an object deform, or for that matter, walk, or
talk, or dance. We have demonstrated this principle by showing
that the samemechanism can learn three quite different causative
actions, on three target objects with quite different patterns of
articulation. No other model of motor learning can show this
performance, to our knowledge.

We conclude by considering how our proposed class
of causative actions might be extended and identified
experimentally, and discussing some uses to which it might
be put.

4.1. Causative Actions that do not Involve
Physical Contact
In our model, causative actions always bring about effects on the
target object by physical touch. But in the real world, actions
can also have causative effects through less direct means: for
instance, an agent can cause a feather to move by blowing it, or
cause another agent to cheer up by smiling at him/her. Since our
causative actions network is trained by a system that perceives
distal events in the world, it is certainly capable of learning
actions that achieve causative effects on objects without making
direct contact with them. The key requirement for this learning
is the same as that discussed in Section 2.3.3: the agent must
be attending to the target object when performing the causative
action. Since spatial attention actions are initially learned through
associations with physical touch, this attentional action will
ensure that the causative action is directed toward a certain
object, even if in this case the object is not touched. Crucially, it
also ensures that the agent’s action perception system is directed
at this same object, so any effects on it are detected.

For “social” actions such as cheering someone up, focal
attention on the target object is typically necessary to achieve
causative effects, but may not always be sufficient. The agent to
be influenced must also typically return attention, so that “joint
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FIGURE 7 | Left: Results from testing the simple action network. Right: Results from testing the causative action network. Results are averaged across 10 trials of 8

object locations; results for seen locations are shown in blue; results for unseen locations in red. Error bars show standard deviation.

FIGURE 8 | Learned actions. From top: grasping, slapping and punching a cylinder; bending a lever, opening a door and squashing a sprung plate. These

sequences are taken from the latter stages of each action, when the hand makes contact with the target.

attention” is achieved (Tomasello, 2003). It may be that for social
actions, the sensation of an attended agent returning one’s gaze
plays a role similar to that played by the sensation of touch for
physically causative actions, in establishing the conditions under

which causative actions can take place. The stimulus of direct
gaze certainly modulates cognitive processing in powerful ways,
similarly to the stimulus of touch (Senju and Johnson, 2008). This
is an idea we intend to explore in future research.
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FIGURE 9 | Possible locations of target objects for the simple action and causative action networks (A) during training; (B) during testing.

4.2. Experimental Predictions About Causative
and Non-Causative Actions
We have already suggested in Section 1.1 that our distinction
between causative and non-causative actions coincides with the
distinction made in experimental work between actions on tools
implemented in the ventro-dorsal pathway and “volumetric”
actions implemented in the dorso-dorsal pathway. As discussed
in that section, the examples of “functional” actions used in the
experiments of Bub et al. (2008) and Jax and Buxbaum (2010)
are mostly causative actions in our terms (i.e., they cause a
movement in the target object which constitutes an event in
its own right), and the examples of “volumetric” actions are
mostly non-causative in our terms (i.e., they do not cause such
a movement). However, there are cases where the experimental
action stimuli do not conform to these definitions: for instance,
grasping a mug by its handle is classed as functional, but it
is not causative in our terms. We predict that these actions
will be outliers in their groups in the above experiments, and
that the experimentally observed distinctions between functional
and volumetric actions will be sharper if they are removed,
or possibly reclassified. We also predict more generally that
any action that is non-causative in our terms will pattern with
“volumetric” actions, and evoke activity in the dorso-dorsal
pathway—including actions like punching and slapping—and
that any action that is causative in our terms will pattern with
“functional” actions, and evoke activity in the ventro-dorsal
pathway. These are general predictions that could certainly be
tested in further experiments6.

6There are a few caveats to note. Firstly, some causative actions are achieved

through movements that also happen to be in the repertoire of non-causative

actions: for instance, if an agent punches someone to the ground, they are causing

that person to go “to the ground” through an action that also happens to be

defined as a simple action. In this case, we expect activity in both dorso-dorsal

and ventro-dorsal pathways. Secondly, some non-causative actions are preparatory

to a subsequent causative action: for instance grasping a mug by its handle is

Note that our model can already account for much of the
evidence for effect-based motor representations discussed in
Section 1.1. All the experiments described in that review in
fact involve actions which in our definition would be classed
as causative—that is, actions that bring about independently
observable events—the illumination of a light in Hommel (1993),
the opening or closing of a pair of tongs in Umiltà et al.
(2008), the occurrence of a tone in Elsner et al. (Elsner and
Hommel, 2001; Elsner et al., 2002). Consider for instance Umiltà
et al.’s demonstration that many F5 neurons in macaque encode
the perceived effects of motor actions on a pair of held tongs
(their opening or closing) rather than motor actions themselves.
Opening and closing are causative actions: to open X is to cause
X to open. In our model, the event of the tongs opening (or
closing) will be present in the action planning system (shown
in blue in Figure 3) regardless of the motor action that brings
it about. If we assume that the action planning system is partly
implemented in F5, the invariant responses observed by Umiltà
et al. in F5 are expected (Note that F5 is indeed a component of
the ventro-dorsal motor pathway; see e.g., Rizzolatti and Matelli,
2003). To take another example: consider the ideomotor response
documented by Elsner and Hommel (2001): in subjects who have
learned that an certain action generates a certain tone, activation
of this tone by itself as a perceptual stimulus can prime execution
of this action. Note that perception of the tone in this scenario
does not actually trigger the action; it just activates it at a sub-
threshold level. In our model, the link between a perceived event
and the planning representation responsible for bringing it about
is normally gated shut (see again the blue part of Figure 3);
it is only gated open after the agent has actually executed an
action, and has perceived an event that the action might have
caused. To account for the ideomotor response, we can simply

often preparatory to lifting it or tilting it (i.e., causing it to lift/tilt). In these

circumstances, there may again be activity in both pathways.
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assume that the link from perceived events to planned actions can
never be fully closed: that some activation always gets through.
On this account, the ideomotor response is a side-effect of the
circuit that supports learning of causative actions, as proposed
in Section 1.3. One final interesting prediction addresses the
relationship between the ventro-dorsal “use” motor pathway and
the action recognition pathway, which occupy adjacent, and
possibly overlapping, areas of superior temporal, inferior parietal
and inferior premotor cortex. We suggest these pathways can
be distinguished by contrasting brain activity in two conditions:
one in which an agent executes a causative action bringing
about a certain movement in the target object (e.g., closing
a door), and another in which the agent observes the same
movement occurring in the target object by itself without the
causative action (i.e., observing “the door closing”). We predict
that the part of ventro-dorsal cortex involved in representing the
caused action will be invariant across these conditions, while the
part representing the causative action will be active in the first
condition but not the second. This is a prediction that could be
tested, for instance in an imaging experiment.

4.3. Causative Actions in a Model of Action
Perception
Ourmodel of causative actions has interesting implications for an
account of action perception. A common idea is that perceiving
an action performed by someone else involves activating the
same motor representations that are active when we perform it
ourselves (see e.g., Rizzolatti et al., 2000). This is often called
into question (see e.g., Hickok, 2008). But it is interesting that
the debate often turns on actions that are causative, in our
sense. For instance Hickok considers the action of playing the
saxophone: how can an observer who cannot execute this action
recognize someone else doing so, if action recognition involves
activation of representations in one’s own motor system? To
us it is relevant that “to play the saxophone” is to cause the
saxophone to play. Minimally, this means that the kind of “motor
resonance” that we expect during perception of someone else
playing the saxophone will be different from that associated
with perception of simple actions like touching or grasping.
Exactly what form this resonance might take is a matter for
further thought: there is no ready-made incarnation of the
mirror system hypothesis configured to causative actions. But
if playing the saxophone involves perceiving “the saxophone
playing” as an independent event, it is likely that perceiving
someone else playing the saxophone involves exactly the same
perceptual representation of this event. So our model certainly
predicts some overlaps between the representations involved in
executing and perceiving this action. We suggest that the best
way to extend our model to support perception of causative
actions would be to include a general perceptual mechanism for
identifying causally related events in the world (see e.g., Scholl
and Tremoulet, 2000), so that the observer can identify not
only that the saxophone is playing, but that the observed agent’s
motor actions are causing this. This model would preserve a close
parallelism between action execution and action perception, as
posited by the mirror system hypothesis, without requiring that

the observed agent’s movements resonate in detail with motor
programs of the observer.

4.4. Simple Actions with Causative Effects
While we have construed slapping and punching as simple
actions, an agent can also slap a cup across the table, or punch
a person to the ground. The existence of such actions may be
thought to cast doubt on the taxonomy of effect-based action
types we are proposing: they are clearly causative actions, in that
they bring about episodes involving the target object, but they are
also simple actions. In fact there is no reason why an action that
brings about an independent episode cannot also be describable
as a simple action. In fact this possibility enables an elegant model
of the way actions are described linguistically.We can refer purely
to the causative components of an action, by saying e.g., that the
agent moves the cup across the table. We can also refer purely to
an action’s identity as a simple action, by saying e.g., that the agent
slaps the cup (without mentioning the effect of this action on the
cup). Or, most informatively, we can refer to both the simple and
the caused effect, by saying that the agent slaps the cup across the
table.

4.5. Causative Actions in Language and the
Motor System
Our model does not include an account of how perceptual and
motor representations interface with language, but there are
some extensions that could readily be made in this direction. In
particular, we could assume that common nouns denoting tools
directly activate object representations in the ventral pathway
mapping object categories to the sets of “functional” actions they
afford, an assumption which is common in the literature (see e.g.,
Pulvermüller et al., 1999; Bub et al., 2008; Cagliore et al., 2010);
and we could assume that action verbs directly activate motor
programmes in the relevant simple-action and causative-action
networks (see e.g., Hauk et al., 2004). With these assumptions,
ourmodel’s behavior would be consistent with a number of recent
experiments relating to motor priming. Masson et al. (2008)
showed that in sentences that name tools but not associated
motor actions (e.g., the scientist looked at the stapler), tool nouns
primed functional actions but not reach/grasp actions. If tool
nouns activate units in the plan activation network in our model,
this will result in activity in the causative action network but not
the reach or simple-action network. Bub et al. (2008) showed that
tool words generate activity in the “use” pathway earlier than the
reach/grasp pathway. If tool nouns directly activate “use” actions
in the action planning system in our model, it will show the same
effect, since the link from tool nouns to actions in the simple
action network runs through low-level visual representations,
and so is much less direct.

Our distinction between causative and non-causative actions
also relates closely to a distinction made by theoretical linguists
between the syntactic structures associated with particular verbs.
Our test for causative actions in fact identifies a well-studied
class of verbs: those that undergo the so-called “causative
alternation” [see e.g., Schaefer (Schäfer, 2009) for a review].
The causative alternation is illustrated in the following two
sentences:
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(1) John bent the lever.
(2) The lever bent.

These sentences are interesting for linguists because the lever
appears as the subject of Sentence (4.5) and the object of
Sentence (4.5). This is puzzling because as a rule we expect the
semantic roles associated with the noun phrases in a sentence
to relate to their syntactic roles. To allow generalizations about
the semantic contributions of subjects and objects, linguists have
often proposed that the syntactic structure of the transitive
sentence John bent the lever involves a “hidden” cause predicate,
as illustrated below (see e.g., Levin Levin and Rappaport Hovav,
1995):

(3) John caused [the lever bent].

While this proposal is made on purely syntactic grounds, it
clearly echoes the motor model of causative actions introduced
in the current paper. It is interesting to speculate that this is
no coincidence—that the “cause” predicate posited by linguists
refers to some representation engaged by the causative actions
pathway in the motor system. This would be evidence for
the kind of “embodied” model of syntax proposed by several
theorists [see e.g., Feldman and Narayanan, 2004, Zwaan et al.

(Zwaan and Taylor, 2006); Knott, 2012]. The idea that causative
sentence structures engage the causative motor actions pathway
could be tested in several ways: for instance it predicts that
sentences whose structure contains an implicit cause predicate
like John bent the lever activate the ventro-dorsal pathway, while
superficially similar sentences like John touched the lever or
John slapped the table activate the dorso-dorsal pathway. If such
predictions are borne out, the proposal that the dorso-dorsal
pathway implements causative motor actions will shed some
interesting light on the general question of how natural language
syntax relates to the motor system.
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Appendix

Training Algorithms

In this Appendix we present the training algorithms for the reach,
simple action and causative action networks in more detail.

The first network that is trained is the reach network. A single
object (the cylinder) is presented in each training trial in any
location within the space reachable by the arm. The retinotopic
location of this object is computed, and provided as input to
the reach network, which generates an output goal motor state.
Initially this output is annealed with noise, so the goal motor
state is essentially random. A feedback controller then brings
the hand toward the goal motor state. If the hand happens to
make contact with the object (i.e., if a tactile signal is received),
the current motor state is logged as training data for the reach
network, paired with the retinotopic location of the object. After
each trial, the reach network is trained on all the training data
logged so far. During learning, the noise applied to the network’s
output is progressively reduced to zero. Pseudocode for training
is shown in Algorithm 1.

Data: o = (ox, oy, oz) (object centroid in retinal
coordinates), θ = (θc1, θc2, θc3) (current arm joint
angles)

begin
o input into reach network to produce
θg = (θg1, θg2, θg3) (goal motor state);
Random noise added to θg ;
whileMaximum time not exceeded do

Calculate force applied to arm using PID controller
(a function of θ − θg);
if Tactile feedback occurs then

Store touch score paired with θ ;
end

end

if Touch data recorded then
Log the maximum touch score and corresponding θ ,
paired with or , as a new training item for the reach
network;
Maximum possible random noise reduced;
if number of training items exceeds 200 then

Discard oldest training item;
end

Reach network trained on training data;

end

end

Algorithm 1: Learning Goal Arm states for reach actions

There is one further point to make about the training of the
reach network (and those that follow). It is of course unrealistic to
assume a storage medium where a large number of training items
can be logged. In a more plausible online learning scheme, the
network being trained would interleave self-generated pseudo-
training items with new training data arriving sequentially (see
e.g., Robins, 1995). To approximate an online scheme, we do

however impose various constraints to ensure that the quality
of stored training data improves during the course of training.
Firstly, the learning rate used by the network for any given logged
training item is a function of a score associated with the haptic
feedback pattern that the hand received (recall some patterns are
better than others). This means that trajectories which result in
higher scores influence the behavior of the network more than
trajectories producing lower scores. In addition to this, there is
a minimum threshold score needed in order for an action to be
logged as training data, which is increased as learning proceeds.
Finally, we only retain the most recent 200 logged training items
to use for training.

The next network to be trained is the simple action network.
In each training trial a single object (the cylinder) is presented
in one of a small number of training positions, as shown
in Figure 9A. The trained reach network generates a goal
motor state as usual; this is passed as input to the simple
action network, along with a randomly selected simple action
category (grasp, slap or punch). The output of the network is
a perturbation, which is applied to the goal motor state. This
output is again annealed with noise, which is reduced to zero
as training progresses. The motor controller then moves the
hand in the direction of the perturbed goal motor state, and
when the perturbation is removed, in the direction of the actual
goal motor state. If the resulting movement activates one of
the predefined classes of rich tactile signal, a training item is
logged, mapping the actual goal motor state providing input
to the network, plus the simple action category corresponding
to the activated tactile signal, onto the perturbation that was
applied. After each trial, the network is trained on all the
logged training items. This training algorithm is shown in
Algorithm 2.

Finally the causative action network is trained. In each
training trial either the squashable, bendable or openable object
is presented in one of the locations given in Figure 9A. The plan
activation network maps the object’s category onto a planned
sequence of two actions (a pair of two actions in the action
planning system). The causative action network maps the the
current goal motor state and the planned action sequence
onto a sequence of two perturbations (These outputs are again
annealed with noise, reduced to zero during training). The two
perturbations drive the hand/arm along a particular trajectory. If
this trajectory happens to result in the target object undergoing
an action (bend, open or squash), the action recognition system
will activate the relevant action category, and a training item is
logged, mapping the current goal motor state, plus a unit in the
action planning system corresponding to the recognized action
category, onto the perturbation sequence. At the same time,
the plan activation network learns to map the category of the
target object onto the sequence “cause,” followed by the perceived
action.

This training regime is detailed in Algorithm 3.

Data: o = (ox, oy, oz) (object center in retinal coordinates),
θc(θc1, θc2, θc3) (current arm joint angles), d
(perturbation removal distance)
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begin
Reach algorithm and network used to determine
θg = (θg1, θg2, θg3) (goal motor state);
whileMaximum time not exceeded do

θg input into reach network to produce
1 = (11,12,13) (perturbation of motor state);
θp = (θp1, θp2, θp3)← θg +1 (perturbed goal
motor state);
Random noise added to θp;
if distance to object < d then

θp ← θg ;
end

Calculate force applied to arm using PID controller
(a function of θp − θc);
if correct tactile feedback occurs then

Store touch score, paired with θp;
end

end

if Touch data recorded then
Log the maximum touch score and corresponding
θp, paired with or , as a new training item for the
simple action network;
Maximum possible random noise reduced;
if number of training items exceeds 200 then

Discard oldest training item;
end

Simple action network trained on training data;

end

end

Algorithm 2: Learning simple motor programs

Data: o = (ox, oy, oz) (object center in retinal coordinates),
c ∈ {lever, door, squashable_object} (object category),
θ = (θc1, θc2, θc3) (current arm joint angles), d
(perturbation removal distance)

Algorithm 3: Learning causative actions

begin
Reach network maps o onto θg = (θg1θg2, θg3) (goal
motor state);
Plan activation network maps c onto action plan
P = [P1, P2] (P1, P2∈{squash, bend, open, cause});
Causative action network maps θg , P onto
1 = (11,12,13) (perturbation of motor state);
θp = (θp1, θp2, θp3)← θg +1 (perturbed goal motor
state);
Random noise added to θp;
while θ 6= θp do

Calculate force applied to arm using PID controller
(a function of θp − θc);

end

Store θp as p1;
θg input into causative action network to produce 1;
θp← θg +1;
Random noise added to θp;
whileMaximum time not exceeded do

if distance to object < d then
θp ← θg ;

end

Calculate force applied to arm using PID controller
(a function of θp − θc);
if Action recognition system detects an action a then

Store action score with (θp1, θp2, θp3) as p2
paired with p1;

end

end

if An action a was recognized then
Identify unit in action planning system a′

corresponding to a;
Retrieve maximum stored action score smax;
Log a training item mapping a′, θ onto the
perturbation sequence (p1, p2) with learning
constant smax;
Reduce maximum possible random noise;
if Number of Training items > 200 then

Discard oldest training item;
end

Causative action network trained on training data;
Plan activation network trained to map c onto the
planned sequence [cause, a′];

end

end
Algorithm 4: Learning causative actions
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