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Autism spectrum disorder (ASD) is an early-onset neurodevelopmental disorder
characterized by deficits in social communication, and restricted and repetitive patterns
of behavior. Despite its high prevalence, discovery of pathophysiological mechanisms
underlying ASD has lagged due to a lack of appropriate model systems. Recent advances
in induced pluripotent stem cell (iPSC) technology and neural differentiation techniques
allow for detailed functional analyses of neurons generated from living individuals with
ASD. Refinement of cortical neuron differentiation methods from iPSCs will enable
mechanistic studies of specific neuronal subpopulations that may be preferentially
impaired in ASD. In this review, we summarize recent accomplishments in differentiation
of cortical neurons from human pluripotent stems cells and efforts to establish in vitro
model systems to study ASD using personalized neurons.
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INTRODUCTION
Autism spectrum disorder (ASD) is a debilitating neurodevelop-
mental disorder characterized by impaired communication and
social interactions, as well as restricted interests and repetitive
behaviors (Devlin and Scherer, 2012). Approximately 1/50 chil-
dren in North America are diagnosed with ASD, typically by the
age of 3 years (Blumberg et al., 2013). The severity of symp-
toms varies greatly and the prevalence of intellectual disability,
epilepsy, attention deficit/hyperactivity disorder, and obsessive-
compulsive disorder is markedly higher in people with ASD than
in unaffected individuals (Huguet et al., 2013). Despite the com-
plexity and heterogeneity of ASD, genetic studies, post-mortem
brain analyses, and functional imaging studies have resulted in
the widely accepted hypothesis the ASD arises from dysfunc-
tional neuronal communication in the neocortex (Zikopoulos
and Barbas, 2013).

ASD is primarily viewed as a genetic disorder, although the
genetic underpinnings of ASD are complex. Family and twin
studies have revealed that the heritability of ASD is as high as
90%, but causal genomic variations have only been identified
in ∼25% of cases. These have mostly consisted of relatively rare
genetic variations, none of which account for more than ∼1%
of ASD cases (Devlin and Scherer, 2012). To date, several dozen
high priority ASD candidate genes have been identified, many
of which encode proteins that localize to synapses [e.g., SH3
and multiple ankyrin repeat domains (SHANK) 2, SHANK3,
Neuroligin (NLGN)-1, NLGN-3, NLGN-4X, Neurexin (NRXN)-
1, and NRXN-3] and regulate their development, maturation,
and function (Zoghbi and Bear, 2012). ASD-associated genomic
variations can occur de novo in affected individuals. In familial
cases, these variants are often inherited from unaffected parents,

suggesting either incomplete penetrance or modifier genes. For
example, four autistic individuals with de novo SHANK2 muta-
tions have additional genetic variations at ASD candidate loci,
suggesting a “mutliple hit” model of ASD (Leblond et al., 2012;
Chilian et al., 2013).

Mice engineered to encode human ASD-associated mutations
often recapitulate behavioral hallmarks of the disorder and are
readily amenable to experimental analyses (Silverman et al., 2010;
Jiang and Ehlers, 2013). Many synapse-associated ASD candi-
date genes have been knocked-out in mice, revealing a wide
range of synaptic phenotypes that may contribute to ASD. Nlgn-1
knockout mice exhibited altered excitatory synaptic transmission
(Blundell et al., 2010) and knockdown results in decreased cor-
tical synapse numbers (Kwon et al., 2012). Nrxn-1α knockouts
exhibit reduced spontaneous excitatory synaptic activity, with no
change in inhibitory synapse function (Etherton et al., 2009).
Mice with the ASD-associated Nlgn-3 R451C mutation exhibit
increased inhibitory neurotransmission in the cortex (Tabuchi
et al., 2007; Etherton et al., 2011), but increased excitatory neuro-
transmission in the hippocampus (Etherton et al., 2011). Finally,
knockouts of Shank2 and Shank3 support a role for SHANKs in
excitatory synapse function, although distinct phenotypes were
observed in different models (Durand et al., 2007; reviewed in
Jiang and Ehlers, 2013). Unfortunately, mice with ASD-associated
mutations rarely exhibit phenotypes unless these mutations are
homozygous, which are exceptionally rare in people with ASD
(Ey et al., 2011; Won et al., 2012). These findings suggest that
heterozygous disruption of individual candidate genes may be
necessary, but not sufficient for development of the disorder, and
that other genetic variables may play a role (Huguet et al., 2013).
An alternative explanation is that ASD candidate genes have
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slightly different functions in human neurons. Both of these limi-
tations of mouse models can be overcome with the use of induced
pluripotent stem (iPSC) technology, which allows the generation
of personalized human neurons from people with ASD.

iPSCs represent an incredible new avenue for the modeling
of ASD (Ross and Ellis, 2010). Donor-derived cells (e.g., dermal
fibroblasts from a skin biopsy or peripheral blood mononu-
clear cells) are reprogrammed into iPSCs by forced expression of
four pluripotency-associated transcription factors: OCT4, SOX2,
KLF4, and c-MYC (Takahashi et al., 2007). Resultant iPSC lines
exhibit functional properties of human embryonic stem cells
(hESCs), including the ability to differentiate into any cell type
in the human body. For experimental analyses, iPSCs provide
an unlimited supply of ASD-specific neurons. To date, iPSC-
derived neurons have been used to generate personalized neurons
from individuals with neurodevelopmental disorders that include
autistic features—RTT (Marchetto et al., 2010; Cheung et al.,
2011), Timothy syndrome (TS) (Paşca et al., 2011), and Phelan
McDermid syndrome (PMDS) (Shcheglovitov et al., 2013)—and
have revealed disorder-specific neuronal phenotypes, including
dysfunctional synaptic connectivity. However, this approach has
yet to be applied to ASD as the fifth edition of the Diagnostic
and Statistical Manual of Mental Disorders excludes individu-
als with syndromic neurodevelopmental disorders from an ASD
diagnosis (American Psychiatric Association, 2013). Although
iPSC-derived neurons have been generated from people with
ASD, no functional experiments were described (DeRosa et al.,
2012). As such, the potential of iPSC technology has yet to be
fully applied to modeling ASD, although many groups are actively
pursuing this approach.

The generation of iPSCs has become commonplace. However,
efficient differentiation of these cells into specific neuronal sub-
types remains challenging. As discussed above, one of the pre-
vailing hypotheses suggest that ASD arises due to dysfunctional
synaptic communication in the neocortex. Successful generation
of ASD-specific cortical neurons will improve our understand-
ing of how ASD develops and may allow for identification of
novel therapeutics. In this review, we discuss (1) recent advances
in technology of cortical differentiation from human pluripotent
stem cells (hPSCs) based on the knowledge of in vivo cortical
development, (2) recent findings from human iPSC (hiPSC)-
based models of RTT, TS, and PMDS, and (3) future directions
for optimization of cortical differentiation and modeling of ASD,
as well as potential applications of this exciting technology.

DEVELOPMENT OF THE NEOCORTEX
A thorough understanding of neocortical development can
inform methodology for cortical neuron differentiation from
hPSCs and define neuronal characteristics that should be con-
sidered in validating the identity and functionality of resultant
neurons. This is especially important for hPSC-based ASD mod-
eling, as abnormal neocortical development has been directly
associated with the etiology of some ASDs (Kwan, 2013). Thus, we
first give an overview of neuronal composition in the neocortex
and its origins, based on the studies of animal models.

The mammalian neocortex has a well-organized six-layered
structure. Each cortical layer contains a characteristic distribution

of neuronal cells with distinctive shape, size, and neurochem-
ical and electrophysiological properties, which make local or
long distance connections with other cortical region or subcor-
tical compartments (Douglas and Martin, 2004; Migliore and
Shepherd, 2005). Neurons in the neocortex can be broadly catego-
rized into two types: excitatory projection neurons and inhibitory
interneurons. Excitatory projection neurons, which comprise
around 80% of the neocortical neuronal population, mainly orig-
inate from neuroepithelial cells of the germinal zone in the dorsal
telencephalon (pallium) (Molyneaux et al., 2007). They have
a characteristic pyramidal shape with a long apical dendrite,
multiple basal dendritic branches with spines receiving signals
from other neurons, and a long axon making synaptic connec-
tions via the excitatory neurotransmitter glutamate (Spruston,
2008). On the other hand, inhibitory interneurons develop and
migrate from distinct progenitors of the germinal zone of the
ventral telencephalon (subpallium), mostly from the medial gan-
glionic eminence (MGE) and caudal ganglionic eminence (CGE)
(Wonders and Anderson, 2006). They make up the remaining
20% of cortical neurons and make local connections using the
inhibitory neurotransmitter GABA. Inhibitory interneurons in
the neocortex display an astonishing diversity with over 20 sub-
types based on morphology, electrophysiological properties, and
expression of calcium binding proteins and neuropeptides (Petilla
Interneuron Nomenclature Group, 2008).

DEVELOPMENT OF NEOCORTICAL EXCITATORY NEURONS
In the widely accepted model of vertebrate neural induction, the
first emerging neuroectodermal cells in the neural plate develop
an anterior fate characterized by expression of transcription fac-
tors such as forkhead box G1 (Foxg1, also known as brain factor
1, Bf1) or orthodenticle homoebox 1/2 (Otx1/2) (Stern, 2001;
Hébert and Fishell, 2008) (Figure 1A). As neural induction pro-
ceeds, the cells that position in relatively posterior regions are
influenced by patterning factors, such as Wnts and retinoic acid
(RA), and are subsequently reprogrammed to a caudal fate. In
contrast, the cells in the anterior part of neural plate are less influ-
enced by caudalizing factors due to the endogenous expression of
their antagonists [e.g., Dickkopf-related protein 1 (DKK1, a Wnt
signal antagonist)], and maintain the acquired anterior character
(Glinka et al., 1998; Wilson and Houart, 2004). Once the neu-
ral tube forms, the most anterior region rapidly expands to form
the telencephalon, which is divided into two distinctive regions,
the dorsal telencephalon and the ventral telencephalon by gradi-
ents of dorso-ventral patterning factors (Wilson and Rubenstein,
2000).

The pallial neural progenitors, the main source of neocor-
tical projection neurons, are developed under the influence of
Wnt and BMP signaling. They can be defined by the expression
of a set of transcription factors, which includes Foxg1, paired
box 6 (Pax6), empty spiracles homolog 1/2 (Emx1/2) in mice
(Figures 1A,B) (Molyneaux et al., 2007). Mouse genetic stud-
ies have provided evidence that these transcription factors are
responsible for the establishment and maintenance of neocor-
tical progenitors and suppress alternative fates. For example,
removal of Foxg1 in the mouse embryo causes the absolute
absence of neocortical progenitors, which eventually results in
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FIGURE 1 | A summary of differentiation from hPSCs into neocortical

excitatory projection neurons and inhibitory interneurons. (A)

Schematic mouse brain at E8 (left) and at E10.5 (right) depicting the
expression domain of Foxg1 and Otx1/2. (B) Coronal hemi-section view of
mouse brain at E13 showing the distinctive expression domains of
Emx1/2, Pax6, and Nkx2.1, abbreviation: TELEN, telencephalon; DIEN,
diencephalon; MESEN, mesencephalon; RHOM, rhombencephalon; sl,
sulcus limitans; NCx, neocortex; LGE, lateral ganglionic eminence; MGE,
medial ganglionic eminence; CH, cortical hem. (C) Human PSCs are
induced into telencephalic neural progenitors in three main ways: (1)
culturing EBs in suspension and isolation of neural rosette cell from the
subsequent adherent culture of EBs (Zhang et al., 2001), (2) SFEBq
method (Eiraku et al., 2008), and (3) dual-SMAD inhibition method
(Chambers et al., 2009). Telencephalic fate can be facilitated by inhibition
of the Wnt pathway during neural induction (Eiraku et al., 2008; Maroof

et al., 2013; Nicholas et al., 2013). Telencephalic neural progenitors can be
specified either to dorsal fate by blockade of endogenous SHH signal
(Vazin et al., 2013) or exogenous RA treatment (Shi et al., 2012), or to
ventral fate by additional activation of SHH signal (Liu et al., 2013a; Maroof
et al., 2013; Nicholas et al., 2013) combined with Wnt inhibition (Li et al.,
2009). Dorsal telencephalic progenitors can generate a variety of excitatory
projection neurons (Eiraku et al., 2008; Shi et al., 2012; Lancaster et al.,
2013), and also be further specified into (1) early-born cortical neurons
such as Reelin-positive Cajal-Retzius cells or CTIP2-positive deep layer
neurons depending on timing of DAPT treatment; (2) cortical hem by
exogenous Wnt; and (3) olfactory bulb by FGF8 treatment (Eiraku et al.,
2008). In contrast, ventral telencephalic progenitors can differentiate into
functional GABAergic inhibitory neurons by either withdrawal of NGF in the
culture medium (Liu et al., 2013b) or by adjusting the temporal window for
SHH treatment during the ventralization step (Maroof et al., 2013).

severe malformation of the neocortex (Xuan et al., 1995; Muzio
and Mallamaci, 2005). In turn, Pax6 is essential for proliferation
of progenitors in the pallium (Estivill-Torrus et al., 2002), and
its absence in the murine embryonic brain results in the expan-
sion of a domain expressing ventral progenitor makers, suggesting
that it is essential for the establishment and maintenance of pallial
progenitors (Stoykova et al., 2000). Accordingly, the appropriate
expression of these transcription factors in cortical progenitors

is a prerequisite for their progressive specification to projection
neurons. Their expression can be used as a reliable marker for
dorsal telencephalic identity of the progenitor stage during neural
differentiation of hPSCs.

Once neurogenesis begins, neuroepithelial cells in the dor-
sal telencephalon acquire features of neural stem cells known as
radial glial cells (RGCs). Through asymmetric cell division, RGCs
give rise to (1) self-renewed RGCs that remain in the ventricular
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zone (VZ) throughout corticogenesis, and (2) committed daugh-
ter cells that can migrate out (Kriegstein and Alvarez-Buylla,
2009). The committed daughter cells either become early-born
cortical neurons or remain in a defined domain next to the VZ
called the subventricular zone (SVZ), where they undergo cell
division as intermediate progenitors to generate diverse cortical
projection neurons across multiple neocortical layers (Götz and
Huttner, 2005). Recent clonal analysis of progenitors in the SVZ
of human cortex revealed the appearance of distinctive progen-
itors called outer radial glial cells (oRGCs) immediately outside
the SVZ (Hansen et al., 2010). The diversity of the progenitor
population in the human brains contributes to their structural
complexity, and results in a vast increase in the number of projec-
tion neurons and overall volume of the neocortex relative to those
of rodents and other carnivores (Lui et al., 2011).

In general, early-born projection neurons migrate out from
the proliferative area settling in the deep layer first, and later-born
projection neurons migrate beyond those in deeper layers to reach
the upper layers. Such “inside-out” patterning of post-mitotic
neurons in a spatio-temporally controlled manner accounts for
the well-organized layered structure of neocortex (Rash and
Grove, 2006). Recent studies in the mouse show that each sub-
type and laminar specification in the neocortex is programmed
by expression of particular transcription factors in cortical pro-
genitors and neurons (reviewed by Molyneaux et al., 2007; Kwan
et al., 2012). These genes play essential roles in refining the spe-
cific molecular identity of each layer (neuronal migration and
the proper positioning) (Alcamo et al., 2008; Chen et al., 2008),
layer-dependent axonal connectivity (Han et al., 2011), and even
dendritic arborization and spine morphology (Cubelos et al.,
2010). In addition, many studies have suggested that alteration
in the proper expression of cortical layer-specific genes is associ-
ated with human neurodevelopmental disorders, including ASD
(reviewed by Kwan, 2013).

DEVELOPMENT OF NEOCORTICAL GABAergic INTERNEURON
Unlike excitatory projection neurons, neocortical inhibitory neu-
rons arise from progenitors in the subpallial region, where cells
are under the influence of SHH. Progenitors in the MGE are char-
acterized by expression of Nkx2 homeobox 1 (Nkx2.1, also known
as thyroid transcription factor 1, TTF-1) (Figure 1B) and Foxg1,
which are both regulated by SHH (Sussel et al., 1999; Gulacsi
and Anderson, 2006). In particular, Nkx2.1 plays a pivotal role
in the induction of neocortical GABAergic neurons. Mutation of
Nkx2.1 in mice results in significant loss of parvalbumin (PV)-
and somatostatin (STT)-positive GABAergic neurons in the cor-
tex (Sussel et al., 1999). On the other hand, GS homeobox 2
(Gsx2) specifies progenitors in CGE, where SHH-independent
calreticulin (CR)-expressing GABAergic neurons are derived (Xu
et al., 2010).

A remarkable feature in the development of neocortical
interneurons is that they—unlike projection neurons—undergo
tangential migration from their place of origin to their cor-
tical destination. Several genetic studies in humans and mice
have implicated dysfunctional development or migration of
GABAergic interneurons with many psychiatric and neurodevel-
opmental disorders (Powell et al., 2003; Gant et al., 2009; Poitras

et al., 2010). Together, these data emphasize the critical role of
GABAergic neurons in proper function of the neocortex.

CURRENT PROGRESS IN CORTICAL NEURON DERIVATION
FROM hPSCs
Impairment of proper development and migration of both excita-
tory projection neurons and inhibitory interneurons in the neo-
cortex contributes to neurodevelopmental disorders. Therefore,
the ability to generate those neurons from hPSCs is a powerful
approach for assessing their molecular and cellular phenotypes
and essential mechanisms underlying disease onset. Currently,
most protocols for cortical differentiation from hPSCs are based
on a few core methods that were developed using hESCs (Table 1).
Understanding how these methods work and the basic character-
istics of neural progenitors they generate is critical for developing
novel protocols for differentiation of specific subtypes of cortical
neurons. Thus, we first introduce several methods that are most
frequently used to generate neural progenitors from hPSCs. After
that, we discuss recent accomplishments in differentiation of cor-
tical excitatory projection and inhibitory neurons from hPSCs
(summarized in Figure 1C).

NEURAL DIFFERENTIATION FROM hPSCs
Zhang and colleagues published the first report on neural differ-
entiation from human ESCs (Zhang et al., 2001). In their study,
embryoid bodies (EBs) are generated by lifting hESC colonies
and cultured in suspension devoid of mitogens for a short period
of time. Next the EBs are grown in adherent culture in defined
media containing N2 supplement and basic fibroblast growth fac-
tor (bFGF) and allowed to form “neural rosettes.” This unique
cellular arrangement of epithelial cells is reminiscent of cross
sections of the developing neural tube and is now considered
a hallmark of successful neural induction. These cells exten-
sively express many neural stem cell markers such as Nestin,
Musashi-1, and polysialylated-neuronal cell adhesion molecule,
vigorously proliferating in the presence of bFGF after enzymatic
isolation, and generate neurons, astrocytes, and oligodendrocytes
both in vitro and in vivo (Zhang et al., 2001). In a subsequent
study, Zhang’s group found that neural progenitors generated in
this manner mainly exhibit the anterior identity even though no
regional cues were used throughout the differentiation (Pankratz
et al., 2007). The regional identity of hESC-derived neural pro-
genitors appears to be convertible by patterning cues. Timely
treatment with particular morphogens such as SHH and Wnts, or
their agonists/antagonists redirects the regional identity of hESC-
derived neural progenitors to either ventral or caudal fate. The
fate plasticity of hESC-derived neural progenitors has led to the
development of many methods for generating different neuronal
subtypes, such as midbrain dopaminergic neurons (Yan et al.,
2005), spinal motor neurons (Li et al., 2005), as well as cortical
neurons (Li et al., 2009).

Another EB-like structure-based neural differentiation
method was published by Sasai’s group. Their first study
described a serum-free EB-like protocol (which they called SFEB)
to generate neurons from mouse ESCs (mESCs). Quantitative
analysis revealed that around 80% of total cells were Sox1-positive
neural lineage in 5 days. Substantial numbers of cells derived
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Table 1 | Comparison among common methods for neural differentiation of hPSCs.

Culture method Strategy for neural

differentiation

Regional identity of

neural progenitors

Advantage References

EB formation-neural
rosette isolation
method

EB formation by lifting
hPSC colonies and
following adherent
culture of EBs

Induction and isolation of
neural rosettes without
morphogens

Dorsal
telen-diencephalon
(PAX6+, OTX2+,
FOXG1+)

Highly
reproducible
across many
hPSC lines

Zhang et al.,
2001; Pankratz
et al., 2007

Dual-SMAD
inhibition method

Adherent monolayer
culture of dissociated
hPSCs

Inhibition of BMP/ Nodal
signals

Dorsal
telen-diencephalon
(PAX6+, OTX2+,
FOXG1+)

Highly rapid and
efficient

Chambers et al.,
2009

SFEBq method EB formation by
re-aggregation of
dissociated hPSCs

Inhibition of
WNT/BMP/Nodal signals

Dorsal telencephalon
(FOXG1+, EMX1+)

Suitable for
cortical
differentiation

Watanabe et al.,
2005; Eiraku
et al., 2008

by SFEB culture express forebrain markers such as Foxg1 and
Otx2, although this number was still low (∼20% of total cells)
compared to the number in hESC differentiation (Watanabe
et al., 2005; Pankratz et al., 2007). A key step in this protocol
was the dissociation of mESCs to single cells to form EB-like
structures of a defined size, and cultured in serum-free media.
However, this protocol was difficult to adapt to hESCs, which are
remarkably vulnerable to apoptosis upon dissociation (Ohgushi
et al., 2010). To circumvent this problem, Sasai’s group employed
Rho-dependent protein kinase (ROCK) inhibitor, which pro-
motes the survival of dissociated hESCs. With it, they successfully
reproduced the SFEB method with hESCs (Watanabe et al., 2007).
As was observed with mESCs, human neural cells differentiated
by SFEB culture were frequently positive for FOXG1 (∼32% of
total cells), and could be patterned toward either ventral or dorsal
fate. More recently, the same research group further optimized
this method in terms of speed, efficiency, and reproducibility of
neural conversion by quick re-aggregation of ESCs in round-
bottom well-plates (Eiraku et al., 2008). In this manner, over
95% of total cells exhibited features of neuroepithelial cells at day
5 of differentiation. Most interestingly, the majority expressed
dorsal telencephalic markers. Since this method exhibited a
striking resemblance with in vivo corticogenesis and mainly
generated cortical excitatory neurons, we will return to it in the
next section.

Another approach that has been used to induce neural progen-
itors from ESCs was co-culturing with mouse stromal feeder cells
that are known to have neural inducing activity (Kawasaki et al.,
2000; Elkabetz et al., 2008). Despite the method’s robustness, the
involvement of non-human cells and the requirement of relatively
long period of time for neural induction (>3 weeks) made this
method less attractive for biomedical applications.

Recently, Studer’s group reported a remarkably simple and
robust method for neural induction of hESCs (Chambers et al.,
2009). In adherent single cell-culture of hESCs under serum-
free conditions, simultaneous modulation of endogenous BMP
and Activin/Nodal signaling by treatment with Noggin (BMP
inhibitor) and SB431542 (Activin/Nodal inhibitor) converted
hESCs to largely PAX6-positive neuroectodermal cells competent

to form neural rosettes in 11 days of differentiation. Since each
signaling pathway recruits SMAD proteins as intracellular signal
transducers, this was often referred to as the dual-SMAD inhibi-
tion approach. Interestingly, most neural cells generated by this
method express FOXG1 and OTX2, along with robust expression
of PAX6, suggesting dorsal telencephalic identity (Chambers et al.,
2009). The feasibility and robustness of this method has resulted
in its relative popularity in the field, as it provides highly enriched
neural precursors for disease modeling (Lee et al., 2009).

Given that hESC-derived neural progenitors from different
research groups exhibit regional identity of the dorsal telen-
cephalon, hPSCs are likely to have an innate program for differ-
entiation into neural cells found in this brain region regardless
of method (Pankratz et al., 2007; Elkabetz et al., 2008; Chambers
et al., 2009). This seems consistent with the theory that the first
neural precursors generated during vertebrate neural induction
acquire dorsal telencephalic identity by default (Muñoz-Sanjuán
and Brivanlou, 2002). However, current protocols for neural
differentiation were developed and tested with only a few widely-
used cell lines (e.g., H9). Moreover, a recent report argued that
neural progenitors generated from different hESC lines differ
in regional identity when derived by the same protocol, poten-
tially due to differences in epigenetic programming (Wu et al.,
2007). The assumption hPSC lines all follow a default pathway
to a dorsal telencephalic identity may be a hasty generalization.
Thus, we recommend determination of the regional identity of
neural progenitors from new hPSC lines before further neuronal
specification.

GENERATION OF EXCITATORY PROJECTION NEURONS FROM hPSCs
Sasai’s group pioneered directed cortical differentiation from
both mouse and human ESC by SFEB method and regional pat-
terning. They optimized the previous SFEB method by allowing a
defined number of cells to re-aggregate quickly in round-bottom
96-well plates under the influence of several regionalizing factors
(referred to as the SFEBq method). This remarkably improved
the differentiation efficiency of mESCs to dorsal telencephalic
neural precursors, evidenced by expression of Foxg1 (∼65–75%
of total cells) and Emx1 (∼89% of Foxg1-positive cells) (Eiraku
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et al., 2008). Interestingly, this system generated self-organized
cellular aggregates of cortical progenitors and cortical neurons
from mESC in the spatio-temporal manner reminiscent of in vivo
corticogenesis. SFEBq-induced cortical progenitors even respond
to cues directing regional pallial induction, such as FGF, which
refines the pallial fate along the rostro-caudal axis, and BMP/Wnt,
which induces expression of choroid flexus or cortical hem mark-
ers (Eiraku et al., 2008). However, well-organized laminar forma-
tion of cortical neurons did not appear within SFEBq-induced
mouse cortical tissues, and hESCs failed to generate neurons of
upper cortical layers in this system.

Upon further refinement, SFEBq approaches have been suc-
cessfully applied to hPSCs. Vaccarino and colleagues reproduced
this approach by generating hiPSC-derived multilayered corti-
cal structures, which predominantly exhibited the gene expres-
sion profile of dorsal telencephalon (Mariani et al., 2012). More
recently, Knoblich and colleagues developed an advanced in vitro
differentiation method adapting the SFEBq system by cultur-
ing matrigel-embedded EBs in a spinning bioreactor (Lancaster
et al., 2013). This system succeeded in establishing a cerebral
organoid culture system, which reproduces many features of
human cortical development in a more precise manner. In par-
ticular, they found characteristic progenitor zone organization,
including abundant RGC and oRGC populations, with ven-
tral telencephalic progenitors migrating into a cortical layer-like
structure. Moreover, the ability to produce mature cortical neu-
ron subtypes in an “inside-out laminar pattern” was unique in
recapitulating in vivo corticogenesis not observed with the orig-
inal SFEBq method. Most interestingly, cerebral organoids from
hiPSCs with a CDK5RAP2 mutation, which causes microcephaly
in humans, resulted in smaller neural tissues with impaired pro-
genitor regions, which has never before been recapitulated in
animal models (Lancaster et al., 2013). Most recently, Sasai’s
group optimized their SFEBq method by culturing cell aggregates
in enriched medium and high oxygen (40%), thereby generat-
ing a three-dimensional neuronal mass with features resembling
human fetal cortex in the early second trimester. Their new
method surpassed the limitations of their previous method and
achieved axial polarity, human specific oRGC populations, and
“inside-out” laminar structure of cortical neurons (Kadoshima
et al., 2013). By providing a robust methodology for efficient gen-
eration of cortical neurons from hPSCs, these three-dimensional
differentiation approaches represent a powerful tool for inves-
tigation of human brain development and neurodevelopmen-
tal disorders. The potential to characterize electrophysiological
properties, function, and connectivity of targeted neuronal pop-
ulations organized in a multi-layered cortical pattern is of great
utility for the study of ASD.

In contrast to the three-dimensional differentiation system,
the adherent monolayer-differentiation system may provide a
more feasible tool to examine morphology and synaptic con-
nectivity, which are of interest as the main cellular phenotype
of ASD neurons. It can also be scaled-up for drug screening
platforms. Livesey and colleagues described a defined cortical
differentiation condition by employing the monolayer culture
and dual-SMAD inhibition (Shi et al., 2012). Interestingly, they
found that RA was an essential factor for robust differentiation of

cortical progenitors with PAX6 and OTX1/2-immunoreactivity.
Cortical progenitors generated by their method displayed neural
rosette structures with the apico-basal polarity and characteristic
interkinetic nuclear migration during cell division. More impor-
tantly, this method recapitulated complex human progenitor
populations including intermediate progenitors and oRGCs with
unipolar basal processes, as seen in the developing human brain.
In addition, birth-dating analysis using BrdU labeling revealed
the appearance of both deep-layer and upper-layer cortical neu-
rons in a temporal manner, paralleling in vivo corticogenesis over
90 days of neuronal maturation (Shi et al., 2012). With this pro-
tocol, the same group generated cortical neurons derived from
Down syndrome (DS)-specific iPSCs. These neurons exhibited
pathological features of early-onset Alzheimer’s disease seen in DS
patients, demonstrating the applicability of this protocol for mod-
eling cortical disease (Shi et al., 2013). Although the role of RA as
a modulator for cortical differentiation needs further mechanistic
characterization, this study was the first to recapitulate the diver-
sity of cortical progenitors and generation of cortical subtypes
from hPSCs in a temporally-controlled manner.

There have also been attempts to obtain cortical projection
neurons by inhibiting cellular signal(s) that drive alternative fates.
Since the cerebral cortex develops in the dorsal telencephalic
region of the embryonic brain, blockade of intrinsic ventraliz-
ing and/or caudalizing signals during neural induction of ESCs
may lead to neural precursors with dorsal telencephalic fate.
Vanderhaeghen’s group was the first to test this hypothesis in
mESCs (Gaspard et al., 2008). They found that a low density
culture of mESCs in chemically defined media devoid of any
regional cues generated Otx1/2-positive neural progenitors, many
of which were co-labeled with Nkx2.1. Therefore, at least in the
mESC system, the default differentiation condition may favorably
generate ventralized telencephalic progenitors, possibly because
of high endogenous Shh levels. As support for this hypothesis,
the same group showed that the inhibition of intrinsic Shh sig-
naling by treatment with cyclopamine, a small molecule inhibitor
of Shh signal, abolished ventral marker expression in neural pro-
genitors, whereas it largely elevated dorsal marker expression.
Cortical progenitors differentiated in this manner could mainly
differentiate into functional excitatory neurons with pyramidal
shape that expressed a series of transcription factors correspond-
ing to each cortical layer in a temporal manner reminiscent of
in vivo corticogenesis (Gaspard et al., 2008).

Unlike those in the mESC system, neural progenitors derived
from hESCs tend to retain dorsal telencephalic fate in many cases,
as discussed above. The difference in dorso-ventral patterning
between these systems may be explained by distinctive intra-
cellular programming. While endogenous Shh signal dominates
during early neural induction of mESCs (Gaspard et al., 2008),
Zhang and colleagues found that Wnt signaling prevails during
neural induction of hESCs. In addition, they showed that Wnt
inhibition facilitated the ventralization of neural progenitors by
exogenous SHH, supporting the idea that the endogenous Wnt
signaling underlies the differentiation inclination of hPSC toward
dorsal fate (Li et al., 2009). Consistent with this, a recent study
from Vanderhaeghen’s group showed that cyclopamine treatment
was not required for induction of the dorsal telencephalic fate
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in the hPSC system (Espuny-Camacho et al., 2013). However,
Schaffer and colleagues recently showed that SHH inhibition
by cyclopamine was necessary to generate excitatory neurons
expressing cortical markers from hPSCs (Vazin et al., 2013). Thus
far, the involvement of SHH signaling in the induction of dorsal
telencephalic fate of hPSC-derived neurons is controversial and
needs further study.

Ghosh and colleagues suggested a procedure for efficient dif-
ferentiation of forebrain-type neurons via aggregate formation in
multi-well plates in the presence of Noggin (Kim et al., 2011a).
After adherent culture of aggregates on matrigel for a few days,
most colonies developed neural rosettes that highly expressed
transcripts of several dorsal telencephalic markers, such as SOX1,
PAX6, SIX3, and EMX2. Continuous treatment with Noggin
seemed critical for maintaining rosette structure and inducing
telencephalic fate, and SHH-inhibition by cyclopamine did not
facilitate the acquisition of dorsal fate. Further differentiation by
dissociating neural rosette cells and coculturing them with rat
astrocytes generated functional excitatory neurons. This study
also assessed synaptic dysfunction by employing an artificial
synapse formation assay, in which hPSC-derived neurons were
co-cultured with HEK293T cells that expressed either normal or
mutant types of NLGN-3 and NLGN-4. In this system, hPSC-
derived neurons were able to form presynaptic specializations
on the HEK293T cells that expressed wild-type NLGNs more
efficiently than on those that expressed ASD-associated mutant
NLGNs (Kim et al., 2011a). This study was a practical exam-
ple of an efficient cortical differentiation method combined with
an assay of synapse formation to assess the functional impact of
ASD-associated mutations.

In recent years, several studies have provided multiple meth-
ods for generating cortical excitatory neurons from hPSCs that
recapitulate in vivo corticogenesis and even human-specific fea-
tures not seen in animal models. Although in vitro modeling ASD
using cortical differentiation technology is still in its infancy, it
is becoming clear that the current accomplishments already pro-
vide robust models for investigating cellular phenotypes that are
directly relevant to ASD pathophysiology.

DIFFERENTIATION OF NEOCORTICAL INHIBITORY NEURONS FROM
hPSCs
In recent years, many studies of autistic people and ASD
animal models have strongly implicated dysfunction of the
GABAergic system in the pathophysiology of ASD (reviewed
by Chattopadhyaya and Cristo, 2012). Perturbation of sub-
tle excitatory-inhibitory balance due to loss or dysfunction of
GABAergic interneurons can lead to hyperexcitability and/or
impaired cortical oscillations, thereby resulting in various psy-
chiatric and neurodevelopmental disorders. Given that epilepsy
is more prevalent in children with ASD (Viscidi et al., 2013)
and epileptiform activity in the prefrontal cortex is associated
with deficits in social interaction (Hernan et al., 2013), dysfunc-
tion of the GABAergic system may be an especially important
mechanism of ASD pathophysiology. Therefore, the ability to effi-
ciently generate human cortical interneurons from people with
ASD could serve as a valuable tool for investigating GABAergic
system dysfunction in ASD pathophysiology, as well as facilitating

drug discovery. Here, we summarize recent results in obtaining
GABAergic interneurons from hPSCs.

Zhang and colleagues obtained human neuroepithelial cells
predominantly expressing PAX6 around 8–15 days of neu-
ral induction. This was achieved using the EB formation-
neural rosette isolation method without exogenous morphogens,
which exploits the default telencephalic specification of hESCs
(Liu et al., 2013a). By exposing those cells to high doses of
SHH (over 500 ng/ml) or purmorphamine (1.5 μM), a small
molecule agonist of SHH signaling, they succeeded in gen-
erating MGE-like neural progenitors, mainly characterized by
expression of NKX2.1, and abolished PAX6 and EMX1-positive
dorsal telencephalon and MEIS1/2-positive lateral ganglionic
eminence population. Neuronal maturation of NKX2.1-positve
cells on hESC-derived astrocytes in the presence of nerve
growth factor (NGF) gave rise to both functional choline
acetyl-transferase-positive basal forebrain cholinergic neurons
and GABAergic neurons in similar proportions, faithfully reca-
pitulating in vivo differentiation from MGE precursors (Liu et al.,
2013a). Interestingly, they also found that depletion of NGF, a
simple modification, favored GABAergic differentiation with a
purity of over 90% in the same conditions (Liu et al., 2013b).

Two different groups sought a direct way to pattern hPSC-
derived neural precursors into cortical GABAergic interneurons.
Specifically, they directed telencephalic fate prior to subsequent
ventralization for differentiation, instead of depending on sponta-
neous telencephalic specification. Studer and colleagues described
a robust pharmacological method that allows efficient modula-
tion of signals implicated in neural patterning. In particular, they
inhibited endogenous Wnt signaling to facilitate telencephalic
differentiation (Maroof et al., 2013), inspired by previous find-
ings that Wnt can suppress forebrain induction in several ver-
tebrates (Yamaguchi, 2001; Nordström et al., 2002). Treatment
with XAV939, a small molecule inhibitor of the canonical Wnt
pathway, during neural induction through dual-SMAD inhibi-
tion significantly increased the proportion of neural progenitors
expressing FOXG1. In subsequent dorso-ventral patterning, acti-
vation of SHH signaling by the treatment of purmorphamine in a
specific temporal window (day 6–18) was efficient for robust co-
induction of NKX2.1 with FOXG1. Interestingly, fine temporal
tuning of SHH signal activation (day 10–18) even discrimi-
nated between different subtypes of ventral progenitors, those
co-expressing OLIG2 with NKX2.1 and FOXG1, and telencephalic
GABAergic neurons expressing SST or PV after further differen-
tiation. Such robustness makes this method more attractive for
future investigations of specific roles for interneuron subtypes in
the pathophysiology of neuropsychiatric disorders (Maroof et al.,
2013).

Kriegstein and colleagues took a similar approach to enrich for
neural progenitors with a telencephalic ventral fate from hPSCs
(Nicholas et al., 2013). In this study, they exposed NKX2.1::GFP
knockin reporter hESCs to DKK1 and purmorphamine under
the combination of the SFEBq method (Eiraku et al., 2008),
and the EB formation-neural rosette isolation method (Zhang
et al., 2001). As a result, about 90% of differentiated cells were
positive for GFP, 81.5% of which co-expressed FOXG1 at par-
ticular temporal conditions of DKK1 (for initial 15 days) and
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purmorphamine treatment (for initial 35 days). Co-expression
of OLIG2 and MASH1 at the neural progenitor stage, and dou-
blecortin or GABA immunoreactivity after further differentiation
supported their MGE-like identity. Further differentiation after
cell sorting GFP-positive cells efficiently generated multiple sub-
types of functional forebrain GABAergic neurons both in vitro
and in vivo (Nicholas et al., 2013).

Recently, another approach was developed for generation of
cortical interneurons from the CGE. In contrast to STT and PV-
expressing GABAergic neurons, which mostly originate from the
MGE, the developmental mechanism of calreticulin (CR)-type
interneurons that arise mostly in the CGE was not well-known.
Rodríguez and colleagues illustrated that activation of Activin
signaling facilitated the induction of CGE identity during neu-
ral differentiation of mouse and human ESCs, and enriched
for CR-expressing GABAergic neurons (Cambray et al., 2012).
Given the implication of CR-expressing interneurons in cases
of epilepsy (Tóth et al., 2010), this approach may also be used
for investigating impairment of the inhibitory system in people
with ASD.

Despite differences in the details of differentiation meth-
ods, the studies described above showed that strong SHH sig-
naling promotes the ventralization of telencephalic progenitors
and generates MGE-like neocortical GABAergic interneurons
(Sousa and Fishell, 2010). More importantly, each approach
presented not only efficient methodologies for generating neo-
cortical GABAergic interneurons, but also provided new insights
into developmental mechanisms of these cells, which not been
observed in previous mouse studies. Thus, current advances in
the development of neocortical interneurons from hPSCs are
promising for elucidating the role of inhibitory interneurons in
the etiology of ASD.

DERIVING NEURONS FROM hPSCs TO MODEL
NEURODEVELOPMENTAL DISORDERS
Several research groups have recently used hPSCs to model neu-
rodevelopmental disorders that include autistic features, such as
Rett syndrome (RTT) (Marchetto et al., 2010; Ananiev et al.,
2011; Cheung et al., 2011; Kim et al., 2011b; Li et al., 2013),
Fragile X-syndrome (Urbach et al., 2010; Sheridan et al., 2011;
Bar-Nur et al., 2012; Liu et al., 2012), Prader-Willi/Angelman
syndrome (Chamberlain et al., 2010; Yang et al., 2010), Timothy
syndrome (Paşca et al., 2011; Krey et al., 2013), and Phelan-
McDermid syndrome (Shcheglovitov et al., 2013). Most of the
studies obtained mature neurons by employing existing neural
differentiation protocols and showed that neurons differentiated
from affected individuals or from genetically modified hPSCs
exhibited disease-related phenotypes (summarized in Table 2).
Here, we discuss a few accomplishments in in vitro modeling
for these disorder using iPSCs, and discuss the efforts to make
effective and meaningful iPSC-based models of ASD.

RTT is a severe neurodevelopmental disorder caused primarily
by mutations in the X-linked gene MECP2 (Methyl CpG-binding
protein 2) (Chahrour and Zoghbi, 2007). Muotri and colleagues
provided the first example of in vitro modeling of RTT by estab-
lishing iPSCs from individuals with various mutations in MECP2.
They found that neural precursors derived from RTT-iPSCs did

not show a distinct impairment in differentiation, prolifera-
tion, or survival. In contrast, RTT-neurons had fewer synapses,
smaller soma size, and showed deficits in both calcium signaling
and spontaneous excitatory synaptic communication compared
to unaffected control neurons. Furthermore, they showed that
some disease-related phenotypes (e.g., synaptic density) could be
partially reversed by insulin-like growth factor 1 (IGF1) or gen-
tamycin treatment, providing proof-of-principle evidence for the
application of RTT-patient derived neurons for drug discovery
(Marchetto et al., 2010). Importantly, smaller soma and nuclei
have been repeatedly observed in RTT-iPSC derived neurons
established by other research groups, regardless of the mutation
or differentiation methods (Marchetto et al., 2010; Cheung et al.,
2011; Li et al., 2013), suggesting that this phenotype might be a
possible biomarker for future biomedical applications.

More recently, Jaenisch and colleagues established hESC lines
with MECP2 mutations using TALEN-mediated gene editing. By
comparing mutant neurons to isogenic neurons from the parental
hESCs, they investigated key molecular and cellular features of
RTT (Li et al., 2013). MAP2-positive neuronal cells differentiated
by the dual SMAD-inhibition method were mainly comprised of
VGluT1-positive excitatory neurons, and displayed many typi-
cal deficits of RTT neurons previously shown in mouse models
and neurons from RTT-specific iPSCs, such as smaller soma
and nuclei, reduced neurite complexity, and electrophysiologi-
cal deficits. Beyond this, they also detected a global translational
impairment due to reduced AKT/mTOR activity, mitochondrial
defects, an absence in activity-dependent gene transcription in
hESC-derived neurons that lacked MECP2, which had not been
observed previously in in vivo and in vitro models (Li et al., 2013).

Individuals with mutation of the cyclin-dependent kinase-like
5 (CDKL5) gene present with clinical features similar to RTT
(Tao et al., 2004; Weaving et al., 2004). However, the mechanism
underlying RTT-like symptoms caused by CDKL5 mutations is
largely unknown. Broccoli and colleagues addressed the func-
tion of Cdkl5 in mouse hippocampal neurons by short-hairpin
RNA-mediated knock-down of Cdkl5. These experiments showed
that this Cdkl5 is essential for proper dendritic spine struc-
ture and for activity of excitatory synapses by stimulating the
phosphorylation-dependent interaction between NGL-1 (netrin-
G1 ligand) and PSD95 (Ricciardi et al., 2012). They validated
their finding in human neurons by generating iPSC lines from
two individuals with CDKL5 mutations and differentiating them
into cortical neurons. Indeed, human neurons with a defective
CDKL5 gene had reduced numbers of synapses and long dendritic
protrusions, as seen in mouse hippocampal neurons with knock-
down of Cdkl5. Although the proposed mechanism was not fully
addressed in human neurons, evidence from iPSC-modeling sup-
ports that the functional defect due to loss of CDKL5 in affected
individual results in disease-related phenotypes similar to RTT.

Many individuals with TS, caused by mutations in the L-type
calcium channel CACNA1C gene, display features of ASDs
(Splawski et al., 2004). Recently, Dolmetsch and colleagues estab-
lished iPSC lines from individuals with TS and explored poten-
tial abnormalities in neuronal development or function (Paşca
et al., 2011). iPSC-derived neurons with TS mutations had
altered electrophysiological properties and activity-dependent
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gene expression, mainly resulting from aberrant calcium sig-
naling. Interestingly, comparison of single-cell gene expression
array profiles revealed reduced numbers of deep layer neurons
expressing SATB2 in TS neurons compared to control neurons.
This finding was confirmed in the brains of transgenic mice
carrying mutation associated with type-1 TS. Since SATB2 is a
critical transcription factor for development of callosal projection
neurons (Alcamo et al., 2008), this finding strongly supported
the idea that autistic symptoms seen in TS patients result from
defects in cortical connectivity through the corpus callosum. In
addition, the authors observed an abnormal increase in tyro-
sine hydroxylase-expression, consistent with the idea that altered
synthesis of catecholamine may underlie ASD pathophysiology
(D’Souza et al., 2009). In a follow-up study, both rodent cor-
tical neurons with TS mutations and human neurons derived
from TS-iPSCs exhibited activity-dependent dendritic retraction,
which was caused by erroneous regulation of RhoA signaling by
the mutated calcium channel (Krey et al., 2013).

Fragile X syndrome (FXS) is the most commonly inherited
mental impairment, and is caused by expansion of CGG-repeats
in the 5′ untranslated region of the fragile X mental retardation
1 (FMR1) gene, which leads to silencing of FMR1 expression.
While Benvenisty and colleagues were the first to report the estab-
lishment of iPSC lines from FXS patients (Urbach et al., 2010),
the first phenotypes of neurons derived from FXS-iPSCs were
reported by Haggarty and colleagues, who showed that FXS-
iPSCs preferentially generated Tuj1-positive neurons with shorter
and fewer processes and more compact astrocytes (Sheridan
et al., 2011). More recently, Hagerman and colleagues established
isogenic pairs of iPSC lines from individuals with the related
disorder fragile X-associated tremor ataxia syndrome (FXTAS)
(Liu et al., 2012). iPSC-derived FXTAS neurons exhibited altered
synapse formation, possibly caused by aberrant calcium currents.
Interestingly, the mutant neurons exhibited a sustained calcium
elevation after glutamate application, implying that enhanced
type-I metabotropic glutamate activity may result in the imbal-
ance of excitatory-inhibitory neuronal transmission (Liu et al.,
2012).

AS and PWS are neurogenetic disorders caused by disrup-
tion of genes in imprinted regions of chromosome 15q11-13
(Ramocki and Zoghbi, 2008). AS results from loss of the mater-
nal copy of the gene UBE3A, while the imprinted paternal
gene is silenced; conversely, PWS results from loss of paternal
genes (including the HBII-85 small nucleolar RNA cluster) and
imprinting of maternal allele. Individuals with AS or PWS fre-
quently exhibit intellectual disability, autism, severe seizures, and
unusual or problematic behavior (Cassidy et al., 2012; Dagli et al.,
2012). Chamberlain and colleagues provided the first example
of disease modeling of AS and PWS and found that AS- and
PWS-iPSCs retained the appropriate DNA methylation patterns.
During neuronal differentiation, AS-iPSCs specifically repressed
the paternal copy of UBE3A, concomitant with upregulation of
UBE3A antisense transcripts, which is only expressed in neu-
rons (Chamberlain et al., 2010). Similarly, Esteban and colleagues
observed that iPSCs derived from individuals with PWS muta-
tions bear an intact imprinting signature on the maternal allele, as
seen in fibroblasts from which they originated (Yang et al., 2010).

Although functional differences between affected neurons and
normal neurons were not clearly addressed, these studies proved
that iPSC-disease modeling of neurodevelopmental disorders of
genomic imprinting is applicable.

Studies of hPSCs have also examined the function of ASD
candidate genes. Wang and colleagues recently addressed the
functional role of NRXN-1, a presynaptic protein of which muta-
tion is highly associated with ASD pathogenesis, during the
neurodevelopment of hPSC by functional knockdown. This study
showed that reduction of NRXN-1 expression in hPSC-derived
neural stem cells alters expression of many genes for the cell
adhesion pathway (20 genes) and neuronal differentiation path-
way (13 genes) with impairment of astrocyte differentiation,
suggesting its functional impact on human neurodevelopment
(Zeng et al., 2013). Dolmetsch and colleagues recently reported
in vitro modeling of a rare neurodevelopmental disorder, Phelan-
McDermid syndrome (PMDS), by generating iPSC lines from
individual with heterozygous deletion of chromosomal locus
22q13.3 (Shcheglovitov et al., 2013). This locus includes the
SHANK3 gene, which is also mutated in ASD (Durand et al.,
2007; Phelan and McDermid, 2012). In this study, the authors
illustrated that SHANK3 mutation causes important physiolog-
ical defects in PMDS neurons, such as an imbalance of excitatory
and inhibitory transmission due to impaired excitatory synapses.
Importantly, they also found that PMDS neuronal phenotypes
could be reversed by SHANK3 overexpression or treatment
with IGF1.

These early studies highlight the remarkable promise of using
personalized stem cell-derived neurons to investigate mech-
anisms underlying ASD pathophysiology. Even without aim-
ing to generate specific neuronal subtypes, these experiments
demonstrated deficits in neuronal specification (Paşca et al.,
2011), synapse formation (Marchetto et al., 2010; Shcheglovitov
et al., 2013), and excitatory neurotransmission (Shcheglovitov
et al., 2013) in distinct ASD-related syndromes. However, an
important consideration for most studies is the maturation
status of iPSC-derived neurons. Neuronal age typically varies
from 2 weeks to 3 months, with considerable variation in
differentiation protocols and culture conditions. Furthermore,
few markers are used to assess neuronal regional specificity,
expression of ion channels, and neurotransmitter receptors.
While single-cell expression profiling (using a platform like
Fluidigm) can provide a snapshot of these characteristics (Paşca
et al., 2011), it is currently limited to a fraction of the tran-
scriptome and is relatively costly. Transcriptome profiling can
overcome this drawback at the expense of single-cell resolu-
tion. For example, Vaccarino and colleagues (Mariani et al.,
2012) used genome-wide expression microarrays to compare
hPSC-derived cortical neurons to the developing human brain;
these experiments revealed remarkable similarity between these
neurons and the human frontal cortex at 8–10 weeks post-
conception. Comparative expression analyses between cortical
neurons derived from ASD-iPSCs and control-iPSCs could gen-
erate hypotheses regarding differences in the maturity, the func-
tionality (for example, by expression changes of neurotransmitter
receptors), and even regional identity of differentiated cortical
neurons.
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To date, most iPSC-based studies of neurodevelopmental dis-
orders have been restricted to recapitulating the cellular phe-
notypes that were previously observed in animal models and
postmortem examinations. To inform iPSC-based disease mod-
eling, studies should aim to complement and extend this knowl-
edge. A recent transcriptome analysis of postmortem brain tissues
between individuals with ASD and control individuals identified
444 differentially expressed genes, and revealed the alteration of
two distinct gene-expression modules related to synaptic com-
munication and immune induction (Voineagu et al., 2011). Given
that these features were observed in the postmortem brain, com-
parative transcriptomic analyses between neurons derived from
ASD-iPSCs and control-iPSCs could highlight difference in gene
expression during the development and progression of disease. To
complement transcriptome-wide studies, comparative analyses of
protein-protein interactions (the protein interactome) between
ASD and control neurons may reveal alterations in normal cellu-
lar mechanisms. Considering the heterogeneity in ASD presenta-
tion and the underlying genetic lesions, multifaceted approaches
with customized neurons will greatly improve our understanding
of molecular mechanisms of ASD. By identifying the mechanistic
pathways involved in ASD pathophysiology, with time, the data
may converge on a unified mechanistic model for ASD, facilitating
development of therapeutic interventions (Casci, 2011).

FUTURE DIRECTIONS
Over the last decade great progress has been made in estab-
lishing methods for generation of cortical projection neurons
or inhibitory interneurons from hPSCs, but many challenges
remain. Methods for the generation of layer- or subregion-specific
cortical neurons from hPSCs would be beneficial for studies
of ASD pathophysiology. Impairment of specific cortico-striatal
(CStr) connectivity has been implicated in ASD, and many ASD-
associated genes are involved in CStr synapses (reviewed by
Shepherd, 2013). A recent study also showed that differences
in gene expression between the frontal and temporal cortices
in the normal brain are significantly attenuated in the autistic
brain, which implies altered cortical patterning (Voineagu et al.,
2011). This finding supports the notion that layer- or subregion-
specific neuronal subtypes would be tremendously valuable for
in vitro modeling of ASD. Although a direct method for layer- or
sub-regional specific cortical neurons from hPSCs has not been
developed yet, accumulating evidence from studies on mESC dif-
ferentiation and mouse development suggest possible approaches
for achieving this goal (Eiraku et al., 2008).

Differentiation of functionally mature neurons from hPSCs
is a long process with multiple steps requiring a few months.
This may increase heterogeneity of the final neuronal population,
even if the protocol was intended to enrich for a specific neu-
ronal subtype. One way to overcome these difficulties is to convert
patient-derived somatic cells directly into neurons, skipping cel-
lular reprogramming and differentiation. A recently introduced
method for direct conversion of fibroblasts to functional cor-
tical neurons relies on forced expression of neural-lineage spe-
cific transcription factors (Vierbuchen et al., 2010; Pang et al.,
2011). The low conversion efficiency (2–4% of cells) of the
method is a major obstacle for disease modeling, although small

molecule-based modulation reportedly improved differentiation
efficiencies to ∼80% (Ladewig et al., 2012). Regardless of differ-
entiation efficiencies, the disease modeling potential for direct
conversion from fibroblasts to terminally differentiated neurons
is limited by the number of patient-derived somatic cells that
are available. Südhof and colleagues recently developed a robust
and simple method for conversion of hPSCs to functional cor-
tical neurons with 100% efficiency in 3 weeks by expressing a
single transcription factor (Zhang et al., 2013). This approach
is not limited by available cell numbers, but it does require pre-
existing patient-specific iPSC lines for disease modeling. Despite
the method’s robustness and feasibility, one should be cautious in
utilizing direct conversion for disease modeling for ASD because
it skips the normal developmental process, which may be criti-
cal for manifestation of ASD-associated phenotypes (Sandoe and
Eggan, 2013). Furthermore, forced expression of key transcrip-
tion factors may override pathological mechanisms underlying
ASD (Brennand and Gage, 2012). Therefore, it is more desirable
to use direct conversion approaches as a complement for screen-
ing disease phenotypes or to reinforce results obtained by neurons
differentiated from hiPSCs.

Significant line-to-line variability has been observed in the
neuronal differentiation of hPSCs (Wu et al., 2007; Hu et al.,
2010; Kim et al., 2010) and efforts have been made to overcome
this issue. One suggestion for bypassing such variation among
iPSC lines is to pre-screen iPSC lines to select those with good
responsiveness to lineage specification procedures (Bock et al.,
2011; Boulting et al., 2011). However, reduced neural differen-
tiation/specification may be a biologically relevant phenotype
in studies of ASD, which would be unintentionally excluded by
using this screening approach (Sandoe and Eggan, 2013). Melton
et al. recently showed that priming human iPSCs with 1–2%
demethylsulfoxide (DMSO) prompted exit from the cell cycle and
improved differentiation efficiency of hiPSCs (Chetty et al., 2013).
Given the recent evidence that the cell cycle is highly implicated
in maintenance of pluripotency and fate decision, and elaborate
modulation of cell cycle leads to lineage specification from hPSCs,
this strategy may provide a solution for taming the variation
in differentiation resulting from cell line-specific characteristics
(Pauklin and Vallier, 2013). However, it is important to determine
whether specific ASD-associated genetic variations influence cell
cycle progression prior to applying these methods.

Finally, neuronal differentiation in vitro may not fully recapit-
ulate neuronal development as it happens in vivo. Proliferation
and differentiation of cortical progenitors occurs within spe-
cific niche environments characterized by signaling from the
VZ, differentiated daughter cells, as well as signaling from
non-neural sources, such as astrocytes, blood vessels, meninges
(reviewed by Johansson et al., 2010), and microglia (Antony
et al., 2011). The contribution of vascular endothelial cells
to cortical development has been appreciated for a decade
(Shen et al., 2004). Furthermore, increasing evidence suggests
that microglial dysregulation may underlie several neuropsy-
chiatric conditions including ASD (reviewed by Frick et al.,
2013). Therefore, the absence of non-neuronal components dur-
ing in vitro differentiation culture may obscure disease-relevant
phenotypes using neurons generated from hPSCs. In line with
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this idea, it would be quite informative to determine whether
co-culturing healthy cortical neurons with endothelial cells or
microglia derived from individuals with ASD impairs neuronal
function. Astrocytes are often supplied during the matura-
tion of hPSC-derived neurons, as they promote synaptogen-
esis (Johnson et al., 2007). However, astrocytes contribute to
the pathophysiology of neurodevelopmental disorders. Indeed,
hiPSC-derived RTT astrocytes adversely affect the function of
control neurons (Williams et al., 2014). The availability of
protocols for generating hiPSC-derived astrocytes will allow co-
culture experiments to examine the role of astrocytes in neu-
ronal dysfunction associated with ASD. Finally, investigation of
niche effects may help determine optimal in vitro conditions
for cortical differentiation, and provide clues for therapeutic
approaches.

CONCLUSION
With rapid progress in our ability to precisely manipulate hiP-
SCs, the tremendous knowledge gap between ASD genetics and
our understanding of its pathophysiology is beginning to close.
Using iPSC technology, it is possible to generate limitless supplies
of human ASD-specific cortical neurons, which can revolutionize
experimental analyses of ASD. Already, studies of the neurode-
velopmental disorders RTT, TS, AS, and PMDS have shown that
neuronal phenotypes can be identified using iPSC-derived neu-
rons, and that these phenotypes can be corrected. Given the
genetic heterogeneity of idiopathic ASD and the diversity in its
clinical presentation, robust and highly reproducible methods for
hiPSC manipulation is essential for linking genotype to pheno-
type. With the advent of facile mammalian genome engineering
methods (reviewed in Hsu and Zhang, 2012; Mali et al., 2013)
allowing for generation of gene-corrected cells from patient hiP-
SCs, precise neuronal differentiation methods will greatly facil-
itate the determination of causal mechanisms underlying ASD
pathophysiology. However, there is still a great need for opti-
mized and standardized cortical differentiation protocols that are
efficient, swift, scalable, and produce desired neuronal subpop-
ulations. Upon identification of ASD-associated neuronal phe-
notypes, iPSC-derived cortical neurons may be used for screens
of chemical libraries, which will greatly facilitate drug discovery.
With continued progress in neuronal differentiation from hiPSCs,
the stage is set for understanding how ASD develops and how it
may be treated.
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