
ORIGINAL RESEARCH
published: 23 July 2015

doi: 10.3389/fnbot.2015.00007

Frontiers in Neurorobotics | www.frontiersin.org 1 July 2015 | Volume 9 | Article 7

Edited by:

Andrea Soltoggio,

Loughborough University, UK

Reviewed by:

Mostafa Ajallooeian,

École Polytechnique Fédérale de

Lausanne, Switzerland

Andre Lemme,

Bielefeld Universitaet, Germany

*Correspondence:

Byron V. Galbraith, Program in

Cognitive and Neural Systems,

Boston University, 677 Beacon St,

Boston, MA 02215, USA

byron.galbraith@gmail.com

Received: 23 March 2015

Accepted: 08 July 2015

Published: 23 July 2015

Citation:

Galbraith BV, Guenther FH and

Versace M (2015) A neural

network-based exploratory learning

and motor planning system for

co-robots. Front. Neurorobot. 9:7.

doi: 10.3389/fnbot.2015.00007

A neural network-based exploratory
learning and motor planning system
for co-robots
Byron V. Galbraith 1, 2, 3*, Frank H. Guenther 2, 4, 5 and Massimiliano Versace 2, 3

1 Program in Cognitive and Neural Systems, Boston University, Boston, MA, USA, 2Center for Excellence in Learning in

Education, Science, and Technology, Boston University, Boston, MA, USA, 3Neuromorphics Laboratory, Boston University,

Boston, MA, USA, 4Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA,
5Department of Biomedical Engineering, Boston University, Boston, MA, USA

Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to

work alongside humans in shared workspaces. To be effective, co-robots require the

ability to respond and adapt to dynamic scenarios encountered in natural environments.

One way to achieve this is through exploratory learning, or “learning by doing,” an

unsupervised method in which co-robots are able to build an internal model for motor

planning and coordination based on real-time sensory inputs. In this paper, we present

an adaptive neural network-based system for co-robot control that employs exploratory

learning to achieve the coordinated motor planning needed to navigate toward, reach for,

and grasp distant objects. To validate this system we used the 11-degrees-of-freedom

RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope

learned how to relate visual and proprioceptive information to achieve hand-eye-body

coordination. By continually evaluating sensory inputs and externally provided goal

directives, the Calliope was then able to autonomously select the appropriate wheel and

joint velocities needed to perform its assigned task, such as following a moving target or

retrieving an indicated object.

Keywords: co-robot, exploratory learning, motor planning, neural network, egocentric navigation, embodied AI

Introduction

Co-robots, collaborative robots that work alongside humans to perform assistive tasks, are
becoming more prevalent, notably in the healthcare and telepresence spaces (Kristoffersson et al.,
2013). A major challenge for co-robots is the need to make decisions on how to operate in dynamic
environments with other autonomous agents (Hayes and Scassellati, 2013). This includes using
onboard sensors to detect and avoid obstacles or finding, reaching for, and grasping objects.
Embodying the co-robot with some sense of spatial awareness is critical for it to make appropriate
decisions on how to proceed with its tasks.

Spatial awareness here refers to the combination of sensory inputs, such as visual and
proprioceptive, to construct an egocentric coordinate system for objects in the immediate vicinity
of the co-robot. The sensory processing, decision-making, and motor planning components of the
task process all share this reference frame in order to achieve effective coordination. For instance,
the co-robot needs to know where its body and arm are relative to a visually identified target object
in order to plan and execute the appropriate motor actions needed to achieve its goal of grasping
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the object. If the robot is too far away to reach for a target object
from its current position, it will have to move its body closer until
the target is within range.

A common first step in developing co-robot control models
is to employ simulations and virtual environments to evaluate
which strategies and methods have a chance of working in
the real world. By avoiding issues such as battery charge
and wear and tear of robot parts in simulations, multiple
models can be evaluated rapidly without fear of damage to
physical components. The main drawback to relying on virtual
environments is that many challenges faced in the real world
are difficult to simulate accurately without significant effort.
Perfectly aligned idealized components of a robotic limb in
the virtual environment will have isotropic movement behavior,
while in the real world, compliance in the mounting joint
and inconsistent servo performance will result in anisotropic
movements. Even more challenging is the reliance on data from
actual sensors, which are susceptible to noise and artifacts,
whereas simulatedmodels frequently use perfect information and
highly constrained environments.

These variances between idealized models and physical reality
may not be describable analytically, which poses a significant
challenge in translating theoretical control systems to practical
application. One solution is to embody the co-robot with an
adaptive system that integrates and learns actual sensory and
behavioral data. By using exploratory learning methods, the
robotic agent is able to use a form of unsupervised learning where
it gains an operational model of its capabilities by observing
the results of its own actions. As the co-robot performs and
observes the results of endogenous random movements, i.e.,
motor babbling, it learns how to link sensory information
with motor actions. Once these causal relationship models
are built, the co-robot can then transition from passively
observing undirected actions to actively planning goal-directed
actions.

In this work we present such a system using an adaptive neural
network-based controller that employs exploratory learning to
enable a hardware robot to autonomously search for, navigate
toward, and pick up a distant object as specified by a remote
operator. In order to evaluate the viability of the learning, sensory
integration, and decision-making models required for these tasks
in both virtual and hardware versions of the Calliope robot, we
created the CoCoRo (Cognitive Co-Robot) control system. Using
CoCoRo, we demonstrate that through motor babbling of its
wheels and arm, the Calliope is able to learn how to relate visual
and proprioceptive information to achieve the hand-eye-body
coordination required to complete its intended tasks.

The rest of this paper is arranged in the following way. Section
Materials and Methods describes the CoCoRo architecture, the
Calliope robotic platform used to evaluate the system, and a
detailed description of the components used to achieve hand-eye-
body coordination. Section Results presents the results of several
experiments conducted to validate the reaching, navigation,
and distant object retrieval goals. In Section Discussion, the
methods and experimental results are discussed and compared to
previous work. The paper concludes in Section Conclusion with
a summary of the key contributions.

Materials and Methods

CoCoRo Architecture
CoCoRo uses a modular, synchronous architecture. It defines
four types of system components: executive agent, sensorimotor
devices, cognitive processes, and working memory. Each
component in the system is chained together in serial with
data flowing from one component to the next via a data
structure termed a cognitive packet. A single iteration through
all components is referred to as a cognitive cycle (Figure 1).

The cognitive cycle consists of four phases: executive, sensory,
cognitive, and motor. In the executive phase, a cognitive packet is
generated by the working memory component, which includes
persistent information from the last cycle, time elapsed since
the beginning of the previous cycle, and any commands from
the executive agent. Next, in the sensory phase, all sensorimotor
devices are polled to retrieve new raw sensory data. Then, in
the cognitive phase, cognitive processes act on the sensory and
memory data. Finally, in the motor phase, the sensorimotor
devices execute any relevant motor commands generated from
the previous phases. Finally, the executive agent is given the
opportunity to store or transmit any data from the cognitive
packet before the next one is generated and the cycle repeats.

The executive agent determines the broad goal objective and
task the co-robot will perform. This could arise endogenously
through a default behavior pattern or exogenously through
commands received from a remote operator. The executive agent
also has the ability to store or transmit data for later analysis
or telepresence capabilities. Sensorimotor devices are elements
that produce sensory data and/or execute motor commands,
such as capturing image data from a camera or setting velocity
commands to wheel motors. Cognitive processes are intended to
be discrete, single purpose functions, such as detecting objects in

FIGURE 1 | The cognitive cycle. After initialization, the cognitive cycle runs

until the user halts the robot. The executive agent checks for changes in goal

directive, followed by acquisition of sensory data. Next comes processing of

the data to fulfill the current objective. Finally any new motor commands are

sent to the appropriate devices and the process repeats. All communication

during and persistence across cycles is handled by the working memory

system.

Frontiers in Neurorobotics | www.frontiersin.org 2 July 2015 | Volume 9 | Article 7

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Galbraith et al. Adaptive learning system for co-robots

a visual scene or planning the motor actions needed to articulate
a limb toward a desired target. These processes operate on either
raw sensory data or the outputs of upstream processes. They
then either output intermediate data for use by downstream
processes or drive behavior in the form of motor commands.
Finally, working memory retains persistent information over the
duration of the designated task operation, such as what the goal
target is, where it was last seen, and whether certain actions
should be enabled or inhibited.

The CoCoRo architecture separates out the realization of a
specific robotic platform from the cognitive control model by
defining an API for writing the robot control system component
modules and runtime programs. Using this approach, cognitive
processes evaluated in a virtual environment can be directly
applied to a real world robot without code changes—only the
CoCoRo runtime, including operational parameters, and the
sensorimotor device modules need be specific to a particular
robot environment. Additionally, a common reference frame for
working with various coordinate systems in three dimensions is
also defined as part of this API to ensure consistent operation
between components (Figure 2). All code was implemented
using the Python programming language.

Robot Platform
The robot platform used in this study is the RoPro Calliope
(Figure 3), a reference robot designed for the Tekkotsu robotics
development environment (Tira-Thompson and Touretzky,
2011). The Calliope is a multimodal system consisting of an

FIGURE 2 | The CoCoRo common coordinate reference frame. The

origin is defined as the center of the robot’s head. In Cartesian space, x is in

front of the robot, with positive values going outward, y is the horizontal plane,

with positive values going to the left, and z is the vertical plane, with positive

values going up. In spherical space, ̺ is the distance from the origin to a given

point, θ is the counterclockwise azimuth angle in radians, and φ is the

inclination angle upward from the horizontal plane in radians.

iRobot Create robot base mounted with a 7-degree-of-freedom
(DOF) robotic limb and a Microsoft Kinect. All hardware
components of the Calliope are centrally controlled via a laptop
running Linux (Ubuntu 14.04) resting on top of the Create.

The Create is a differential-drive robot with two drive
wheels capable of up to 500mm/s either forward or reverse
and a third balancing wheel. The limb is constructed from
Robotis Dynamixel servos and separated into a 4-DOF arm
with horizontal shoulder, vertical shoulder, elbow, and wrist
pitch joints on one servo network and a 3-DOF hand with
wrist roll and two claws on another network. Each servo has
1024 addressable positions covering 300 degrees. The servos are
controlled through a USB-to-TTL interface. The Kinect has a
640 × 480 32-bit color camera and a 640 × 480 12-bit depth
camera. The cameras have a field of view of 1 radian horizontal
and 0.75 radians vertical. The depth camera has an effective
sensing range of 0.5–3.5m. Pan and tilt control of the Kinect is
provided by two additional Dynamixel servos also on the arm
servo network. Power for the Kinect and arm servo network
comes from a battery pack mounted on the back of the Create,
while the hand servo network is powered from the Create’s own
battery. When fully assembled, the Calliope weighs 10.34 kg.

To enable safe testing and evaluation of the CoCoRo control
system and component modules, a virtual representation of the
Calliope was developed in Webots (Michel, 2004), a commercial
mobile robot simulation software package. Webots allows for
robot controllers to be written in a variety of languages including
Python, whichmade it ideal for testing and evaluating the various
CoCoRo components.

System Implementation
On top of the base CoCoRo platform we developed the
components necessary to embody the Calliope with the ability
to reach and grasp distant, visually identified objects. This task
required the co-robot to perform the following coordination
of subtasks: identify and localize objects in the environment,
visually search for a desired object, navigate toward the object,
reach for the object, and finally grasp the object in its hand.

FIGURE 3 | The Calliope robot. The RoPro Calliope mobile robot (left) and

its virtual counterpart in the Webots (http://www.cyberbotics.com/) robotics

simulator (right).
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The CoCoRo components created to fulfill this task include
an executive agent that supported remote operator control;
four sensorimotor device interfaces for the Calliope’s Kinect,
servos, and wheels; and multiple cognitive processes to perform
decision-making and coordination for the various subtasks. The
full cognitive cycle implementation is depicted in Figure 4.

The executive agent was implemented using the Asimov
middleware system (Galbraith et al., 2011) to send and receive
data between the Calliope and a remote operator. Operators were
able to send goal directives and manual motor commands. They
could also optionally receive video frames from the Calliope’s
camera. Additionally, the agent had the capability to store the
contents of each cognitive packet to disk after the end of a cycle
for later offline analysis.

Four sensorimotor devices were created: one for the Kinect,
one for the Create, and one for each of the two servo networks.
The Kinect device captured and provided the raw RGB and depth
images while the Create device accepted and issued changes in
wheel velocity. The servo devices, corresponding to the arm/neck
and hand servo networks, provided the current positions of the
joints, set the joint velocities and goal positions, and translated
between CoCoRo’s common reference frame and the internal
Dynamixel reference frame.

The cognitive processes were divided into two functional
groups: object awareness and motor planning. Object awareness
consisted of two steps: detecting known objects in the visual
scene and then localizing them in reference to the body.
Motor planning contained the processes for generating and
coordinating joint and wheel velocities to control head position,
navigation, reaching, and grasping.

As employing robust computer vision methods to object
detection was outside the scope of this work, we intentionally
chose a simplistic approach. The robot used a color threshold
method to detect predefined objects in a constrained
environment. Objects were monochromatic cylinders and
spheres defined by channel ranges in the CIELAB color space.
CIELAB was chosen over RGB due to its greater robustness to

changes in luminance. First the raw RGB image was converted
to CIELAB using OpenCV and then segmented into a 5× 5 grid
of tiles. For each known object, the tile with the most matching
pixels that fell into that object’s color range was selected. The
object was considered present if the pixel count exceeded a
threshold of 64 pixels. The centroid of the object was then
computed by taking the median x and y image coordinate values
of all matching pixels. The depth value was selected by taking
the corresponding pixel location from the depth image. Finally,
these pixel values were added to the cognitive packet along with
the object’s label.

Object localization converted all detected objects from raw
image coordinates (Ix, Iy, Iz) into relative egocentric locations
(ρ, θ,Φ). The angular coordinates of each object were computed
using the following transforms:

θ =

(

1

2
−

Ix

Iw

)

Fh + θp (1)

Φ =

(

1

2
−

Iy

Ih

)

Fv + θt (2)

Here, Iw and Ih were the image width and height in pixels, Fh and
Fv were the horizontal and vertical fields-of-view, and θp and θt
were the positions of the pan and tilt joints. This had the effect of
converting raw pixel locations into retinotopic coordinates and
then adjusting them based on the head position.

For the Kinect, Iz ranged from 0 to 2047, with 0 corresponding
to >3.5m, 2046 corresponding to approximately 0.5m, and 2047
corresponding to an error code meaning no depth information
was obtained. If an error code was detected, no value was set for
ρ, otherwise it was computed by:

ρ = D (Iz) + ln sin (−θt) (3)

The first part transformed the Kinect pixel values to depths given
in meters using function D adapted from Miller (2010). The
second part adjusted for the tilt of the head away from center,
where ln = 0.05m was the length of the neck.

FIGURE 4 | Detailed cognitive cycle model for reaching and grasping

distant objects. Data flows from left to right. Vertically aligned components

could execute in parallel, though in practice all components execute in a

single serial chain. The cognitive process phase was divided into two

sub-phases: object awareness and motor planning. ξ is the cognitive packet,

Ψ is the executive agent, I and Θ are data from camera and joint position

sensors, respectively, Ξ is a cognitive process, and ∆ is a motor command

expressed as a joint or wheel velocity.
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Once objects were detected and localized, they were passed on
to the motor planning processes. Head position was determined
by whether or not the goal object was detected in the visual
scene. When the target was not detected, joint commands were
generated to rotate the head in a fixed sweeping pattern to scan
the environment until the target was found. Otherwise the robot
fixated on the target by generating joint commands to position
the head such that the target was held in the center of vision.
For the scope of this work, no additional seeking behavior was
implemented, so the robot remained stationary while scanning
the environment indefinitely if the target could not be detected.

Reaching

Motor planning for reaching is based on the DIRECT model
(Bullock et al., 1993; Guenther and Micci Barreca, 1997),
which belongs to the class of psuedoinverse control methods
for redundant manipulators (Klein and Huang, 1983). These
methods solve the inverse kinematics problem of choosing
appropriate joint velocities that achieve desired end-effector
movement by computing the generalized psuedoinverse of the
manipulator’s Jacobian matrix.

There are two challenges to implementing this solution in
practice. First is that the Jacobian matrix must be computable for
all possible joint configurations. In stick models or simulations
where the robot is treated as a rigid body and the exact geometry
of the arm is known, the solution can be computed directly.
For instance, the Calliope’s limb (Figure 5) has the following
ideal relationship between joint configuration and end effector’s
egocentric location:

xe = x0 + cos θ1(l1 + l2 cos θ2 + l3 cos(θ2 + θ3)

+ l4 cos(θ2 + θ3 + θ4)) (4)

ye = y0 + sin θ1(l1 + l2cosθ2 + l3 cos(θ2 + θ3)

+ l4 cos(θ2 + θ3 + θ4)) (5)

FIGURE 5 | Stick model of the Calliope arm. The Calliope arm has four

revolute joints arranged in a linear chain. The first joint represents horizontal

shoulder movement and rotates about the z-axis. The other three joints,

vertical shoulder, elbow, and wrist pitch, respectively, rotate about the y-axis.
The limb segment lengths are 0.11, 0.145, 0.138, and 0.135m, respectively.

ze = z0 + l2 sin(θ2)+ l3 sin(θ2 + θ3)

+ l4 sin(θ2 + θ3 + θ4) (6)

where (x0, y0, z0) is the location of the base of the arm in the
CoCoRo common reference frame, li is the length of the ith arm
segment, and θi is the position of the ith joint. Using this, the
Jacobian matrix and psuedoinverse can be easily derived and
computed.

In the real world, however, the Calliope is susceptible to
deviations from this model due to the invalidation of the
rigid body assumption, operational limitations, and minor
manufacturing defects. As such the error between the actual and
computed Jacobian will vary in an inconsistent fashion across the
workspace. This is further compounded by the second challenge
to using the inverse kinematicmodel, which is determining where
the hand is relative to the desired location.

Obtaining the value for the desired end-effector displacement,
1x, in a simulation could be as straightforward as tracking the
allocentric coordinates of both end effector and desired target
and then computing their difference. In an embodied system,
where the robot can only act upon data from its sensors, arriving
at an appropriate value for 1x is non-trivial. The desired reach
target is located through the visual system, whereas the hand can
be located through vision or, failing that, through an estimate
achieved via proprioception. This latter modality is especially
important, as the robot’s hand may not be visible when reaching
is initiated toward a target. Good hand-eye coordination, i.e.,
agreement between visual and proprioceptive position estimates,
is important for obtaining consistent values of 1x and thus for
maintaining smooth and effective reaching trajectories.

DIRECT addresses both the determination of the Jacobian and
achieving good hand-eye coordination through neural network-
based exploratory learning mechanisms. By motor babbling the
joints in the arm and observing the resulting position of the
end effector, the DIRECT neural network is able to learn the
relationship between the visual and proprioceptive inputs. Using
this method accounts for deviations from the idealized model by
using actual data instead of theoretical predictions.

Our version of DIRECT is similar to that described in
Guenther and Micci Barreca (1997) as we also use a hyperplane
radial basis function (RBF) network (Stokbro et al., 1990; Du
and Swamy, 2014) as our choice of neural network. However, we
do not attempt to learn the inverse map, but instead only learn
the forward map and then use it to numerically approximate
the instantaneous Jacobian matrix. This is accomplished by
querying the trained model for expected changes in end effector
position due to slight perturbations of each joint in isolation.
Once obtained, the arm joint motor plan is computed using the
psuedoinverse method.

In addition to learning how to articulate its limb to reach
for a particular location, the robot also needs to determine
if that location is actually within its immediate reach, a task
outside the scope of the DIRECT model. We have developed
a solution to this reachability problem using the same motor
babbling process employed by DIRECT. The reachability of a
desired object is whether or not the robot can move its end
effector to that exact location from its current position. Both

Frontiers in Neurorobotics | www.frontiersin.org 5 July 2015 | Volume 9 | Article 7

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Galbraith et al. Adaptive learning system for co-robots

the geometry of the robot’s arm and the persistent features of
its operational environment determine the reachable workspace
of the robot, such as the robot’s own body morphology and the
relative position of the floor. An object is labeled as reachable if
it is contained within a manifold encompassing all points that
the end effector can move through. Defining this manifold is
not achievable through simple polyhedral, however. Every place
the hand can go is considered a reachable location; therefore
all recorded locations of the hand are collected into a point
cloud that represents a sampling of the reachability manifold.
A Delaunay triangulation, a mesh of adjacent simplices, is
then constructed from this set of points, which creates a
convex approximation of the manifold. Additionally, like the
RBF network, the Delaunay triangulation algorithm supports
incremental update allowing it to be used in both offline and
online learning scenarios. The test for reachability of an object
becomes whether or not its location would fall within the
boundaries of any simplex in the mesh. When a goal object
is outside the range of reachability, the navigation system is
disinhibited allowing wheel commands to be generated to move
the robot toward the target as described in the next subsection.
As soon as the object is deemed to be within reachable range,
the navigation system is inhibited, preventing any further wheel
movements.

Limited grasping capabilities were also implemented. For the
purposes of this work, the actual grasping problem was reduced
from 3DOF to 1DOF by making all grasping targets vertically
aligned cylinders, e.g., soda cans. The wrist pose never had to
change as it was always aligned for vertical targets, and the
finger and thumbmotor actions were treated as one synchronous
motion to jointly open or close. The distance vector between the
location of the hand and the target object that was computed
during the reaching task was evaluated each cycle against a
minimum grasping threshold. Once the hand was determined to
be within this threshold for grasping the target, motor commands
were issued to both close the hand at a fixed velocity and cease any
new reaching-related joint velocities.

Motor Babbling

Motor babbling is an exploratory-based learning strategy for
sensorimotor control. Through repeated execution of the action-
perception cycle, an agent is able to build an internal model of
how its motor behavior corresponds to sensory observations.
The babbling aspect is that random actions are generated to
explore and discover the range of possible outcomes with
limited or no prior knowledge of what is actually possible. This
strategy has been successfully used in neural network-based
embodied learning for navigation (Zalama et al., 1995) and
reaching (Bullock et al., 1993) using endogenously generated
pseudorandom joint velocities. A drawback of those approaches,
however, is that there is no active exploration of the workspace.
Instead they passively rely on a large number of trials to fully
cover the space. Recent approaches have explored an active form
ofmotor babbling that either uses a confidencemetric in accuracy
to direct babbling to less confident regions (Saegusa et al., 2009)
or a curiosity-driven reinforcement learning method that seeks
out unexplored regions (Frank et al., 2014).

For this work, a semi-active approach was utilized.
Endogenous random joint or wheel velocities were generated
as in the passive case, but Sobol sequences (Sobol, 1976) were
used instead of uniformly distributed pseudorandom numbers.
A Sobol sequence is a set of quasi-random numbers designed to
evenly cover a space for given sequence length. This provides
a semi-active solution, as although it is still largely random,
it is guaranteed that the babbling phase will result in actions
that explore the entire workspace, thus reducing the number of
training iterations required.

Navigation

The Calliope, owing to the iRobot Create base, uses a differential
drive form of locomotion. Like with reaching, in order to
navigate toward a desired target, the robot needs to solve the
inverse kinematics problem of determining the wheel velocities
that will move it to the appropriate location. Typically solved
in allocentric, Cartesian space (Dudek and Jenkin, 2010), we
present an egocentric, polar space solution that produces smooth
trajectories.

Assuming constant wheel velocities (vR, vL) with no slippage
over a fixed time interval, the inverse kinematic model is initially
given as:

[

vR
vL

]

1t =

[

1 dw
2

1 −
dw
2

]

[

s
θR

]

(7)

where dw is the distance between the wheels and s is the desired
trajectory arc length with angle of rotation θR. Determining (s, θR)
is challenging when working in allocentric coordinates, where the
robot must have a sense of the target location and its own relative
to a fixed origin in the environment. This problem is avoided
when working in egocentric coordinates, where the robot views
everything in relationship to itself (Figure 6). The relationship
between egocentric coordinates in the horizontal plane (r, θ) and
the associated trajectory arc is:

FIGURE 6 | Differential-drive kinematic model. Based on the visually

determined relative location of the desired target (r, θ ), the robot generated

wheel velocities (vL, vR) to produce the trajectory arc that would reach the

target. The arc has length s and angle of rotation θR about point xc.
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s =
θr

sinθ
(8)

θR = 2θ (9)

By combing Equations (7–9) the egocentric inverse kinematics
model is obtained:

vR1t =

(

θr

sinθ
+ θdw

)

(10)

vL1t =

(

θr

sinθ
− θdw

)

(11)

In practice, however, the wheel velocities have maximum speeds
(vRmax, vLmax) that this model does not accommodate; simply
capping or scaling velocities that exceed these limits is insufficient
as the difference between vR and vL is central to the desired
trajectory movement and must be preserved. Let 1t = 1 s,
vRmax = vLmax= vmax, and:

δ =
vR − vL

2
= θdw (12)

then considering the imposed requirement of non-negative
velocities, the wheel velocities are given by:

vR = max

(

min

(

θr

sinθ
, vmax

)

− |δ| + δ, 0

)

(13)

vL = max

(

min

(

θr

sinθ
, vmax

)

− |δ| − δ, 0

)

(14)

In egocentric space, the relative position of the target is
continually changing while the robot is moving, so new velocities
are generated every cycle. As no distinction needs to be made
between stationary and moving targets as long as they can
be localized, this method can produce smooth trajectories for
both approaching a fixed location and pursuing a mobile
object.

Results

The hand-eye-body coordination tasks were evaluated in three
broad task areas: hand-eye coordination, egocentric navigation,
and grasping distant objects (Figure 7). These experiments were
conducted in both virtual and real world environments.

Hand-eye Coordination
The co-robot performed arm motor babbling to learn both the
relationship between proprioceptive inputs of joint positions to
the visual inputs of end-effector position and an approximation
of the reachability manifold of the arm. Random target joint
positions were generated over [−2.62, 2.62] radians per joint
with velocities chosen to require 10 cognitive cycles to reach
the new position. During this motor babbling phase, the co-
robot fixated on its hand, identified by either a magenta
circle (virtual) or red foam ball (real) attached to the end
effector. If the end effector was visually located during a
cognitive cycle, the arm joint positions and target location were
recorded.

After the motor babbling phase ended, an offline training
phase was conducted. Data outliers due to noise from the real
world cobot were identified and rejected by detecting target
positions with a nearest neighbor distance greater than 2.5 cm.
A Delaunay triangulation was constructed from this data to
approximate the reachability manifold.

A hyperplane RBF network was trained to learn the forward
proprioceptive map. First a grid search was conducted using
the collected data to determine the number of bases, Gaussian
width, and learning rate to use for the network—the Gaussian
centers were spread evenly across the joint input space of [−2.62,
2.62] radians per joint. Next, 10,000 distinct evenly spaced joint
configurations and associate hand positions were generated from
the rigid-body model of the arm (Equations 4–6) and used to
prime the network. Finally, the network was trained on the
collected data. To imitate online learning, data points were
presented sequentially and only once.

FIGURE 7 | Three robot behavioral experiments. The robot

performed a series of behavioral tasks to evaluate the feasibility of the

motor babbling approach. These tasks included repeatedly reaching to

a series of targets in space (left), navigating toward a target and

stopping within a set distance threshold (center), and grasping distant

objects (right).
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The network parameters chosen for both virtual and real
world cobot were three bases per input dimension for a total of
34 or 81 bases, σ = 1.57, and α = 0.025. The network trained from
within the virtual environment was able to reproduce the training
set target positions with R2 = 0.926 and RMSE= 0.051 while the
network trained on the real world Calliope achieved R2 = 0.942
and RMSE= 0.044.

The efficacy of the hand-eye coordination model acquired
through motor babbling was then compared to that of one based
on the rigid-body model. The virtual co-robot reached toward
four colored targets suspended in the space in front of it in a
predetermined order. The hand was deemed to have reached the
target if the difference between detected positions was within
(0.02, 0.034, 0.034) spherical units. Once reached, the co-robot
moved to the next target in the sequence, completing the entire
cycle three times. The position of the hand as determined by the
robot was recorded and plotted (Figure 8).

Egocentric Navigation
Motor babbling of the wheels allowed the robot to learn the
distance between its wheels. It fixated on a target initially
placed 1.5m directly in front of it, recorded the target’s position
provided from the visual system, then engaged each wheel at
a fixed velocity selected from a Sobol sequence over [−0.15,
0.15] m/s for approximately 1 s. After the trial time had
elapsed, the robot came to a halt, recorded the new relative
position of the target, and computed the wheel distance estimate
using:

dw =
1t

1θ
(vr − vl) (15)

It repeated this process using the reverse of the previously
selected velocities to return to its approximate starting position.
After several trials of forward and reverse pairs were conducted,
the median of the estimates was taken as the robot’s learned wheel
distance (Figure 9).

Using the learned wheel distance, the robot navigated toward
targets placed approximately 1m away and at −90◦, −45◦, 0◦,
45◦, and 90◦ angles. The robot stopped once it determined it was
within 20 cm of the target. Once the robot stopped moving, the
actual distance between the edge of the target and the center of
the robot was measured and recorded. The real and virtual robots
achieved mean stopping distances of 22.7 ± 0.748 cm (n = 15)
and 20.2± 0.458 cm (n = 5), respectively.

To demonstrate an example of human-robot interaction, the
robot also followed a person identified by a held target object.
The person started 1m directly in front of the robot, holding
the identifying object approximately 0.7m off the ground. The
person then walked in an 8m perimeter square pattern just
fast enough to prevent the robot from catching up. This was
replicated in the virtual environment by having the target object
hover above the ground and move on its own. During this task,
the position of the target was smoothed using an exponential
weighted moving average to mitigate sensor noise. Both the
virtual and real world robots maintained pursuit over traversal
of the pattern (Figure 10).

Grasping Distant Objects
The coordination of reaching and navigation was demonstrated
in a task where the Calliope had to pick up an operator-
directed target in the environment. The Calliope was placed in
an environment with two (real) or three (virtual) known objects

FIGURE 8 | Comparison of derived vs. learned models for hand-eye

coordination. The trajectory of the hand positions as determined by the

robot are shown during the execution of a reaching task cycling between four

visually located targets (black). Blue components of the trace indicate when

the hand was visually located, whereas green indicates when the

proprioceptive model was used. Arm joint velocities were determined using

Jacobian matrices either computed directly from the rigid-body model (left) or

approximated from the trained neural network (right).
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located at (1.5m, 0◦), (1.4m, −45◦), and (1m, 45◦) away, all
outside the immediate grasping range of its arm. It was then
activated and assigned one of the objects to find and pick up.
The robot had to coordinate head position, wheel velocities, and

FIGURE 9 | Learning body size through motor babbling. The Calliope

learned a dw of 0.336 ± 0.088m (n = 91), while the virtual robot learned a dw
of 0.326 ± 0.014m (n = 84). The dotted line at 0.272m represents the actual

distance between the wheels.

arm and hand joint velocities to complete the task successfully
(Figure 11). The virtual robot performed one trial for each target
and managed to grasp and lift each for 100% completion. The
real robot performed five trials for each target and successfully
completed the task 80%, 40%, and 60% of the time, respectively,
for an overall completion rate of 60%. In all cases where the
Calliope failed to complete the task, it was because it grazed the
target object with its hand, knocking it over. It still managed
to stop within reaching distance and move its hand to the
correct vicinity of the target. Videos of both virtual and real
robots performing the task can be found in the Supplementary
Materials.

Discussion

The CoCoRo Control System
One of the design choices with CoCoRo was to use a serial,
synchronous data flow model. This was chosen for its relative
simplicity of implementation and the ability to chain certain
cognitive processes together in a defined order for coordination
purposes. However, the penalty for using this architecture was
that the entire cognitive cycle was rate-limited by the slowest
component. This had no impact on the virtual environment
where simulation time had no bearing on real time, but it did
affect the real robot, where the object identification process
proved slowest due to the naïve implementation of color
matching applied to the relatively large input image. Many
other robot platforms, including Tekkotsu and MoBeE (Frank
et al., 2012), use threaded, finite state machine architectures,
which can achieve real-time performance and take advantage

FIGURE 10 | Autonomous pursuit task. The robot visually tracked and

pursued a target moving counterclockwise in a square pattern. The

self-determined distance between the robot and target (top) slowly

decreased as the robot got closer during the turns. Right wheel velocity

(center) was kept at maximum while left wheel velocity (bottom) modulated

during turns. The dips in both the right and left wheel velocities of the

Calliope (blue) following a corner turn are from the robot overshooting and

correcting itself.
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FIGURE 11 | Motor planning coordination while picking up a distant

object. In order from the top, these plots show the detected distance to the

target object followed by the generated wheel velocity, head position, and

limb joint commands, respectively for both real (solid) and virtual (dashed)

robots. First the robots scan the scene searching for the target. At 1.5 s, they

locate the target to the right and navigate toward it while maintaining gaze

fixation. Around the 5.5 s mark, the robots determine the object is reachable,

stop navigation, and ensure head position is stable before starting to reach

toward the target. Grasping is initiated around 8 s in and takes about 1.5 s to

complete before the obtained target is finally lifted off the ground.

of concurrent and distributed processing of information. This
avoids the rate-limiting problem of the serial architecture at
the cost of increased system complexity. However, with the
computational power inherent in modern laptops, like the one
mounted on the Calliope, CoCoRo’s simplistic structure did not
interfere with the ability of the robot to complete tasks effectively.
The Calliope operated at an average rate of 10Hz during task
execution, which was sufficiently fast enough to adjust motor
commands as needed for the tasks undertaken albeit with the
maximum wheel and joint velocities artificially reduced. Wheel
velocities were capped at 300mm/s and arm joint velocities were
capped at±1.5 rad/s. The simulation step time inWebots was set
at the default value of 32ms. As all sensor and motor component
control steps must be a multiple of this simulation step,
96ms was chosen to offer a comparable decision performance
rate.

An additional benefit of using the serialized data flow model
was the ability to easily capture and store the cognitive packet
to disk, the data structure that contained all the sensory inputs,
intermediate processing, and motor outputs from a given time
point. This process was used extensively for both debugging
purposes and offline analysis, such as providing the data for
several of the figures in this paper. A tool was also created
to reproduce robot point-of-view movies from these packets
(Figure 12), which proved invaluable for tracking down issues
with object detection and localization.

FIGURE 12 | Calliope lifting an object. This is a frame taken from a movie

(see Supplementary Materials) reconstructing the Calliope’s point of view

during a task to grasp and lift a green object initially located 1.5m away. The

movie is created from stored cognitive packets generated during the execution

of the task and includes all sensory inputs, motor commands, and identified

objects.

Virtual Environments
The use of simulations and virtual environments are key to
developing and evaluating robotic control systems. If the virtual
environment provides a good enough approximation of the
real environment, certain tasks can be bootstrapped in the
simulation first, such as building up the internal neural network
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weights for control tasks. These weights can then be transferred
directly to the physical co-robot which would then need a
shorter recalibration learning session than if it had started with
untrained networks. We used just such a method in training the
neural network responsible for reaching. Training it first using
an idealized set of inputs to outputs primed the network and
provided reasonable results for locations in the reaching space
that were not obtainable through motor babbling alone, i.e.,
where vision failed to detect the hand. The later data collected
from motor babbling was then able to retrain the network to be
more in line with the actual observed results instead of those
generated by the rigid-body approximation.

However, we also encountered several discrepancies when
moving between virtual and real sensors. The images from the
virtual Kinect were always crisply rendered, whereas the images
being pulled from the real Kinect were susceptible to noise. The
sources of noise included motion blur introduced by movement
from the body and head, and potential changes in luminance
due to automatic white balancing performed by the Kinect video
camera. The depth camera in the virtual environment, like the
virtual video camera, was generated from the OpenGL buffer
directly and did not suffer the effect of infrared shadows. These
shadows were areas visible in the video image but in which
no depth information could be obtained due to objects in the
foreground preventing the infrared signals from reaching them.
Despite these challenges in using video and depth image data in
the real environment, the Calliope was still able to perform at a
high level for the tasks explored, though additional checks had
to be added for cases in which objects were visible but no depth
information could be obtained.

Likewise, the behavior of servos varied between simulation
and reality. In the virtual environment, servos would move
smoothly in response to any requested velocity within defined
operational range and supported high precision positional
accuracy. The real servos, on the other hand, were limited by
having only 1024 addressable positions for a resolution of about
0.005 radians. This contributed to occasional jittery behavior
when attempting to hold joints in a particular pose due to
the effects of rounding. The real servos also did not support
specifying a velocity of zero to halt movement. Instead, we had
to rely on a combination of velocity and positional control to
achieve a fixed joint configuration. Finally, the skeleton of the
arm itself contained screws prone to loosening during continual
operation, resulting in slight changes to the position of the end
effector over time.

Hand-eye Coordination
Controlling redundant joint manipulators is an open challenge
in robotics, as closed-form analytic solutions to the inverse
kinematics problem may not exist. Feedback-based control
strategies have proven successful, but require reasonably accurate
sensors to provide the needed error signals. These can be difficult
to acquire for a non-planar limb outside of simulation or highly
controlled workspaces. As a requirement of co-robots is to
operate in largely uncontrolled environments, the control system
should not rely on external sensors and fixed workspaces. We
used a variant of the DIRECT model, a biologically inspired

neural network approach to feedback-based control of a limb.
Desirable features of DIRECT that make it useful for co-
robots are that it is egocentric, so all sensor information comes
from its own perspective, and it can adapt to changes in limb
configuration. However, DIRECT, like many other solutions, was
validated in simulation using perfect knowledge of end-effector
position and stick-model limbs. Other applications of DIRECT
have been reported (Vilaplana and Coronado, 2006; Grosse-
Wentrup and Contreras-Vidal, 2007; Bouganis and Shanahan,
2010), but these too were only performed in simulation with
perfect positional knowledge and lack of physical constraints
beyond joint rotation boundaries. Our implementation is the
first instance we are aware of that demonstrates the efficacy
of DIRECT using actual computer vision to determine end-
effector and target localization. Furthermore, this is also the
first demonstration of DIRECT embodied in a real-world robot
working in a 3D workspace.

Using visual inputs from a camera and working with a physical
robot presented its own set of challenges for DIRECT, computer
vision not with standing. DIRECT uses motor babbling to learn
the space of movements, so it must be able to observe the end-
effector in order to learn how it moves in a particular part of the
workspace. With a fixed camera vantage point, body components
obstructing views, and limitations of the camera sensor, the
Calliope had several blind spots. Our solution to this was to prime
the network before motor babbling commenced using the rigid-
body model of the arm to generate thousands of training points
evenly spaced across the entire hypothetical workspace. The
network was trained using a learning rate an order of magnitude
lower than that used during motor babbling so that real observed
data would take precedence.

For instance, the observed location of the robot’s hand in the
virtual environment displayed close similarity to that of the rigid-
body model for the portion of the workspace the arm was able
to reach during motor babbling (Figure 13). As can be seen, this
actually represented only a fraction of the theoretical range if the
arm was free of any obstacles. The use of an identifying color
marker on the top of the hand also produced a compressed range
of visible locations. If the configuration on the arm resulted in
the hand positioned upside down, for instance, it would not be
recognized.

The major difference between theoretical and detected
position came in the real world Calliope, where the detected
distance of the hand was almost 10 cm on average closer than
the model would predict. This can be attributed to two factors:
a greater offset from the location of the visual marker to
the end of the hand and the less precise distance estimation
from the actual Kinect’s depth camera vs. the simulated Kinect.
The observed range of motion for the real hand was even
more compressed than the virtual one, however, due to the
Kinect’s blindness within close proximity. Relying solely on either
observed data or theoretical model would have produced large
gaps or erroneous estimates, respectively. Using the theoretical
model for initially priming the RBF neural network then further
training with the motor babbling results provided a solution
that enabled the use of both approaches to complement each
other.
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FIGURE 13 | Detected hand position during motor babbling. Recorded

hand positions are shown in the xy- (left), xz- (center), and yz-planes (right). A

kinematic stick model (blue) computed hand positions using randomly

generated joint positions and the geometry of the arm, while both the

Webots virtual environment simulation (green) and Calliope (red) used visual

information to determine hand position during a motor babbling task.

For actually generating joint trajectories during a reach task,
the analytically determined Jacobian from the rigid-body model
produced similar behavior to that approximated by the trained
neural network in three of the four reaching segments. The rigid-
body model, based in Cartesian coordinates, produced straighter
trajectories between targets but had significant disagreement
between its visual and proprioceptive locations as exhibited
by the trajectory shifts when switching between the modalities
occurred. This most impacted the model during the downward
trajectory from target three to four, where it got stuck and
convulsed for several seconds before finally achieving a correct
configuration. This was due to the first target, placed just above
and in front of the fourth, occluding the marker on the hand
toward the end of the trajectory resulting in the model flipping
between visual and proprioceptive locations. The disagreement
between the two was large enough that, when using visual input,
the handwas perceived where it actually was, above the target, but
when using proprioception, the hand was perceived to be below
the target. This conflict produced the observed spasms. While all
targets were eventually reached here, in a separate instance the
arm became locked into a never-ending cycle of jittering up and
down and the trial had to be terminated. The neural network
model, by contrast, was based in spherical coordinates, produced
slightly arced trajectories, and had much greater agreement
between proprioception and vision. It experienced no difficulties
in any of the reaching segments. Even when losing sight of the
hand, there was enough agreement in the two modalities to allow
for consistent smooth behavior during the trials.

Egocentric Navigation
In determining wheel distance, the real and virtual robots
produced very similar final estimates, with the main difference
being the noisiness of the Calliope’s samples. Both robots were
over the actual distance by 6 and 5 cm, respectively. This
error could be related to the relative distances between wheels,
camera, and reference target, as extending the wheel distance
out further in the virtual environment produced very accurate
estimates. This error did not appear to have an impact on
the actual navigation tasks, as both the stationary and pursuit
tasks produced comparable results. In the stationary task, the

difference in average stopping distance was only 2.5 cm, while
in the pursuit task, the Calliope performed well despite slightly
overshooting the turns then having to correct.

This method for egocentric navigation employs an aiming
strategy (Franz and Mallot, 2000) for local navigation, where the
goal of path planning is to keep a desired target position directly
in front of the robot while moving toward it. Other aiming
approaches include Concentric Spatial Maps (CSM) (Chao and
Dyer, 1999), which uses a neural network to store goal positions
and obstacles in discrete locations arranged in concentric circles
around the agent. A similar, though non-neural, approach to
CSM is used to produce multi-agent pedestrian navigation
through crowds (Kapadia et al., 2012). Both of these methods
account for obstacles whereas we assumed a clear path. CSM,
however, requires the environment map be loaded a priori, while
the pedestrian model does not use sensory information from the
agents themselves and instead determines them from the global
simulation state.

An alternative and complementary strategy to aiming is
guidance (Franz and Mallot, 2000), where the relative positions
of environmental cues are used to determine desired trajectories.
Examples of guidance-based approaches include ENav and
variants (Altun and Koku, 2005; Fleming, 2005). They are based
on the sensory egosphere (SES) (Albus, 1991), a 2D spherical
projection of incoming sensory data to a spatial representation of
the agent’s environment, where the goal is to match the angular
displacements of visually identified landmarks in the current
SES with those provided in the desired SES. ENav is the only
other method we are aware of to have reported implementation
attempts outside of simulation (Fleming, 2005), though with
limited results.

These navigation methods provide path planning abstracted
from a specific kinematic model of locomotion. While ostensibly
more general, they may produce trajectories that are not possible
by an actual mobile robot, so an appreciation for the inverse
kinematics of locomotion for target robot platforms is critical to
produce a model that can work in real environments.

For differential-drive navigation, the inverse kinematics
problem can be solved by breaking down the desired trajectories
into pairs of distinct motions: first rotate in place to face the
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target, then drive straight forward toward it (Dudek and Jenkin,
2010). This, however, produces jerky motion, requiring the robot
to stop forward progress every time it needs to rotate. For a clear
path in an ideal environment, the expectation would be only one
rotation and one direct forward trajectory. However, in a real
world environment, wheel slippage, dynamic target location, and
perturbations in the floor can result in deviations from the ideal
trajectory, requiring compensatory corrections, each resulting in
the robot having to stop, rotate, and begin forward again. This
would be especially inefficient in the egocentric model, where
the relative positions of objects are always changing as the robot
moves.

Similar arc-based solutions to the one above have been
proposed in both Cartesian (Bethencourt et al., 2011) and polar
(Maulana et al., 2014) forms, though the former relies upon
accurate accumulation of encoder data to reconstruct allocentric
position while the latter is geared toward following a fixed
track. Instead of learning just the body size as demonstrated
here, the NETMORC model (Zalama et al., 1995) attempts to
learn the inverse kinematic solution itself through a neural
network trained via a similar motor babbling phase. However,
only simulated results with perfect positional information used
in training the network were reported.

This is the first work we are aware of that combines the use of
egocentric navigation with a specific model of inverse kinematics.
Not only does this approach succeed with a high accuracy in
simulation, it works very well in a real world robot despite the
increased noise from and limitations of actual hardware and
environments.

Grasping Distant Objects
The task of grasping and lifting distant objects combines the
previously described subtasks into a unified whole, requiring
an additional layer of coordination on top of the individual
motor plans. The motor planning coordination strategy used
in this work was to take a largely lock-step approach, where
the individual subtasks were disinhibited only when their
role was called upon. The only exception to this was head
movement, which operated in parallel to the progression of
navigation, reaching, grasping, and lifting. This coordination
was implemented by having each cognitive process in the chain
alter or check the working memory system and inhibiting or
disinhibiting itself based on its state.

Two main factors can be attributed to the cases where the
real robot failed to complete the grasping task by knocking the
target over. First is the simplistic object identification method,
which is highly susceptible to noise and treats objects as points.
This results in generally poor performance when precision
adjustments were needed, which were typically required due to
the second factor, the segregated process of only reaching once
navigation stopped. In this arrangement, the arm is held out
and to the side until the reaching subtask begins. It makes a
downward arcing trajectory to reach the target, which can result
in the hand clipping the side of the object if the robot is even a
centimeter too close. If the hand began its reach earlier while the
robot was still driving forward, the hand could be brought into
position before there was a risk of inadvertent contact.

Other approaches to visually guided mobile manipulators
employ more fluid motor control and coordination (Andaluz
et al., 2012a,b; Kazemi et al., 2012). Related to the co-robot goal of
working in unstructured environments, (Xie et al., 2014) presents
a model for visual-guided control for grasping household items.
All of these systems use a camera mounted on the end-effector
instead of elsewhere on the body. These eye-in-hand visual
servoing systems can achieve greater grasping and manipulation
accuracy at the expense of having to manage a potentially highly
articulated neck, i.e., the arm itself, when not engaged in an
actual reach action. They also lack the flexibility of the alternate
hand-to-eye approach used by the Calliope.

The simplistic method for visual object detection worked
well enough for both reaching and navigation in the virtual
environment where color detection is much easier. It was less
effective in the real world as it was highly susceptible to noise.
For navigation, which operated in 2D, this proved less of an
issue, but it did impact the success of reaching and grasping,
which required accurate 3D locations. The grasping method used
was also the simplest available. Real world use would require
more intelligent grasping algorithms for shaping the hand to
accommodate a variety of object shapes. As CoCoRo supports
drop in replacement of components, upgrading to more robust
computer vision and grasping processes would be possible.

The egocentric model worked well for traversing the
immediate vicinity of the robot assuming a clear path to the target
destination. If any obstacles were in its path that did not occlude
the target object, however, the robot would attempt to drive
through them. Likewise, if the robot failed to detect the desired
target in its sensory field, it would either have to revert to an
allocentric representation to derive new egocentric coordinates
from memory or engage in some form of directed search.

Conclusion

We presented a control system with an eye toward co-robots that
used motor babbling to enable a robot to learn about aspects of
its own configuration in regards to hand-eye-body coordination.
This system was built on a software platform designed to enable
modular evaluation of the learning, sensory processing, and
decision-making motor components across both virtual and
physical versions of the Calliope robot. The capabilities embodied
in the robot enabled it to autonomously follow a person around a
room and retrieve distant objects specified by a remote operator.
In order to achieve this we demonstrated a variant of the
DIRECT neural model for reaching in a hardware robot and
complemented it with novel methods for determining if the
intended reach target is actually within the robot’s grasp and
a means for egocentric-based navigation to drive it toward the
target if it isn’t.

There is still significant work to be done in order to extend
this initial system to more practical real-world co-robot use.
Adapting to cluttered and dynamic environments would require
a much more robust and powerful form of visual object detection
and identification that the simplistic model currently used. The
navigational system would also be extended to handle obstacle
avoidance and combine allocentric and egocentric path planning
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strategies. Smooth concurrent motor control coordination would
also be a desirable improvement over the current lock-step
approach.
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