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Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx
of chloride into the neuron, the reversed chloride driving force in the immature nervous
system results in a depolarizing efflux of chloride.This GABAergic depolarization is deemed
to be important for the maturation of the neuronal network.The concept of a developmental
GABA switch has mainly been derived from in vitro experiments and reliable in vivo evi-
dence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate,
the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas
chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably
mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is
quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also
depend on different bicarbonate transporters expressed by neurons. The expression of
these proteins is not only developmentally regulated but also differs between cell types
and even subcellular regions. In this review we will summarize current knowledge about
the role of some of these transporters for brain development and brain function.
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INTRODUCTION
GABA signaling has a wide spectrum of functions in individual
neurons and neuronal networks in the brain. It is well known
that in the mature brain, GABA acts as the main inhibitory
transmitter due to activation of hyperpolarizing chloride cur-
rents through GABAA receptors (Farrant and Kaila, 2007). In
contrast, during early brain development, GABAergic transmis-
sion is assumed to provide the main excitatory drive in neuronal
networks, at a time when glutamatergic synaptic contacts are
less frequent than GABAergic synapses (Ben-Ari et al., 1989).
Although this functional switch from excitatory to inhibitory
GABA action during brain development has been observed in a
wide range of preparations and different animal species, most
of the experimental evidence relies on in vitro studies (compre-
hensively reviewed by Ben-Ari et al., 2007). They were performed
using several electrophysiological means like intracellular record-
ings (Mueller et al., 1984; Luhmann and Prince, 1991) and less
invasive techniques including perforated patch (Owens et al., 1996;
Yamada et al., 2004) and cell-attached measurements (Wang et al.,
2003; Rheims et al., 2008; Kirmse et al., 2010). Consistently, sev-
eral groups reported intracellular calcium increases in immature
neurons upon GABA application, most likely due to depolar-
ization mediated activation of voltage-gated calcium channels
(Yuste and Katz, 1991; Owens et al., 1996; Yamada et al., 2004;
Kirmse and Kirischuk, 2006; Kirmse et al., 2010). However, in vivo
evidence for depolarizing GABA action in immature neuronal net-
works is rare (Brustein et al., 2003) and often indirect (Sipila et al.,
2006). Metabotropic GABAB-receptors are coupled to calcium or

potassium channels, and cyclic AMP signaling. Although there is
quite recent evidence that the non-hyperpolarizing activation of
GABAB-receptors during development promotes neuronal migra-
tion and morphological maturation (Bony et al., 2013), this review
will focus on GABAA-receptor signaling and how this relates to
anion-transport.

The functional relevance of GABAA-receptor activation for
activity patterns in immature neuronal networks has been inves-
tigated in different model systems in vitro and in vivo. In the
immature hippocampus, it is widely accepted that GABAergic
excitation drives the typical spontaneous network activity known
as giant depolarization potentials or GDPs (Ben-Ari et al., 1989;
Bonifazi et al., 2009). On the other hand in neocortex, gluta-
matergic excitation was shown to be dominating in the early
generation of network activity like early network oscillations or
ENOs (Garaschuk et al., 2000) and spindle-bursts (Minlebaev
et al., 2007). However, more recent results suggest that GABAA

receptor activation also supports the generation of early neocorti-
cal network activity (Allene et al., 2008). It is worth noting that
depolarizing GABAA-receptor activation not necessarily needs
to be excitatory (Morita et al., 2005, 2006). The GABA-induced
increase in membrane conductance can also cause a so-called
shunting inhibition, because according to Ohm’s law, the drop
in membrane resistance would decrease the voltage change caused
by a certain depolarizing current (e.g., a glutamatergic synaptic
input). The inhibitory effect of shunting does not depend on
the polarity of a GABA-induced membrane potential change and
therefore on the chloride and bicarbonate reversal potentials, but
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is solely due to the GABA-induced drop in input resistance. Never-
theless, the paradoxical situation could happen that a depolarizing
GABAA-receptor activation leads to an inhibitory restriction of
network activity (Minlebaev et al., 2007).

Although many initial steps in early neuronal network develop-
ment are genetically determined, there is a large body of evidence,
that the proper functional maturation of cortical neuronal circuits
is highly activity-dependent (Katz and Shatz, 1996). However, to
what extent the spontaneously occurring network activity, partly
driven by GABAA-receptor activation, contributes to the func-
tional maturation in the pre-sensory period of the brain is still
unclear. Undoubtedly, a fine tuned balance between excitation
and inhibition at any stage of development is essential for pro-
viding a proper function of neuronal networks. In this context,
the potentially depolarizing mode of GABAA-receptor activation
during early development has been considered to contribute to
the higher liability to pathological events like epileptic seizures
during childhood (see Kirmse et al., 2011 for review). Later in
development, the increasing GABAergic inhibition governs the
on- and offset of the so-called critical period in the visual system,
which is crucial for the activity-dependent functional refinement
of the participating cortical circuits (Hensch et al., 1998; Fagiolini
and Hensch, 2000). Therefore, GABAA-receptor activation plays
a pivotal role at various developmental stages for the maturation,
refinement and proper function of neuronal networks.

The ionotropic GABAA receptors are pentamers of 19 different
subunits, which are grouped into eight different families according
to sequence homology (α1–6, β1–3, γ1–3, δ, ε, θ, π, ρ1–3; Far-
rant and Kaila, 2007). Although the different receptor assemblies
have different properties and different distributions, only chloride
and bicarbonate are conducted under physiological conditions
(Bormann et al., 1987). It is assumed that the relative bicarbon-
ate/chloride permeability of ionotropic GABAA receptors ranges
between 0.18 and 0.6 (Fatima-Shad and Barry, 1993). Because of a
variety of different ion transporters within the plasma membrane,
which mediate acid extrusion either by extrusion of H+ or by
accumulation of bicarbonate, the bicarbonate equilibrium poten-
tial is much more depolarized (around −10 mV) than the resting
membrane potential (Roos and Boron, 1981). Hence bicarbonate
can only mediate a depolarizing current under normal conditions.
Quite in contrast, the equilibrium potential for chloride is close
to the resting membrane potential. Hence chloride can mediate
both hyperpolarizing and depolarizing currents depending on the
existing gradient, which is regulated during development. How-
ever, a depolarizing action of GABA does not exclude an inhibitory
action but may result in shunting inhibition as outlined above.

ELECTROPHYSIOLOGICAL METHODS TO QUANTIFY GABA FUNCTION
Before fluorescent indicators have been available, ion-selective
micro-electrodes were the gold standard for the measurement of
chloride activity and pH in the intracellular compartment (Walker,
1971; Thomas, 1974; Ammann et al., 1981). Because of the invasive
nature of this method – the cellular membrane needs to be impaled
by a double-barreled sharp micro-electrode – it was impossible to
determine the ion activity of interest quantitatively without chang-
ing it at the same time due to the measurement. Leakage currents at
the site of impalement and intracellular perfusion by the solution

of the reference channel are only two possible sources of measure-
ment errors. Nevertheless, this method provided first important
insights into the ionic mechanisms of pH regulation or chloride
homoeostasis (Thomas, 1977; Vaughan-Jones, 1979).

In order to keep the ionic composition of the intracellular com-
partment unchanged, most other electrophysiological means are
based on cell-attached patch clamp recordings. In the follow-
ing, we describe several methods which have been developed to
determine membrane potentials and membrane currents with-
out disrupting the plasma membrane. To provide electrical access
to the intracellular compartment without interference with the
intracellular milieu, a technique called perforated patch clamp
was developed, originally using ATP in the pipette solution as a
membrane permeabilizing agent (Lindau and Fernandez, 1986).
In subsequent modifications of this method, different ionophores
were added to the pipette solution, which, during the experi-
ment, incorporate into the membrane patch under the pipette tip.
Ionophores are lipid-soluble molecules which form hydrophilic
pores in the cell membrane and mediate electrical access to the
intracellular compartment without destroying the barrier func-
tion of the membrane patch for the ion of interest. In early studies,
nystatin and amphotericin B were used to achieve low resistance
electrical access (Horn and Marty, 1988; Rae et al., 1991). How-
ever, as a major drawback these substances also lead to chloride
redistribution. Subsequently, gramicidin D, a mixture of different
antibiotics, was added because it is only permeable for monovalent
cations and uncharged low molecular substances but impermeable
for chloride, leaving its concentration gradient over the cell mem-
brane intact (Ebihara et al., 1995; Kyrozis and Reichling, 1995).
However, indirect changes in intracellular chloride concentration
are conceivable because it is mainly regulated by cation/chloride
co-transporters. Several groups have applied this method suc-
cessfully to determine e.g., the chloride equilibrium potential in
hippocampal cells during brain development (Mohajerani and
Cherubini, 2005; Sipila et al., 2006; Tyzio et al., 2007; Pfeffer et al.,
2009).

As mentioned previously, the chloride concentration gradient
is not the only determinant governing GABA-induced membrane
potential changes, because GABAA-receptor channels are also per-
meable for other anions like bicarbonate. In order to quantify the
GABA-reversal potential directly, Tyzio et al. (2003, 2006) devel-
oped a non-invasive method to measure the resting membrane
potential and the GABA reversal potential at the same cell, using
single N-methyl-D-aspartate and GABA channel recordings. The
combination of both experimental approaches at the same cells
provides the driving force for GABA-induced currents and the
resting membrane potential in absolute numbers and, thereby,
the GABA equilibrium potential. Although this is up to now the
most reliable method to quantify these parameters, it is hardly
applicable to complex preparations like in vivo recordings. If
only the non-invasive quantification of the membrane potential
change due to GABA-receptor activation is of interest, an alterna-
tive method described by Verheugen et al. (1999) can be applied
(Kirmse et al., 2010). Assuming symmetrical potassium concen-
trations, this method uses the fact, that the reversal potential of
voltage-dependent potassium currents in the cell-attached config-
uration represents a good estimate of the cell membrane potential
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(Verheugen et al., 1999). However, potential changes in intracel-
lular potassium concentration would flaw the correct membrane
potential quantification. Because a voltage-ramp protocol has to be
applied for every time point of interest, the time resolution of this
method is rather slow and phasic membrane potential changes are
difficult to catch. In these cases, applying a current-clamp record-
ing protocol in the cell-attached configuration might be beneficial,
because it can provide a good estimate of the polarity of an induced
membrane potential change at high time resolution (Perkins and
Wong, 1996; Mason et al., 2005).

In summary, various non-invasive electrophysiological meth-
ods provide valuable estimates of GABA equilibrium potentials
under different conditions in vitro and in vivo and enable the mea-
surement of relative or absolute cell membrane potential changes
without disturbing the intracellular milieu. In concert with com-
plementary optical methods for quantification of intracellular
chloride concentration and pH, they draw a detailed image of
GABA-mediated physiological processes.

OPTICAL METHODS TO QUANTIFY GABA FUNCTION
A big step forward was the development of fluorescent indica-
tor dyes which enabled the optical measurement of intracellular
pH and chloride concentrations (Rink et al., 1982; Illsley and
Verkman, 1987). The initially used small molecular fluorescent
chloride indicator dyes were quinoline derivatives which change
their fluorescent intensity upon changes in chloride concentration
by a mechanism called collision quenching (Chen et al., 1988).
With increasing chloride concentration the probability of a colli-
sion between a chloride ion and an indicator molecule increases
and therefore, its fluorescence intensity decreases by quenching.
A notably feature of this mechanism is, that different from the
popular calcium indicator dyes, which change their fluorescence
intensity upon binding to calcium, these chloride indicator dyes
do not introduce any exogenous buffer capacity to the intra-
cellular milieu, because no binding to the ion of interest takes
place. Nevertheless, their excitation spectra in the ultraviolet
range give rise to strong bleaching and photodynamic damage
(Inglefield and Schwartz-Bloom, 1997). However, the combina-
tion of these dyes with two-photon imaging is able to reduce both
side effects significantly (Marandi et al., 2002). Several years ear-
lier, the measurement of intracellular pH has been revolutionized
by the invention of BCECF, a fluorescence indicator derived from
fluorescein, by Roger Tsien and coworkers (Rink et al., 1982). The
absorption spectrum of BCECF is shifted depending on changes
in pH and by applying ratiometric excitation the indicator can be
calibrated to absolute pH units (Graber et al., 1986; Bright et al.,
1987).

The unspecific loading of the exogenously applied fluorescent
indicator dyes prevents a cell-specific labeling. Therefore, much
effort was invested to develop genetically determined chloride
indicator dyes (see Bregestovski et al., 2009 for review). Starting
point of this development was the chloride binding property of
the yellow fluorescent protein (YFP) a derivative of the green
fluorescent protein (GFP). Because the sensitivity of wild-type
YFP to chloride is low, many random chloride binding site
mutations of YFP were tested and analyzed for improved sensi-
tivity (Galietta et al., 2001). Besides the possibility of cell-specific

expression of the chloride indicator, YFP-based indicator dyes
have additional advantages. Different from quinolone-derived
dyes, the optimal excitation wavelength is located in the visi-
ble range, providing less bleaching and photodynamic damage
during the experiments. In addition, leakage during the measure-
ments is less pronounced due to their relative large molecular
weight of about 27 kDa (Bregestovski et al., 2009). Finally and
different from calcium measurements, intracellular indicator con-
centrations are orders of magnitude smaller than that of the ion
of interest, therefore exogenous buffering of chloride is negli-
gible. On the other hand, there are also some disadvantages of
YFP-based indicator dyes. Keeping in mind that changes in intra-
cellular chloride concentration are often accompanied by changes
in pH, the significant pH-sensitivity of many YFP derivatives is
the most serious one. The only way to circumvent this restriction
is the independent monitoring of pH changes and subsequent
data correction. Another problem of YFP-based chloride indica-
tor dyes are their rather slow kinetics or poor sensitivity, which
either limits the detection of fast chloride concentration changes
or leads to poor resolution at physiological chloride levels (Galietta
et al., 2001). Originally, YFP-based indicator dyes were not able
to report absolute levels of chloride concentration, because they
lack an isosbestic point, at which they are insensitive to chlo-
ride concentration changes. Because the absolute measurement
of intracellular chloride concentrations is imperative to deter-
mine the chloride equilibrium potential or the driving force for
chloride, Kuner and Augustine (2000) developed a ratiomet-
ric chloride indicator named Clomeleon. Clomeleon uses the
chloride-dependent interaction of two fluorophores (cyan fluo-
rescent protein (CFP) as donor and a variant of YFP called topas
fluorescent protein (TFP) as acceptor) by Förster energy transfer
(FRET). Upon chloride binding to TFP, the efficiency of FRET
between CFP and TFP declines. As a consequence, the ratio of
TFP and CFP fluorescence emission drops with increasing chlo-
ride concentrations. Because the emission spectrum comprises an
isosbestic point, calibration to absolute chloride levels is possi-
ble (Kuner and Augustine, 2000). Unfortunately, the sensitivity
of Clomeleon with an IC50 of more than 160 mM is rather
low and, at physiological levels, makes reliable measurements of
absolute intracellular chloride concentration very difficult (Kuner
and Augustine, 2000). Following genetic engineering of the YFP
chloride binding site yielded a higher sensitivity of the result-
ing indicator called Cl-sensor with an IC50 around 30 mM,
much closer to physiological intracellular chloride concentrations
(Markova et al., 2008). However, Clomeleon and Cl-sensor have
slow response kinetics and share the pH sensitivity of all YFP-based
chloride indicators (Bregestovski et al., 2009).

To overcome the main drawbacks of Clomeleon and Cl-sensor,
a new ratiometric but non-FRET-based sensor was developed
(Arosio et al., 2010). This new indicator, called ClopHensor, is
suitable for the simultaneous quantification of intracellular pH
and chloride concentration. Therefore, a variant of enhanced GFP
(E2GFP) with pH sensitivity and sensitivity to chloride compa-
rable to Cl-sensor was fused with a pH- and chloride-insensitive
monomeric DsRed. The E2GFP part of the fused protein allows
chloride-independent ratiometric quantification of pH by exciting
it subsequently at 458 and 488 nm. The ratiometric measurement
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of chloride concentration by alternative exciting E2GFP at 458 nm
and the chloride-insensitive DsRed at 543 nm requires in addition
the calibration at different pH values. However a simultaneous
quantification of intracellular pH is now possible, ClopHensor still
suffers from rather low sensitivity to chloride with an IC50 around
40 mM (Arosio et al., 2010; Mukhtarov et al., 2013). A more recent
variant of ClopHensor exhibits a higher sensitivity with an IC50

of 20 mM, but at the expense of a significant lower dynamic range
(Mukhtarov et al., 2013). In summary, the development of the
ratiometric indicator ClopHensor provides a most valuable means
for the simultaneous quantification of pH and chloride concentra-
tion, but variants with higher sensitivity to chloride are desired to
increase the quantification accuracy at physiological concentration
levels.

ION TRANSPORTERS INVOLVED IN THE REGULATION OF
NEURONAL CHLORIDE AND BICARBONATE LEVELS
The role of cation-chloride co-transporters (Figure 1) in the
regulation of the intraneuronal chloride concentration has been
extensively studied and follows a well-defined developmental
sequence with a high chloride concentration in immature neurons
due to neuronal chloride accumulation. Chloride accumulation
largely depends on the action of the Na+/K+/2Cl− co-transporter
NKCC1 (Yamada et al., 2004; Sipila et al., 2006; Achilles et al., 2007;
Blaesse et al., 2009; Pfeffer et al., 2009). But other mechanisms
to accumulate chloride exist and maintain GABA depolarizing
even in the absence of NKCC1 (Pfeffer et al., 2009). One candi-
date is the anion-exchanger AE3, which normally accumulates
chloride in exchange for intracellular bicarbonate and thereby
raises intracellular chloride levels. The so-called GABA switch
from excitatory to inhibitory is brought about by the incipient
expression of the cation-chloride co-transporter KCC2 (Rivera
et al., 1999; Hübner et al., 2001; Stein et al., 2004), which extrudes
chloride out of the cell. From our knockout studies other KCl
co-transporters like KCC1 (Rust et al., 2007), KCC3 (Boettger
et al., 2003; Seja et al., 2012), or KCC4 (Boettger et al., 2002)
appear to be less important in the control of neuronal chloride
levels.

Several transporters either exchange bicarbonate and chloride
or couple the transport of bicarbonate to sodium (Figure 1). For

bicarbonate transporters that also transport chloride, the net effect
for GABAA receptor signaling is difficult to predict. It is evident
that changes of bicarbonate levels do not only directly affect the
currents mediated by GABAA receptors, but are also tightly linked
to alterations of the pH both within the cells and in the extra-
cellular space, which can have a multitude of different effects.
In neurons with a high intracellular chloride concentration as in
the immature nervous system, however, the effect of bicarbon-
ate on the GABAA reversal potential is quite low according to the
Goldman equation (Farrant and Kaila, 2007).

ANION EXCHANGERS
Whereas there are numerous reviews addressing the role of cation-
chloride co-transporters for GABA transmission (Blaesse et al.,
2009), the role of bicarbonate and hence the role of neuronal
mechanisms to control intracellular bicarbonate levels are less
acknowledged. Bicarbonate transport is mediated by members
of the SLC4A or the SLC26A family of proteins. As members
of the SLC26A family appear to play a minor role for neu-
rons (Dorwart et al., 2008; Majumdar and Bevensee, 2010), we
restrict our review to some selected members of the SLC4A fam-
ily with known relevance for neuronal function and refer to
some other more complete reviews (Romero et al., 2004; Dor-
wart et al., 2008; Majumdar and Bevensee, 2010). The SLC4 family
can be subdivided into four main branches: the sodium indepen-
dent anion-exchangers (AE1, AE2, and AE3) recently reviewed
in Alper (2009), and sodium-coupled bicarbonate transporters
recently reviewed in Majumdar and Bevensee (2010; Figure 2).
The role of AE4 is still unclear: although originally cloned as
a sodium-independent anion-exchanger, there is evidence that
it rather serves as a Na+/HCO3

− co-transporter (Parker et al.,
2002). It localizes highly specific to the basolateral membrane
of mouse type B intercalated cells and is involved in chloride
recovery by these cells (Chambrey et al., 2013). Na+/HCO3

− co-
transporters can be either electroneutral (NBCn1 and NBCn2) or
electrogenic (NBCe1 and NBCe2), whereas the sodium-dependent
anion-exchangers (NDAE or NDCBE and NCBE) are electroneu-
tral. SLC4A11 differs from the other family members because
it rather mediates borate transport and is hence termed as
BTR1 (Park et al., 2004). In the following we will focus on

FIGURE 1 | Ion transporters involved in the regulation of neuronal

chloride and bicarbonate levels. GABA receptors are permeable for both
chloride and bicarbonate. Several anion transporters are expressed in
neurons and may thus also affect GABA signaling. Whereas NKCC1 is the
main chloride accumulating transporter in most neurons, KCC2 is the most
important chloride extruder. Anion-transporters of the SLC4A family of

bicarbonate transporters can be sub-classified in Na+ dependent (NDCBE,
NCBE) and Na+ independent anion exchangers (AE1,2,3). According to the
stoichiometry Na+-coupled bicarbonate co-transports can be either
electroneutral (NBCn) or electrogenic (NBCe). Although carbonic anhydrases
cannot change the existing bicarbonate gradients, they promote anion-
transport by members of the SlC4A family and replenish bicarbonate levels.
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FIGURE 2 | Overview of the SLC4A family of bicarbonate transporter: expression, loss of function phenotypes, and transport characteristics.

AE3, NCBE, and NDCBE which are strongly expressed in the
brain.

AE3
In nervous tissue, the AE3 transporter has been localized to
neurons (Kopito et al., 1989; Raley-Susman et al., 1993), and to
Muller cells and horizontal neurons within the retina (Kobayashi
et al., 1994). In many neurons, anion-exchange is thought to be
mainly mediated by AE3 (Kopito et al., 1989; Hentschke et al.,
2006; Romero et al., 2013). In contrast, AE1 plays an important
role for bicarbonate recovery of intercalated cells in the kidney
and for red blood cells, where it is one of the most abundant
proteins of the plasma membrane (band3). Accordingly, muta-
tions in AE1 can cause renal tubular acidosis and/or hemolytic
anemia (Alper, 2009). AE2 is the most widely expressed anion-
exchanger, which localizes to the basolateral side in most epithelial
cells (Romero et al., 2013). Like AE1 it appears to play a minor
role for the control of the neuronal pH. The SLC4A3 gene encod-
ing AE3 employs two different promoters to generate the brain
and the cardiac variant, the latter having a shorter amino-terminal
amino acid sequence. Because of its broad neuronal expression,
the brain variant of AE3 is also often referred to as the neuronal
anion-exchanger. Transcripts were already detected at early devel-
opmental stages of murine brain development starting around E11
(Hentschke et al., 2006). Because of its early expression and its pre-
dicted role to raise the intracellular chloride concentration above
the electrochemical equilibrium, AE3 may also contribute to early

GABAergic excitation. In particular, it has been hypothesized that
AE3 is responsible for chloride accumulation in lateral superior
olivary neurons at P0–P3 (Becker et al., 2003). During this time
window, these neurons express AE3 but not NKCC1 and depolar-
ize in response to glycine (Balakrishnan et al., 2003). Surprisingly,
however, anion-exchange was nearly absent from cultured fetal
neurons, although AE3 mRNA was found in both fetal and adult
hippocampal neurons (Raley-Susman et al., 1993).

Interestingly, AE3 expression levels in cultured hippocampal
neurons from rat increased during long-term exposure to ammo-
nia and caused an ammonia induced increase of the intracellular
chloride concentration (Irie et al., 1998), thus supporting a role
of AE3 for the regulation of the intraneuronal chloride concen-
tration. At the protein level, a clear band corresponding to AE3,
which was absent from knockout tissues, was detected in murine
P1 brain lysates with increasing signal intensities at P5 and P15
(Pfeffer et al., 2009). Unfortunately, the subcellular localization of
AE3 in the brain is still unclear, because no antibody has been
reported that reliably detects endogenous AE3 in brain sections.
The GABA reversal potential and GABA-evoked Ca2+ responses
of CA1 neurons of AE3 knockout mice did not differ between AE3
knockout and WT mice at P1 (Pfeffer et al., 2009), suggesting that
in this type of neuron at this time point chloride accumulation by
AE3 may be marginal compared to NKCC1. Nevertheless, this may
change with increasing expression levels of AE3 during brain mat-
uration. Supporting that AE3 modulates GABAergic transmission,
similar to NKCC1 knockout mice GDPs, which largely depend on
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a depolarizing action of GABA (Leinekugel et al., 1997; Ben-Ari
et al., 2007), were reduced in terms of frequency and ampli-
tudes at postnatal day 5 in AE3 knockout mice (Figure 3; Pfeffer
et al., 2009), but these changes may also be related to changes
in neuronal pH homeostasis. Although the intraneuronal pH at
steady-state conditions in principal neurons of the adult mouse
hippocampus did not differ between genotypes, the recovery from
an alkaline load was drastically reduced in neurons devoid of AE3
(Hentschke et al., 2006). Hence, the role of AE3 for chloride accu-
mulation in hippocampal neurons should be re-addressed at later
developmental stages and in different types of neurons. Indeed,
in spinal cord motoneurons chloride accumulation was in part
bicarbonate-dependent and sensitive to anion-exchange blockers
(Gonzalez-Islas et al., 2009). These findings are in accordance with
a previous report on GABA currents in embryonic motoneurons,
which were dampened by bumetanide and removal of extracel-
lular bicarbonate (Kulik et al., 2000). It has been estimated that
NKCC1 is responsible for approximately two-thirds of the steady-
state chloride accumulation, whereas AE3 for the remaining third
(Gonzalez-Islas et al., 2009). NKCC1 and AE3 may thus have dis-
tinct functions in the recovery of chloride levels following chloride
depletion in embryonic motoneurons.

Overall, no obvious behavioral or morphological alterations of
the brain of AE3 knockout mice have been reported (Hentschke
et al., 2006; Alvarez et al., 2007). Notably, the seizure threshold in
response to various proconvulsive agents was significantly reduced
upon disruption of AE3 (Hentschke et al., 2006). This observation

supports a previous report that a susceptibility locus for com-
mon idiopathic generalized epilepsy maps to chromosomal region
2q36 (Sander et al., 2002), which also includes SLC4A3. Indeed,
in a subsequent study a common polymorphism within the cod-
ing sequence of SLC4A3, which entails the amino acid exchange
Ala867Asp, was associated with an increased risk to develop idio-
pathic generalized epilepsy (Sander et al., 2002). Moreover, the
Ala867Asp variant had a significantly reduced anion-exchange
activity compared to wild-type in a heterologous expression
system, whereas differences in expression levels or protein traf-
ficking to the plasma membrane were excluded (Vilas et al., 2009).
Nevertheless, it is still unclear whether the above-mentioned
polymorphism 867Asp itself confers the increased risk for epilep-
tic seizures or another gene in close proximity of SLC4A3 is
involved.

Inner retina defects with late onset photoreceptor degenera-
tion with optic nerve and retinal vessel anomalies, which resulted
in reduction of the b-wave in electroretinograms, were noted in
an independent AE3 knockout mouse (Alvarez et al., 2007). In
the retina, the brain variant of AE3 localized to Müller cells,
whereas the cardiac variant was detected in horizontal cells.
Immuno-labeling of astrocytes showed that inner retina vessels
were wrapped by dense astrocytic processes at 8 months of age in
AE3 knockout mice. Moreover, inner retina blood vessels formed
sporadic loops in the knockout, a finding which was not observed
in wild-type mice. Immunoblotting analysis revealed that the
Na+/HCO3

− co-transporter (NBC1), and carbonic anhydrases

FIGURE 3 | Reduced spontaneous electrical activity in hippocampal

slices of NKCC1 and AE3 knockout mice. (A) Representative extracellular
recordings from the stratum pyramidale (CA3) of postnatal day 5 NKCC1
and AE3 WT and KO slices. The framed parts are shown as enlargements
below the original trace. Calibration: horizontal, 2 min (original trace), 7.5 s

(enlargement); vertical, 0.04 mV. Quantification of frequency (B), amplitude
(C), area under curve (AUC), and (D) of single spontaneous electrical
events. The asterisks indicate significant difference (*p < 0.05,
***p < 0.001, t -test). Error bars indicate SEM. Reprinted from Pfeffer et al.
(2009).
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(CAs) II and CA XIV protein expression were elevated in AE3
knockout mice mouse retinas, suggesting a partial compensa-
tion for loss of AE3. Anion-exchange activity mediated by AE3
is promoted by the action of extracellular CAs (Svichar et al.,
2009). AE3 associates with the CAs and forms a bicarbonate trans-
port metabolon to maximize bicarbonate fluxes across the plasma
membrane (Casey et al., 2009).

Sodium-coupled anion exchangers
Historically, sodium-dependent anion-exchange (NDAE) which
extrudes chloride from cells was the first acid–base transport
mechanism described to play a role in the control of intracel-
lular pH (Boron and De Weer, 1976). A cDNA encoding a protein
that mediates NDAE (also referred to as NDCBE) was initially
cloned from Drosophila (Romero et al., 2000). The mRNA was
expressed throughout Drosophila development with a prominent
signal in the central nervous system and its disruption resulted in a
lethal phenotype in Drosophila. A related cDNA coding for another
protein mediating NCBE was cloned from a mouse insulinoma
cell line (Wang et al., 2000). This initial transport characterization
was subsequently confirmed for rat (Giffard et al., 2003; Damkier
et al., 2010), whereas the human cDNA was rather characterized
as an electroneutral Na+/HCO3

− cotransporter (NBCn2) with
chloride self-exchange activity (Parker et al., 2008b). Some of the
controversy may be explained by the different expression systems
used in the different studies like mammalian cells and Xenopus
oocytes, temperature, and composition of solutions, the trans-
fection/injection efficiency or molecular tagging of the transport
proteins.

Sodium-coupled anion exchange is activated by intracellular
acidification (Schwiening and Boron, 1994), suggesting that reg-
ulation of the chloride gradient by NDAEs may be closely linked
to the regulation of cellular pH. As prolonged neuronal activity
can cause neuronal acidification by efflux of bicarbonate through
GABAA receptors (Kaila and Voipio, 1987), sodium-coupled anion
exchange may help to maintain a hyperpolarizing chloride reversal
potential and thus promote the inhibitory action of GABA. Thus
activation of sodium-coupled anion exchange by acidosis may
also contribute to seizure termination by promoting a more nega-
tive chloride reversal potential and thus promoting the inhibitory
effects of GABA.

NDCBE. Several transcript variants have been reported for human
and murine NDCBE. The functional comparison of the NDCBE
variants expressed in Xenopus oocytes demonstrated that the
variants with a shorter C-terminus had a reduced functional
expression, whereas the different amino termini did not affect
the basal functional expression of NDCBE (Parker et al., 2008a).
NDCBE is encoded by SLC4A8 and is broadly expressed in
different tissues including brain (Romero et al., 2004). A down-
regulation of NDCBE protein expression was shown in different
brain regions after chronic hypoxia with a different profile in
neonates and adult mice (Chen et al., 2008a). Immunoreactivity
for NDCBE was detected in different brain regions with no overlap
to astrocyte markers (Chen et al., 2008b). This was also confirmed
in a knockout controlled study with an independent polyclconal
antibody against NDCBE. Moreover, this study reported that

NDCBE localization overlapped with markers of presynaptic glu-
tamatergic but not GABAergic nerve terminals (Sinning et al.,
2011). From Western analysis of different brain lysate subfrac-
tions and immunogold electron microscopy studies on isolated
synaptosomes, it was further concluded that NDCBE is enriched
in presynaptic nerve endings of excitatory neurons. The localiza-
tion in presynaptic glutamatergic terminals was also shown in an
independent study, but in contrast to the previous report the latter
study also detected NDCBE in terminals of parvalbumin-positive
GABAergic cells (Burette et al., 2012). Hence, the authors specu-
lated that NDCBE may play a role as a regulator of GABAergic
neurotransmission.

Confirming the important role of NDCBE for pH regulation in
neurons, its disruption caused a sustained decrease of the steady-
state pH of cultured hippocampal neurons (Sinning et al., 2011).
In accordance with the observation that NDCBE co-localizes with
presynaptic glutamatergic nerve terminals, the frequency of minia-
ture excitatory postsynaptic currents (mEPSCs) was drastically
reduced in a pH-dependent manner in hippocampal neurons of
mice devoid of NDCBE, whereas miniature inhibitory postsynap-
tic currents (mIPSCs) were unchanged. Importantly, the effect
on mEPSCs could be at least in part restored by shifting the pH,
strongly arguing against a structural defect (Sinning et al., 2011).
Its role during early brain maturation, however, has not been
studied.

Whether NDCBE also significantly contributes to the control
of the intraneuronal chloride concentration in some neurons is
still unclear. It was observed that dopaminergic neurons in the rat
substantia nigra do not express KCC2, but still exhibit inhibitory
responses to GABA that are dependent upon the presence of extra-
cellular bicarbonate (Gulacsi et al., 2003). As the GABA reversal
potential was significantly less negative in bicarbonate-free buffer
in dopaminergic neurons, a sodium-dependent anion might sub-
stitute KCC2 in this type of neuron. This assumption was also
supported by the demonstration that complex-spike activity in
some auditory interneurons results in a pH-dependent negative
shift of the glycine reversal potential, and it was suggested that
sodium-coupled anion exchange via Slc4a8 may account for the
reduction of intracellular chloride (Kim and Trussell, 2009).

In Caenorhabditis elegans sodium-coupled anion exchange is
mediated by ABTS-1. While animals lacking ABTS-1 or KCC2 dis-
played only mild behavioral defects, disruption of both chloride
extruders resulted in a paralytic phenotype (Bellemer et al., 2011).
Although direct electrophysiological data were not provided, the
authors speculated that the disruption of both transporters results
in a reversal of chloride fluxes through GABAA receptors thus
rather exciting than inhibiting cells. Moreover, neuronal expres-
sion of both transporters was up-regulated during neuronal
differentiation and ABTS-1 expression was increased in mutants
devoid of KCC2, suggesting that both transporters are important
to control the cellular chloride gradient.

NCBE. For NCBE two different splice variants have been identi-
fied with different expression profiles (Giffard et al., 2003). The
variant missing a 39-bp insert at the 3′ end is predicted to result in
a protein with a C-terminal PDZ motif (Giffard et al., 2003). How
this might relate to function has not been studied. Our expression
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analysis in the developing mouse brain with a probe detecting both
transcript variants revealed a broad neuronal expression pattern
and a particularly strong labeling of the choroid plexus (Hübner
et al., 2004). At the protein level, NCBE localized to the baso-
lateral membrane of choroid plexus epithelial cells (Jacobs et al.,
2008). There, NCBE serves as a basolateral sodium entry pathway.
According to this model, its disruption is predicted to impair cere-
brospinal fluid secretion, which is supported by the finding that
mice with a targeted disruption of NCBE display a collapse of their
brain ventricles (Jacobs et al., 2008). Immunohistological studies
revealed that the NCBE protein mainly localized to dendrites and
somata of principal neurons, but not to axons or astrocytes (Chen
et al., 2008b; Jacobs et al., 2008). There was also a considerable
overlap between GABAergic interneurons as identified by the co-
localization of GAD and NCBE (Jacobs et al., 2008). However, to
which extent NCBE can be detected in different interneuron sub-
types, still remains to be addressed. Notably, the ultrastructural
analysis also localized NCBE preferentially to dendrites and spines
both in the hippocampus as well as in the cerebellum (Jacobs et al.,
2008).

Although there was no difference in the steady-state pH of
principal neurons of the CA1 hippocampal region of NCBE
knockout mice (Jacobs et al., 2008), the recovery to an acid load was
delayed. How this affects network excitability was studied in the 4-
aminopyridine model of interictal discharges in acute brain slices.
The frequency of the interictal-like events at baseline levels did not
differ between genotypes, however, the decreased frequency upon
a propionate pulse was prolonged in the knockout. In accordance,
knockout mice had an increased seizure threshold in response
to different seizure inducing agents including pentylenetetra-
zole or pilocarpine. Quite in contrast to the mouse findings, in
some patients with epilepsy larger heterozygous genomic deletions
involving SLC4A10 were described (McMilin et al., 1998), however,
the genetic evidence that the epilepsy phenotype is directly linked
to the heterozygous loss of NCBE or rather to some other genes
within this chromosomal region is obscure. Because of the dif-
ferent sites of NCBE expression both in excitatory and inhibitory
neurons as well as in the choroid plexus different effects may add
up in the total knockout. Thus, the exact role of NCBE for network
excitability and synaptic transmission still needs to be addressed
in more specific mouse models.

NCBE is also strongly expressed within the retina, where it
localizes to ON and OFF bipolar cell axon terminals and to den-
drites of OFF bipolar cells, where it co-localized with the main
neuronal chloride extruder KCC2 (Hilgen et al., 2012). NCBE was
also expressed in starburst amacrine cells, but was absent from
neurons known to depolarize in response to GABA, like horizon-
tal cells. These data suggest that NCBE may indeed contribute to
the regulation of intracellular chloride and bicarbonate concen-
tration in retinal neurons. Supporting this assumption, knockout
mice displayed a decreased visual acuity and contrast sensitivity in
behavioral experiments and smaller b-wave amplitudes and longer
latencies in electroretinograms (Hilgen et al., 2012).

CARBONIC ANHYDRASES
In the mature rat hippocampus, intense GABAA receptor activa-
tion causes neuronal excitation which is strictly dependent on the

presence of bicarbonate and suppressed by membrane-permeant
inhibitors of CA activity (Staley et al., 1995; Kaila et al., 1997;
Fujiwara-Tsukamoto et al., 2007). Fifteen members of the CA fam-
ily have been identified which differ in tissue distribution and
subcellular localization. At least 13 family members catalyze the
reversible hydration of CO2 to form bicarbonate and H+, accel-
erating this spontaneous reaction several thousand-fold. Thereby
CAs influence the kinetics and amplitudes of pH transients in dis-
tinct intra- and extracellular compartments (Chesler, 2003; Casey
et al., 2009) and can affect proton-sensitive membrane proteins
involved in neuronal signaling such as GABAA receptors, NMDA
receptors, and many more. CA also associate with anion exchang-
ers to form bicarbonate transport metabolons, which enhance
bicarbonate fluxes across the plasma membrane (McMurtrie et al.,
2004). By forming isoform-specific metabolons with distinct acid–
base transporters intracellular neuronal CAs may contribute to
developmentally and spatially distinct pHi microdomains. In the
brain, extracellular space CA activity is due mainly to isoforms CA
IV and CA XIV, which both play important roles in the regulation
of intracellular pH in hippocampal neurons by facilitating AE3-
mediated Cl−/HCO3

− exchange (Casey et al., 2009; Svichar et al.,
2009).

CA II and CA VII are the only cytosolic isoforms present in
both somata and dendrites of mature hippocampal CA1 pyrami-
dal neurons. The functional expression of CA VII in mouse brain
starts around postnatal day 10 (P10) and that of CA II around P20
and coincides with the appearance of bicarbonate-dependent high
frequency stimulation (HFS)-induced tonic GABAergic excitation
(Ruusuvuori et al., 2004, 2013). Synchronous neuronal activity in
the form of GDPs, however, starts much earlier with an onset at
approximately P0 (Ben-Ari et al., 1989) and is largely indepen-
dent from the presence of bicarbonate (Ruusuvuori et al., 2004).
These GDPs disappear with the on-going expression of the chlo-
ride extruding K+–Cl− cotransporter KCC2 which is up-regulated
from P0 to P12 thus rendering GABAA responses hyperpolariz-
ing (Rivera et al., 1999; Hübner et al., 2001; Stein et al., 2004).
To study the role for cytoplasmic neuronal CAs for bicarbonate-
dependent GABAergic depolarization, we recently established a
CA VII knockout mouse model. Remarkably, CA VII knock-
out mice have a normal life span and show no gross behavioral
abnormalities. At P13–14, when CA II is not yet expressed, CA
VII KO mice show a complete absence of electrographic seizures
(Ruusuvuori et al., 2013). These results point to a crucial role for
the developmental expression of intrapyramidal CAs in shaping
integrative functions, long-term plasticity and susceptibility to
epileptogenesis and put intraneuronal CA in a key position in
GABAergic excitation (Kaila et al., 1997; Ruusuvuori et al., 2004).
Moreover, these observations give important insights into the
antiepileptic actions of CA inhibitors.

CONCLUSION
There is ample evidence that brain development and brain func-
tion critically depends on anion gradients. Whereas chloride has
been in the focus of the neuroscientific community, much less
is known about bicarbonate. With the development of several
mouse models with targeted disruption of selected players of intra-
neuronal bicarbonate levels, some described in this review, first
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clues how bicarbonate contributes to proper brain function like
the production of the cerebrospinal fluid, neuronal excitability,
and synaptic transmission evolved. The role of these processes for
brain development is mostly unknown but it emerges that bicar-
bonate transporters modulate GABAergic transmission already
in the developing brain. It will be essential to assess whether
this reflects secondary effects in response to changes in pH or
whether these effects rather reflect alterations of the existing
anion gradients. Bicarbonate definitely plays an essential role
for the GABAergic excitation observed upon massive GABAer-
gic stimulation. This process is massively enhanced by CAs,
which quickly replenish intraneuronal bicarbonate from P18

onwards. To understand the complex interplay of the differ-
ent proteins in time and space is an emerging challenge for the
future.
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