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The key role of mitochondria in patients affected by amyotrophic lateral sclerosis
(ALS) is well documented by electron microscopy studies of motor neurons
within spinal cord and brainstem. Nonetheless, recent studies challenged the
role of mitochondria placed within the cell body of motor neuron. In fact, it
was demonstrated that, despite preservation of mitochondria placed within this
compartment, there is no increase in the lifespan of transgenic mouse models
of ALS. Thus, the present mini-review comments on morphological findings of
mitochondrial alterations in ALS patients in connection with novel findings about
mitochondrial dynamics within various compartments of motor neurons. The latter
issue was recently investigated in relationship with altered calcium homeostasis and
autophagy, which affect mitochondria in ALS. In fact, it was recently indicated that
a pathological mitophagy, mitochondriogenesis and calcium homeostasis produce
different ultrastructural effects within specific regions of motor neurons. This might
explain why specific compartments of motor neurons possess different thresholds
to mitochondrial damage. In particular, it appears that motor axons represent
the most sensitive compartment which undergoes the earliest and most severe
alterations in the course of ALS. It is now evident that altered calcium buffering
is compartment-dependent, as well as mitophagy and mitochondriogenesis. On
the other hand, mitochondrial homeostasis strongly relies on calcium handling,
the removal of altered mitochondria through the autophagy flux (mitophagy) and
the biogenesis of novel mitochondria (mitochondriogenesis). Thus, recent findings
related to altered calcium storage and impaired autophagy flux in ALS may help to
understand the occurrence of mitochondrial alterations as a hallmark in ALS patients.
At the same time, the compartmentalization of such dysfunctions may be explained
considering the compartments of calcium dynamics and autophagy flux within motor
neurons.

Keywords: mitochondria, amyotrophic lateral sclerosis, autophagy, human patients, motor neuron, electron
microscopy, biogenesis of mitochondria
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Introductory Statement

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive
neurodegenerative disorder, which is characterized by massive
motor neuron loss in the brainstem and spinal cord as
well as motor cortex (Charcot, 1874; Boillée et al., 2006).
The severity of this neurological disorder led to intense
research efforts aimed to elucidate molecular and cellular
events underlying motor neuron degeneration. In dissecting
the variety of molecular mechanisms which characterize ALS
several experimental approaches have been used. Multiple
pathways might play a detrimental role on motor neuron
survival. In fact, at mitochondrial level the occurrence of
altered calcium homeostasis was described in great detail
by recent studies (Fuchs et al., 2013; Barrett et al., 2014),
while at cellular level the evidence of altered autophagy
machinery seems to be well established (Pasquali et al., 2009).
Nonetheless, a final common pathway connecting fine molecular
mechanisms within mitochondria and pathological events at
cellular level still needs to be clarified. Therefore, in the present
short manuscript we discuss the significance of ultrastructural
evidence, which was established in ALS patients for decades,
in connection with altered mechanisms of calcium homeostasis
and mitochondrial dynamics. Mitochondrial alterations were
described in the ultrastructural pathology of ALS since early
80’s by Atsumi (1981) when analyzing muscle biopsies from
ALS patients. Despite their pioneer nature, these studies
evidenced the earlier site of mitochondrial alterations at the
level of muscle nerve endings. In fact, the routine description
of motor neuron cell bodies carried out within ALS spinal
cord, despite disclosing some hallmarks of ALS, rules out
the potential role of ultrastructural pathology which occurs
in motor nerve endings. In keeping with this, some authors
emphasized mitochondrial alterations occurring within muscle
nerve endings as key mechanisms of disease. Thus, Siklós
et al. (1996) pointed out that, at early disease stages, ALS
patients develop severe ultrastructural alterations within muscle
presynaptic nerve terminals. This is known to consist of
increased mitochondrial volume produced by dilution of the
matrix and swelling of the organelles featuring broken cristae.
These abnormalities represent a hallmark of ultrastructural
pathology in ALS where giant mitochondria are often placed
within big stagnant vesicular bodies, which were later identified
as defective autophagy vacuoles. Remarkably, these findings
in ALS patients are replicated by a number of ALS models
(Sasaki and Iwata, 1996a,b, 2007; Fornai et al., 2008b; Ferrucci
et al., 2010). Therefore, these models provided a useful tool
to analyze the neurobiology of disease. For instance, it was
established that giant mitochondria are associated with increased
neuronal volume (Martin et al., 2007; Fornai et al., 2008a). Again,
motor neuron cell body in ALS is filled with giant vesicles
(Martin et al., 2007; Fornai et al., 2008a; Laird et al., 2008; see
Figure 1). Not surprisingly, these giant vesicles may contain
swollen and disrupted mitochondria (Fornai et al., 2008a). These
vesicles often fill the whole cell body of motor neurons leading
to the concept of slow necrosis (Martin et al., 2007). These
vesicles stain for specific autophagy antigens indicating that

autophagy pathway is often relented and/or impaired within
ALS motor neurons (Fornai et al., 2008a; Laird et al., 2008).
The autophagy machinery possesses a specific role in removing
altered mitochondria (so-called mitophagy) which suggests that,
apart from primary mitochondrial alterations, even a relented
removal of aged/altered mitochondria co-exists to produce
an overloading of dysfunctional mitochondria within motor
neurons.

The Characterization of Mitochondrial
Alterations

Mitochondrial alterations are constantly found within motor
neurons of the spinal cord, thus making it mandatory to decipher
which molecular mechanism is implicated to comprehend
ALS. Seminal studies by a number of research groups clearly
demonstrated that mitochondrial alterations are produced by or
associate with altered mitochondrial calcium homeostasis. For
instance Ladewig et al. (2003) by using multiphoton microscopy
and patch clamp recording demonstrated the occurrence of
exaggerated calcium release and diminished calcium storage by
mitochondria of motor neurons under specific stimuli. This
suggests a specific vulnerability of motor neurons to develop
disruption of mitochondrial calcium homeostasis upon sustained
stimulation. This hypothesis was validated by Jaiswal and
Keller (2009) by using a G93A mouse model of ALS. Fuchs
et al. (2013) found that during the course of ALS impaired
mitochondrial calcium buffering is modified. In detail, in order
to compensate for a severe impairment of calcium buffering
from spared mitochondria (and the loss of mitochondria)
a plasma membrane calcium extrusion mechanism is up-
regulated at the end stage of the disease. This suggests an
endogenous compensatory mechanism which might be viewed
as a promising therapeutic approach to be enhanced by
exogenous manipulation. Nonetheless, a recent manuscript by
Parone et al. (2013) mitigated and even challenged such a
concept.

A Challenge to the Role of Mitochondria
in ALS

Parone et al. (2013) demonstrated that protection of motor
neuron mitochondria in the spinal cord induced by inhibiting
cyclophilin D (a key regulator of calcium-mediated opening of
the mitochondrial transition pore, mTP) in three varieties of
superoxide dismutase 1 (SOD1) mutations, despite preserving
the number of motor neurons counted in the spinal cord, did
neither mitigate symptoms nor prolong survival in experimental
ALS. This sharp experimental approach re-introduced the
seminal role of peripheral motor denervation as a key
determinant in producing palsy and lethality in ALS. These
findings lend substance to very early electron microscopy studies
in human patients showing that motor axon loss within muscles
is advanced at early stages of disease (Atsumi, 1981). Should
these data being considered as a challenge to the concept
that mitochondria play a pivotal role of in ALS? This is
debatable since the occurrence of peripheral degeneration of
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FIGURE 1 | Paradigm of severe mitochondrial alterations in ALS motor neurons. The first (A–C) and the second column (D–F) show at low and high
magnification, respectively, the severe damage produced to mitochondria by the SOD1 G93A ALS-inducing mutation. On the right column (G–I), the beneficial
effects of autophagy, induced by lithium, are evident. Scale bars: A–C = 0.12 µm; D = 0.55 µm; E = 0.15 µm; F = 0.13 µm; G–I = 0.12 µm; from Fornai et al.
(2008a), Supporting Information, SI Figure 21; Copyright (2008) National Academy of Sciences, USA.

motor axons is accompanied by severe mitochondrial pathology.
Similarly, in their manuscript Parone et al. (2013) did not
rule out the detrimental role of mitochondrial alterations.
Then, one might consider that mitochondria in ALS motor
neuron cell bodies play a sort of epiphenomenal role being
not key in disease progression compared with mitochondrial
alterations within motor nerve terminals. Similarly, protecting
mitochondria withinmotor neuron cell body does not necessarily
relates with protection of mitochondria within motor axons.
Thus, being the axonal loss directly responsible for producing
palsy and lethality, it is not surprising to observe fatal disease
progression in the presence of spared motor neurons counted
in the central nervous system. This point of view does not
rule out the detrimental effects of mitochondrial alterations but
it moves the consequence of mitochondrial damage to which
motor neuron compartment is mostly affected. This confirms
pioneer studies of Hart et al. (1977) and Hirano et al. (1984a,b)
who found the occurrence of altered mitochondria following
electron microscopy of motor neurons in patients affected by
ALS. Although, it is critical to consider that ultrastructural

findings in ALS patients indicate that swollen mitochondria
in peripheral nerves occur early than within spinal cord
motor neurons (Sasaki and Iwata, 1996a,b, 2007; Siklós et al.,
1996).

How to Reconcile the Altered
Mitochondrial Calcium Homeostasis with
Previous Point

A very recent manuscript by Barrett et al. (2014) discussed the
apparent discrepancy between data obtained with cyclophilin
D KO mice and the key role of altered mitochondrial calcium
buffering observed in SOD1 mutant mice. These authors
provided a series of strong points to reconcile the critical
loss of calcium buffering with the lack of protection from
symptoms and lethality published by Parone et al. (2013)
in cyclophilin D KO mice. For instance the suppression of
pathological calcium current observed in cyclophilin D KO
mice might not be as effective in axonal mitochondria as that
one measured in the motor neuron cell body. This hypothesis
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includes the chance that axonal mitochondria may possess
a kind of calcium alterations which are not preventable by
inhibiting expression of cyclophilin D. This includes both a
higher variety of mitochondrial stressors within axons compared
with cell body and the higher surface-to-volume ratio (loss of
the spheroid shape) for axonal mitochondria which would render
these organelles richer in density for calcium channels. Similarly,
one might add to Barrett et al.’s (2014) considerations that,
such a mitochondrial shape would make these organelles more
exposed to a toxic microenvironment. When discussing in depth
the lack of protection of cyclophilin D KO mice, Barrett et al.
(2014) add a number of hypothesis about different mechanisms
of neurotoxicity between axons and cell bodies of motor neurons
which are plausible indeed. Apart from focusing on differential
vulnerability of axon compared with cell body mitochondria,
it is worth to be mentioned that a different dynamics may
occur for mitochondria placed within motor axons compared
with cell bodies. As reported again by Barrett et al. (2014), this
difference was first described by Magrané et al. (2012). These
authors, by using live imaging microscopy of photo-switchable
fluorescent mitochondrial dye, demonstrated that mitochondria
fromG93Amice possess a slower axonal transport and decreased
fusion.

The Key Role of Mitochondrial
Compartments

Altogether, these concepts lead to emphasize the role of motor
neuron compartments when considering that mitochondrial
alterations do represent a key event in ALS pathogenesis.
Therefore, apart from the specific mechanisms it is very likely
that the threshold for damage at axonal mitochondria is likely
to be lower when compared with the threshold which is
needed to damage mitochondria placed in the cell body of
motor neurons. This would reconcile the occurrence of axonal
denervation in the presence of sparing motor neuron cell bodies
described by Parone et al. (2013). Thus, if one analyze the role
of mitochondrial dynamics beyond the findings of Magrané
et al. (2012, 2014), it is worth to be mentioned that axonal
transport it is regulated by the very same class of proteins
which regulate autophagy (Pasquali et al., 2014). In fact, altered
mitochondrial dynamics should be viewed in a wider perspective
where impaired removal of altered mitochondria (impaired
mitophagy, which is a part of the autophagy machinery) plays
a key role. This impairment indeed occurs in G93A mice
(Fornai et al., 2008b; Pasquali et al., 2009) but it seems to
extend to other ALS model and ALS related genes (Laird et al.,
2008). Similarly, the impairment in mitochondrial dynamics
ranges from G93A to TAR DNA binding protein 43 (TDP-43)
mutant mice (Magrané et al., 2012, 2014). At the same time,
apart from the formal description of a defective mitochondrial
fusion (Magrané et al., 2012, 2014), one might extend the
analysis to the authentic biogenesis of mitochondria which is
defective again in ALS models as shown by polymerase chain
reaction (PCR) of mitochondrial genes and MitoTracker green
and red (Fornai et al., 2008a). As we shall see in the next
paragraph, there is now abundant and very recent evidence, that

autophagy of mitochondria is co-activated with mitochondria
biogenesis and a defect in autophagy eventually involves a
deficiency in mitochondriogenesis, whereas a stimulation of
mitophagy concomitantly promotes the biogenesis of novel
mitochondria. The mitochondrial compartment then plays a
pivotal role in this scenario, where remote axon terminals
are expected to be much more affected than neuronal cell
bodies.

Where Damaged Mitochondria Come
From?

When mitochondrial alterations play a pivotal role, than it
should be considered whether these may occur directly as
the effect of a primary toxicity to mitochondria affecting
calcium homeostasis or they can be produced by a defect
of mitochondrial removal or even by a relented biogenesis
of novel mitochondria. Even in these latter cases abnormal
mitochondria are expected to possess altered calcium storage
as shown by von Lewinski and Keller (2005). In this
scenario several ALS phenotypes are likely to be included
(see Figure 2). In fact, in the case of a mutation of the
SOD1 gene, an overactive enzyme impairing mitochondrial
function is produced (Higgins et al., 2002; Vehviläinen et al.,
2014). In addition, in the very same strain of mice an
impaired removal of mitochondria due to impaired mitophagy
is documented (Pasquali et al., 2009, 2014). This may take a
prominent role when specific ALS related proteins are mutated.
For instance, the dynactin mutation (Münch et al., 2004)
produces a defect in the autophagy flux which in turn is
accompanied by stagnant autophagy vacuoles (Laird et al.,
2008; Ikenaka et al., 2013). Interestingly, when alterations
in the autophagy (mitophagy) machinery are described these
are concomitant with defects in the biogenesis of novel
mitochondria. In fact, autophagy inducers are described to
increase mitochondriogenesis (Struewing et al., 2007; Fornai
et al., 2008a), while a common pathway simulates both
mitophagy and mitochondriogenesis (Palikaras et al., 2015a,b).
Recent data show that mitophagy is tightly related to the
biogenesis of novel mitochondria (Palikaras et al., 2015a,b).
In detail, when a certain amount of damaged mitochondria is
produced, this triggers mitophagy which mediates the removal
of damaged mitochondria. This is based on SKN-1 activation,
which beside promotingmitophagy, also increasesmitochondrial
biogenesis (Palikaras et al., 2015a,b). Thus, it is expected that a
failure in the autophagy pathway comes together with a defect
in the biogenesis of mitochondria. For instance, Palikaras et al.
(2015b) hypothesized that suppression of mitophagy inhibits
both mitochondria removal and mitochondria biogenesis, thus
producing a bidirectional mechanism to increase mitochondrial
alterations. Similarly, it is not surprising that autophagy inducers
such as lithium or resveratrol, which are autophagy inducers,
concomitantly stimulate the biogenesis of novel mitochondria
(Fornai et al., 2008a; Meira-Martins et al., 2015; Figure 1). Thus,
a sort of tightened dual feedback may adjust mitochondrial
population. Not surprisingly, both lithium and resveratrol
were found to improve experimental ALS and other motor
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FIGURE 2 | Cartoon on the major pathways involved in mitochondrial integrity and a few examples of ALS-related alterations. The mitochondrial
dysfunctions in ALS may be produced by a direct mitochondrial toxicity (exemplified here by SOD1-induced mitochondrial toxicity) or a defect in the removal of altered
mitochondria by the autophagy/mitophagy pathway. These include: (1) defect in the merging of autophagosome with lysosome (dynactin mutation); (2) defect of
merging of endosome with autophagosome to produce amphisome (alsin mutation); (3) defect in linking ubiquitinated protein aggregates to the autophagy machinery
by the autophagy protein p62 (SQSTM1 mutation); (4) defect of the fusion of autophagosomes with endosomes and lysosomes (CHMP2B mutation); (5) defect in
vesicles trafficking beyond the autophagosome (dynactin mutation); (6) defect in parkin-mediated mitophagy (Optineurin mutation); (7) defect in autophagosome
maturation and mitophagy (VCP mutation); and (8) defect in trafficking of autophagy compartments (C9orf72 mutation). Despite a sole defect in the biogenesis of

(Continued)
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FIGURE 2 | Continued
mitochondria may potentially lead to accumulation of degenerated
mitochondria, to our knowledge a specific familial ALS (fALS) phenotype due
to such a defect was not described so far. Nonetheless, it is likely that, due to
a dual tightened control of mitochondrial removal and biogenesis of
mitochondria, a failure in the first pathway will eventually lead to a failure in the
biogenesis of novel mitochondria. Thus, it is not surprising that, in all fALS
phenotypes featuring a defect in the progression of autophagy, we can detect
only giant, altered mitochondria in the absence of small, newly synthesized
mitochondria. This confirms the eventual concomitance of mitophagy and
mitochondriogenesis as indicated by Palikaras et al. (2015a,b). Degenerated
mitochondria, to our knowledge a specific fALS phenotype due to such a
defect was not described so far. Nonetheless, it is likely that, due to a dual
tightened control of mitochondrial removal and biogenesis of mitochondria, a
failure in the first pathway will eventually lead to a failure in the biogenesis of
novel mitochondria. Thus, it is not surprising that, in all fALS phenotypes
featuring a defect in the progression of autophagy, we can detect only giant,
altered mitochondria in the absence of small, newly synthesized mitochondria.
This confirms the eventual concomitance of mitophagy and
mitochondriogenesis as indicated by Palikaras et al. (2015a,b).

neuron disorders (Shimada et al., 2012; Mancuso et al.,
2014) and synergistic effects in ALS patients are produced
by combined administration of autophagy inducers such as
valproate and lithium (Boll et al., 2014). However, it is true
that the sole increase in the biogenesis of mitochondria does
not guarantee for neuroprotection in ALS as shown by Da
Cruz et al. (2012). At the same time when autophagy is
not induced (Pizzasegola et al., 2009) due to a ten-fold sub-
therapeutic treatment (Chiu et al., 2013), the neuroprotective
effects induced by lithium on motor neurons cannot be
appreciated.

The Close Connection Between Autophagy
and Mitochondria

When focusing on mitochondrial alterations in human ALS,
it becomes mandatory to analyze the autophagy status since
the occurrence of mitochondrial alterations is likely to be
accompanied by a derangement in the autophagy machinery.
Confirming this novel standpoint there is evidence in ALS
patients that adds on structural mitochondrial alterations
showing that a variety of autophagy markers are altered in the
spinal cord of ALS patients (Sasaki, 2011). These data often led
to opposite interpretation either being considered as a proof for a
detrimental role of autophagy in ALS or vice versa they have been
considered an evidence that a failure of the autophagy machinery
occurs in ALS. In keeping with mitochondrial dynamics, it
is worth to be mentioned that occurrence of big autophagy
vacuoles containing mitochondria generally reflect a defect in
the autophagy flux rather than a pathological over-activation of
the autophagy machinery. In keeping with this, most familial
ALS (fALS) are related with a defect of proteins involved in
the autophagy machinery, thereby inducing a failure in the
autophagy pathway. A synthetic report of these mutations is
reported below along with evidence of a defect in the autophagy
machinery. This summarizes and up-dates what already reported
by Pasquali et al. (2014).

A Few Examples of Specific Effects of
Human ALS Genes on the Autophagy
Machinery

Briefly, more than twenty years ago the SOD1 was the first
gene which was associated with fALS (Deng et al., 1993; Rosen
et al., 1993). Remarkably, the mutant forms of the SOD1 protein,
as well as the wild-type SOD1, are degraded by the autophagy
pathway, which in turn, plays a pivotal role in decreasing SOD1
toxicity (Kabuta et al., 2006). In motor neurons from fALS
(SOD1) patients and transgenic SOD1 mice as well, autophagy
appears to be engulfed by an excess of SOD1. In these cells,
a compensatory increase in autophagy markers such as levels
of LC3-II occurs (Morimoto et al., 2007; Fornai et al., 2008a),
nonetheless, autophagy progression is impaired. This explains
why in the presence of SOD1 G93A mutation impairment
of autophagy is concomitant with an increase in autophagy-
related proteins. The gene ALS2 is responsible for an autosomal
recessive fALS (Yang et al., 2001). This gene codes for the
alsin protein, which sustains autophagy progression by merging
endosomes with autophagosomes to produce amphisomes. In
fact, alsin deficiency decreases the motility of endosomes,
which accumulate as Rab5 positive giant organelles (Lai et al.,
2009). Missense mutations in charged multivesicular protein 2B
(CHMP2B) were recently identified in fALS patients (Parkinson
et al., 2006). CHMP2B is a component of endosomal sorting
complexes required for transport III (ESCRT-III), which belongs
to the ESCRT proteins involved in sorting of endocytosed
ubiquitinated integral membrane proteins into multivesicular
bodies (MVB; Babst et al., 1998, 2002; Katzmann et al., 2001). In
particular, CHMP2B enables merging of autophagosomes with
either endosomes or lysosomes (Rusten and Stenmark, 2009;
Manil-Ségalen et al., 2014). Thus, mutations of CHMP2B lead
to impairment in autophagy progression with accumulation of
LC3-II positive autophagosomes and altered cargos degradation
(Filimonenko et al., 2007; Lee et al., 2007; Cox et al., 2010). The
TDP-43 is mostly placed in the nucleus of healthy cells and it is
involved in gene transcription and alternative splicing. Patients
with TDP-43 mutations develop fALS (Kühnlein et al., 2008;
Sreedharan et al., 2008; Van Deerlin et al., 2008; Yokoseki et al.,
2008) and possess a misplacement of TDP-43 (from nucleus
to cytoplasm) in the form of neuronal inclusions (Arai et al.,
2006; Neumann et al., 2006). TDP-43 metabolism is impaired by
autophagy inhibitors which produce misplacement of TDP-43,
while this is reversed under the effects of autophagy activation
(Wang et al., 2010). In line with this, valproate attenuates
neuronal toxicity by enhancing autophagy (Wang et al., 2015),
while high levels of fragments fromTDP-43 engulf the autophagy
machinery causing motor deficits (Caccamo et al., 2015). Some
fALS patients feature mutations of sequestosome 1 (SQSTM1;
Fecto et al., 2011; Rubino et al., 2012). The SQSTM1 gene codes
for the protein p62, which is a major autophagy inducer. The
specific role of p62 in autophagy consists in linking ubiquitinated
protein aggregates to the autophagy machinery (Gal et al., 2007).
Heterozygous missense mutations of the dynactin 1 (DCTN1)
gene were detected in other fALS patients (Münch et al., 2004).
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Dynactin mutations produce an autophagy failure (Laird et al.,
2008). In fact, dynactin is part of a cytoskeletal molecular
complex (consisting of dyenin, dynactin and dynamitin), which
is key in promoting the cytoplasmic transport of vesicles along
the axon and cell body (Gill et al., 1991; Schroer and Sheetz,
1991; Waterman-Storer et al., 1997). This extends to trafficking
of autophagy vesicles such as the merging of autophagosomes
with lysosomes (Gill et al., 1991; Schroer and Sheetz, 1991;
Waterman-Storer et al., 1997; Laird et al., 2008). In fact,
autophagosome needs to be transported along microtubules
to the center of the cells (centrosome), where most of the
lysosomes are located (Gill et al., 1991; Schroer and Sheetz, 1991;
Waterman-Storer et al., 1997). Remarkably, this fALS-producing
mutation is a paradigm to connect impairment of autophagy with
a compartment-dependent alteration in the flux of organelles
(including mitochondria).

Similarly, mutations of optineurin, a protein involved in
intracellular trafficking (Ying and Yue, 2012), were described
in fALS patients (Maruyama et al., 2010). Optineurin works
as an autophagy receptor containing LC3 and ubiquitin-
binding domain and it plays a pivotal role in parkin-mediated
mitophagy (Wild et al., 2011). Remarkably, optineurin recruits
LC3 and clusters around damaged mitochondria upstream to
their entrapment within autophagosomes following their parkin-
dependent ubiquitination. Thus, it is expected that mutation
of optineurin leads to accumulation of damaged mitochondria.
Ubiquilin 2, a member of the ubiquilin family, which delivers
substrate to autophagy, was found to produce fALS (Deng
et al., 2011; Williams et al., 2012). In particular, the loss
of ubiquilin inhibits conversion of LC3-I to active lapidated
LC3-II, which activates autophagy (Ko et al., 2004; Rothenberg
et al., 2010). Mutations of the valosin-containing protein (VCP)
gene were described in fALS (Johnson et al., 2010). This gene
codes for a chaperone protein involved in mitophagy through

autophagosome maturation (Tanaka et al., 2010; Meyer et al.,
2012; Yamanaka et al., 2012). Hexanucleotide (GGGGCC) repeat
expansions in a non-coding region of chromosome 9 open
reading frame 72 (C9orf72) occur in fALS (DeJesus-Hernandez
et al., 2011). Very recently C9orf72 was described to be involved
in the trafficking of autophagy vesicles (Farg et al., 2014).

Conclusion

The bulk of mutations reported in the last paragraph,
characterize most fALS and indicate a mechanistic connection
between autophagy impairment and ALS. This evidence is based
on multidisciplinary approaches encompassing in vitro protein
assay and in vivo genetic manipulation. Since the autophagy
machinery is key for removing altered mitochondria, it is not
surprising that despite a plethora of different mutated proteins
in various fALS patients, ultrastructural evidence consistently
report the occurrence of a number of altered mitochondria.
At the same time, the chronic reiteration of a primary
injury towards mitochondria is expected to overwhelm the
compensatory mitochondria turn-over. Thus, recent evidence
showing impairment of the autophagy machinery in ALS
is complementary with the seminal findings showing altered
mitochondrial calcium homeostasis in ALS motor neurons.
In fact this may occur either as a primary defect or as the
consequence of altered mitochondrial turn over. Very recently,
such a scenario was remarkably enriched by the evidence
that impaired mitophagy necessarily triggers a failure in the
biogenesis of novel mitochondria. Thus, the occurrence in ALS of
a variety of defects such as: (i) fine mitochondrial dysfunctions,
mostly related to calcium homeostasis; (ii) impairment of
mitophagy flux; and (iii) failure of mitochondrial biogenesis
(often reported as a mere fusion defect) appear more and more
as different perspectives to describe similar phenomena.

References

Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., et al.
(2006). TDP-43 is a component of ubiquitin-positive tau negative inclusions
in frontotemporal lobar degeneration and amyotrophic lateral sclerosis.
Biochem. Biophys. Res. Commun. 351, 602–611. doi: 10.1016/j.bbrc.2006.
10.093

Atsumi, T. (1981). The ultrastructure of intramuscular nerves in amyotrophic
lateral sclerosis. Acta Neuropathol. 55, 193–198. doi: 10.1007/bf006
91318

Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B., and Emr, S. D. (2002).
Endosome-associated complex, ESCRT-II, recruits transport machinery for
protein sorting at the multivesicular body. Dev. Cell 3, 283–289. doi: 10.
1016/s1534-5807(02)00219-8

Babst, M., Wendland, B., Estepa, E. J., and Emr, S. D. (1998). The Vps4p AAA
ATPase regulates membrane association of a Vps protein complex required for
normal endosome function. EMBO J. 17, 2982–2993. doi: 10.1093/emboj/17.11.
2982

Barrett, E. F., Barrett, J. N., and David, G. (2014). Dysfunctional mitochondrial
Ca(2+) handling in mutant SOD1 mouse models of fALS: integration of
findings frommotor neuron somata andmotor terminals. Front. Cell. Neurosci.
8:184. doi: 10.3389/fncel.2014.00184

Boillée, S., Vande Velde, C., and Cleveland, D. W. (2006). ALS: a disease of motor
neurons and their non-neuronal neighbors. Neuron 52, 39–59. doi: 10.1016/j.
neuron.2006.09.018

Boll, M. C., Bayliss, L., Vargas-Cañas, S., Burgos, J., Montes, S., Peñaloza-
Solano, G., et al. (2014). Clinical and biological changes under treatment
with lithium carbonate and valproic acid in sporadic amyotrophic
lateral sclerosis. J. Neurol. Sci. 340, 103–108. doi: 10.1016/j.jns.2014.
03.005

Caccamo, A., Shaw, D. M., Guarino, F., Messina, A., Walker, A. W., and Oddo,
S. (2015). Reduced protein turnover mediates functional deficits in transgenic
mice expressing the 25 kDa C-terminal fragment of TDP-43.Hum. Mol. Genet.
24, 4625–4635. doi: 10.1093/hmg/ddv193

Charcot, J. M. (1874). ‘‘Amyotrophies spinales deuteropathiques sclérose latérale
amyotrophique,’’ Vol. 2, inOeuvres Complétes, eds F. Alcan, (Paris: Bureaux du
Progr’es Médical), 234–248.

Chiu, C. T., Wang, Z., Hunsberger, J. G., and Chuang, D. M. (2013).
Therapeutic potential of mood stabilizers lithium and valproic acid:
beyond bipolar disorder. Pharmacol. Rev. 65, 105–142. doi: 10.1124/pr.111.
005512

Cox, L. E., Ferraiuolo, L., Goodall, E. F., Heath, P. R., Higginbottom, A.,Mortiboys,
H., et al. (2010). Mutations in CHMP2B in lower motor neuron predominant
amyotrophic lateral sclerosis (ALS). PLoS One 5:e9872. doi: 10.1371/journal.
pone.0009872

Da Cruz, S., Parone, P. A., Lopes, V. S., Lillo, C., McAlonis-Downes, M.,
Lee, S. K., et al. (2012). Elevated PGC-1α activity sustains mitochondrial
biogenesis and muscle function without extending survival in a mouse
model of inherited ALS. Cell Metab. 15, 778–786. doi: 10.1016/j.cmet.2012.
03.019

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 September 2015 | Volume 9 | Article 341

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Ruffoli et al. Deciphering mitochondrial alteration in ALS

DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M.,
Rutherford, N. J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in
noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.
Neuron 72, 245–256. doi: 10.1016/j.neuron.2011.09.011

Deng, H. X., Chen, W., Hong, S. T., Boycott, K. M., Gorrie, G. H., Siddique,
N., et al. (2011). Mutations in UBQLN2 cause dominant X-linked juvenile
and adult-onset alS and ALS/dementia. Nature 477, 211–215. doi: 10.
1038/nature10353

Deng, H. X., Hentati, A., Tainer, J. A., Iqbal, Z., Cayabyab, A., Hung, W. Y.,
et al. (1993). Amyotrophic lateral sclerosis and structural defects in Cu,Zn
superoxide dismutase. Science 261, 1047–1051. doi: 10.1126/science.8351519

Farg, M. A., Sundaramoorthy, V., Sultana, J. M., Yang, S., Atkinson, R. A., Levina,
V., et al. (2014). C9ORF72, implicated in amyotrophic lateral sclerosis and
frontotemporal dementia, regulates endosomal trafficking. Hum. Mol. Genet.
23, 3579–3595. doi: 10.1093/hmg/ddu068

Fecto, F., Yan, J., Vemula, S. P., Liu, E., Yang, Y., Chen, W., et al. (2011). SQSTM1
mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol.
68, 1440–1446. doi: 10.1001/archneurol.2011.250

Ferrucci, M., Spalloni, A., Bartalucci, A., Cantafora, E., Fulceri, F., Nutini, M., et al.
(2010). A systematic study of brainstem motor nuclei in a mouse model of
ALS, the effects of lithium.Neurobiol. Dis. 37, 370–383. doi: 10.1016/j.nbd.2009.
10.017

Filimonenko, M., Stuffers, S., Raiborg, C., Yamamoto, A., Malerød, L., Fisher,
E. M., et al. (2007). Functional multivesicular bodies are required for
autophagic clearance of protein aggregates associated with neurodegenerative
disease. J. Cell Biol. 179, 485–500. doi: 10.1083/jcb.200702115

Fornai, F., Longone, P., Cafaro, L., Kastsiuchenka, O., Ferrucci, M., Manca, M. L.,
et al. (2008a). Lithium delays progression of amyotrophic lateral sclerosis. Proc.
Natl. Acad. Sci. U S A 105, 2052–2057. doi: 10.1073/pnas.0708022105

Fornai, F., Longone, P., Ferrucci, M., Lenzi, P., Isidoro, C., Ruggieri, S., et al.
(2008b). Autophagy and amyotrophic lateral sclerosis: the multiple roles of
lithium. Autophagy 4, 527–530. doi: 10.4161/auto.5923

Fuchs, A., Kutterer, S., Mühling, T., Duda, J., Schütz, B., Liss, B., et al. (2013).
Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable
motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis.
J. Physiol. 591, 2723–2745. doi: 10.1113/jphysiol.2012.247981

Gal, J., Ström, A. L., Kilty, R., Zhang, F., and Zhu, H. (2007). p62 accumulates and
enhances aggregate formation in model systems of familial amyotrophic lateral
sclerosis. J. Biol. Chem. 282, 11068–11077. doi: 10.1074/jbc.m608787200

Gill, S. R., Schroer, T. A., Szilak, I., Steuer, E. R., Sheetz, M. P., and Cleveland,
D. W. (1991). Dynactin, a conserved, ubiquitously expressed component of an
activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 115,
1639–1650. doi: 10.1083/jcb.115.6.1639

Hart, M. N., Cancilla, P. A., Frommes, S., and Hirano, A. (1977). Anterior horn
cell degeneration and Bunina-type inclusions associated with dementia. Acta
Neuropathol. 38, 225–228. doi: 10.1007/bf00688069

Higgins, C. M., Jung, C., Ding, H., and Xu, Z. (2002). Mutant Cu, Zn superoxide
dismutase that causes motoneuron degeneration is present in mitochondria in
the CNS. J. Neurosci. 22:RC215.

Hirano, A., Donnenfeld, H., Sasaki, S., and Nakano, I. (1984a). Fine structural
observations of neurofilamentous changes in amyotrophic lateral sclerosis.
J. Neuropathol. Exp. Neurol. 43, 461–470. doi: 10.1097/00005072-198409000-
00001

Hirano, A., Nakano, I., Kurland, L. T., Mulder, D. W., Holley, P. W., and
Saccomanno, G. (1984b). Fine structural study of neurofibrillary changes in
a family with amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 43,
471–480. doi: 10.1097/00005072-198409000-00002

Ikenaka, K., Kawai, K., Katsuno, M., Huang, Z., Jiang, Y. M., Iguchi, Y., et al.
(2013). dnc-1/dynactin 1 knockdown disrupts transport of autophagosomes
and induces motor neuron degeneration. PLoS One 8:e54511. doi: 10.
1371/journal.pone.0054511

Jaiswal, M. K., and Keller, B. U. (2009). Cu/Zn superoxide dismutase typical
for familial amyotrophic lateral sclerosis increases the vulnerability of
mitochondria and perturbs Ca2+ homeostasis in SOD1G93A mice. Mol.
Pharmacol. 75, 478–489. doi: 10.1124/mol.108.050831

Johnson, J. O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V. M.,
Trojanowski, J. Q., et al. (2010). Exome sequencing reveals VCP mutations
as a cause of familial ALS. Neuron 68, 857–864. doi: 10.1016/j.neuron.2010.
11.036

Kabuta, T., Suzuki, Y., and Wada, K. (2006). Degradation of amyotrophic
lateral sclerosis-linked mutant Cu,Zn-superoxide dismutase proteins by
macroautophagy and the proteasome. J. Biol. Chem. 281, 30524–30533. doi: 10.
1074/jbc.m603337200

Katzmann, D. J., Babst, M., and Emr, S. D. (2001). Ubiquitin-dependent sorting
into the multivesicular body pathway requires the function of a conserved
endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155. doi: 10.
1016/s0092-8674(01)00434-2

Ko, H. S., Uehara, T., Tsuruma, K., and Nomura, Y. (2004). Ubiquilin interacts
with ubiquitylated proteins and proteasome through its ubiquitin-associated
and ubiquitin-like domains. FEBS Lett. 566, 110–114. doi: 10.1016/j.febslet.
2004.04.031

Kühnlein, P., Sperfeld, A. D., Vanmassenhove, B., Van Deerlin, V., Lee, V. M. Y.,
Trojanowski, J. Q., et al. (2008). Two German kindreds with familial
amytrophic lateral sclerosis due to TARDBP mutations. Arch. Neurol. 65,
1185–1189. doi: 10.1001/archneur.65.9.1185

Ladewig, T., Kloppenburg, P., Lalley, P. M., Zipfel, W. R., Webb, W. W., and
Keller, B. U. (2003). Spatial profiles of store-dependent calcium release in
motoneurones of the nucleus hypoglossus from newbornmouse. J. Physiol. 547,
775–787. doi: 10.1111/j.1469-7793.2003.00775.x

Lai, C., Xie, C., Shim, H., Chandran, J., Howell, B. W., and Cai, H. (2009).
Regulation of endosomal motility and degradation by amyotrophic lateral
sclerosis 2/alsin.Mol. Brain 2:23. doi: 10.1186/1756-6606-2-23

Laird, F. M., Farah, M. H., Ackerley, S., Hoke, A., Maragakis, N., Rothstein,
J. D., et al. (2008). Motor neuron disease occurring in a mutant dynactin
mouse model is characterized by defects in vesicular trafficking. J. Neurosci.
28, 1997–2005. doi: 10.1523/JNEUROSCI.4231-07.2008

Lee, J. A., Beigneux, A., Ahmad, S. T., Young, S. G., and Gao, F. B. (2007). ESCRT-
III dysfunction causes autophagosome accumulation and neurodegeneration.
Curr. Biol. 17, 1561–1567. doi: 10.1016/j.cub.2007.07.029

Magrané, J., Cortez, C., Gan, W. B., and Manfredi, G. (2014). Abnormal
mitochondrial transport and morphology are common pathological
denominators in SOD1 and TDP43 ALS mouse models. Hum. Mol. Genet. 23,
1413–1424. doi: 10.1093/hmg/ddt528

Magrané, J., Sahawneh, M. A., Przedborski, S., Estévez, Á. G., and Manfredi, G.
(2012). Mitochondrial dynamics and bioenergetic dysfunction is associated
with synaptic alterations in mutant SOD1 motor neurons. J. Neurosci. 32,
229–242. doi: 10.1523/jneurosci.1233-11.2012

Mancuso, R., del Valle, J., Modol, L., Martinez, A., Granado-Serrano, A. B.,
Ramirez-Núñez, O., et al. (2014). Resveratrol improves motoneuron function
and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 11,
419–432. doi: 10.1007/s13311-013-0253-y

Manil-Ségalen, M., Culetto, E., Legouis, R., and Lefebvre, C. (2014). Interactions
between endosomal maturation and autophagy: analysis of ESCRT machinery
during Caenorhabditis elegans development. Methods Enzymol. 534, 93–118.
doi: 10.1016/b978-0-12-397926-1.00006-8

Martin, L. J., Liu, Z., Chen, K., Price, A. C., Pan, Y., Swaby, J. A., et al. (2007).
Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide
dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell
death. J. Comp. Neurol. 500, 20–46. doi: 10.1002/cne.21160

Maruyama, H., Morino, H., Ito, H., Izumi, Y., Kato, H., Watanabe, Y., et al. (2010).
Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226.
doi: 10.1038/nature08971

Meira-Martins, L. A., Vieira, M. Q., Ilha, M., de Vasconcelos, M., Biehl, H. B.,
Lima, D. B., et al. (2015). The interplay between apoptosis, mitophagy and
mitochondrial biogenesis induced by resveratrol can determine activated
hepatic stellate cells death or survival. Cell Biochem. Biophys. 71, 657–672.
doi: 10.1007/s12013-014-0245-5

Meyer, H., Bug, M., and Bremer, S. (2012). Emerging functions of the VCP/p97
AAAATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123. doi: 10.
1038/ncb2407

Morimoto, N., Nagai, M., Ohta, Y., Miyazaki, K., Kurata, T., Morimoto, M., et al.
(2007). Increased autophagy in transgenic mice with a G93A mutant SOD1
gene. Brain Res. 1167, 112–117. doi: 10.1016/j.brainres.2007.06.045

Münch, C., Sedlmeier, R., Meyer, T., Homberg, V., Sperfeld, A. D., Kurt, A., et al.
(2004). Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS.
Neurology 63, 724–726. doi: 10.1212/01.wnl.0000134608.83927.b1

Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C.,
Chou, T. T., et al. (2006). Ubiquitinated TDP-43in frontotemporal lobar

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 September 2015 | Volume 9 | Article 341

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Ruffoli et al. Deciphering mitochondrial alteration in ALS

degeneration and amyotrophic lateral sclerosis. Science 314, 130–133. doi: 10.
1126/science.1134108

Palikaras, K., Lionaki, E., and Tavernarakis, N. (2015a). Coordination of
mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature
521, 525–528. doi: 10.1038/nature14300

Palikaras, K., Lionaki, E., and Tavernarakis, N. (2015b). Coupling mitogenesis and
mitophagy for longevity. Autophagy 11, 1428–1430. doi: 10.1080/15548627.
2015.1061172

Parkinson, N., Ince, P. G., Smith, M. O., Highley, R., Skibinski, G., Andersen,
P. M., et al. (2006). ALS phenotypes with mutations in CHMP2B (charged
multivesicular body protein 2B). Neurology 67, 1074–1077. doi: 10.1212/01.
wnl.0000231510.89311.8b

Parone, P. A., Da Cruz, S., Han, J. S., McAlonis-Downes, M., Vetto, A. P., Lee,
S. K., et al. (2013). Enhancingmitochondrial calcium buffering capacity reduces
aggregation of misfolded SOD1 andmotor neuron cell death without extending
survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci.
33, 4657–4671. doi: 10.1523/jneurosci.1119-12.2013

Pasquali, L., Lenzi, P., Biagioni, F., Siciliano, G., and Fornai, F. (2014). Cell to cell
spreading ofmisfolded proteins as a therapeutic target inmotor neuron disease.
Curr. Med. Chem. 21, 3508–3534. doi: 10.2174/0929867321666140601161534

Pasquali, L., Longone, P., Isidoro, C., Ruggieri, S., Paparelli, A., and Fornai, F.
(2009). Autophagy, lithium and amyotrophic lateral sclerosis.Muscle Nerve 40,
173–194. doi: 10.1002/mus.21423

Pizzasegola, C., Caron, I., Daleno, C., Ronchi, A., Minoia, C., Carrì, M. T.,
et al. (2009). Treatment with lithium carbonate does not improve disease
progression in two different strains of SOD1 mutant mice. Amyotroph. Lateral
Scler. 10, 221–228. doi: 10.1080/17482960902803440

Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A.,
et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated
with familial amyotrophic lateral sclerosis. Nature 362, 59–62. doi: 10.
1038/364362c0

Rothenberg, C., Srinivasan, D., Mah, L., Kaushik, S., Peterhoff, C. M., Ugolino,
J., et al. (2010). Ubiquilin functions in autophagy and is degraded by
chaperone-mediated autophagy. Hum. Mol. Genet. 19, 3219–3232. doi: 10.
1093/hmg/ddq231

Rubino, E., Rainero, I., Chiò, A., Rogaeva, E., Galimberti, D., Fenoglio, P.,
et al. (2012). SQSTM1 mutations in frontotemporal lobar degeneration and
amyotrophic lateral sclerosis. Neurology 79, 1556–1562. doi: 10.1212/wnl.
0b013e31826e25df

Rusten, T. E., and Stenmark, H. (2009). How do ESCRT proteins control
autophagy?. J. Cell Sci. 122, 2179–2183. doi: 10.1242/jcs.050021

Sasaki, S. (2011). Autophagy in spinal cord motor neurons in sporadic
amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 70, 349–359. doi: 10.
1097/nen.0b013e3182160690

Sasaki, S., and Iwata, M. (1996a). Ultrastructural study of synapses in the anterior
horn neurons of patients with amyotrophic lateral sclerosis.Neurosci. Lett. 204,
53–56. doi: 10.1016/0304-3940(96)12314-4

Sasaki, S., and Iwata, M. (1996b). Dendritic synapses of anterior horn neurons in
amyotrophic lateral sclerosis: an ultrastructural study. Acta Neuropathol. 91,
278–283. doi: 10.1007/s004010050426

Sasaki, S., and Iwata, M. (2007). Mitochondrial alterations in the spinal cord
of patients with sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp.
Neurol. 66, 10–16. doi: 10.1097/nen.0b013e31802c396b

Schroer, T. A., and Sheetz, M. P. (1991). Two activators of microtubule-
based vesicle transport. J. Cell Biol. 115, 1309–1318. doi: 10.1083/jcb.115.5.
1309

Shimada, K., Motoi, Y., Ishiguro, K., Kambe, T., Matsumoto, S. E., Itaya, M.,
et al. (2012). Long-term oral lithium treatment attenuates motor disturbance in
tauopathy model mice: implications of autophagy promotion. Neurobiol. Dis.
46, 101–108. doi: 10.1016/j.nbd.2011.12.050

Siklós, L., Engelhardt, J., Harati, Y., Smith, R. G., Joó, F., and Appel, S. H.
(1996). Ultrastructural evidence for altered calcium in motor nerve terminals
in amyotrophic lateral sclerosis. Ann. Neurol. 39, 203–216. doi: 10.1002/ana.
410390210

Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B.,
et al. (2008). TDP-43mutations in familial and sporadic amyotrophic lateral
sclerosis. Science 319, 1668–1672. doi: 10.1126/science.1154584

Struewing, I. T., Barnett, C. D., Tang, T., and Mao, C. D. (2007). Lithium increases
PGC-1alpha expression and mitochondrial biogenesis in primary bovine
aortic endothelial cells. FEBS J. 274, 2749–2765. doi: 10.1111/j.1742-4658.2007.
05809.x

Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski,
M., et al. (2010). Proteasome and p97 mediate mitophagy and degradation of
mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380. doi: 10.1083/jcb.
201007013

Van Deerlin, V. M., Leverenz, J. B., Bekris, L. M., Bird, T. D., Yuan, W.,
Elman, L. B., et al. (2008). TARDBP mutations in amyotrophic lateral sclerosis
with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet
Neurol. 7, 409–416. doi: 10.1016/s1474-4422(08)70071-1

Vehviläinen, P., Koistinaho, J., and Gundars, G. (2014). Mechanisms of mutant
SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis. Front.
Cell. Neurosci. 8:126. doi: 10.3389/fncel.2014.00126

von Lewinski, F., and Keller, B. U. (2005). Ca2+, mitochondria and selective
motoneuron vulnerability: implications for ALS. Trends Neurosci. 28, 494–500.
doi: 10.1016/j.tins.2005.07.001

Wang, X., Fan, H., Ying, Z., Li, B., Wang, H., and Wang, G. (2010). Degradation
of TDP-43 and its pathogenic form by autophagy and the ubiquitin-
proteasome system. Neurosci. Lett. 469, 112–116. doi: 10.1016/j.neulet.2009.
11.055

Wang, X., Ma, M., Teng, J., Che, X., Zhang, W., Feng, S., et al. (2015). Valproate
attenuates 25-kDa C-terminal fragment of TDP-43-induced neuronal toxicity
via suppressing endoplasmic reticulum stress and activating autophagy. Int. J.
Biol. Sci. 11, 752–761. doi: 10.7150/ijbs.11880

Waterman-Storer, C. M., Karki, S. B., Kuznetsov, S. A., Tabb, J. S., Weiss, D. G.,
Langford, G. M., et al. (1997). The interaction between cytoplasmic dynein and
dynactin is required for fast axonal transport. Proc. Natl. Acad. Sci. U S A 94,
12180–12185. doi: 10.1073/pnas.94.22.12180

Wild, P., Farhan, H., McEwan, D. G., Wagner, S., Rogov, V. V., Brady, N. R.,
et al. (2011). Phosphorylation of the autophagy receptor optineurin restricts
Salmonella growth. Science 333, 228–233. doi: 10.1126/science.1205405

Williams, K. L., Warraich, S. T., Yang, S., Solski, J. A., Fernando, R., Rouleau,
G. A., et al. (2012). UBQLN2/ubiquilin 2 mutation and pathology in familial
amyotrophic lateral sclerosis. Neurobiol. Aging 33, 2527.e3–2527.e10. doi: 10.
1016/j.neurobiolaging.2012.05.008

Yamanaka, K., Sasagawa, Y., and Ogura, T. (2012). Recent advances in
p97/VCP/Cdc48 cellular functions. Biochim. Biophys. Acta 1823, 130–137.
doi: 10.1016/j.bbamcr.2011.07.001

Yang, Y., Hentati, A., Deng, H. X., Dabbagh, O., Sasaki, T., Hirano, M., et al.
(2001). The gene encoding alsin, a protein with three guanine-nucleotide
exchange factor domains, is mutated in a form of recessive amyotrophic lateral
sclerosis. Nat. Genet. 29, 160–165. doi: 10.1038/ng1001-160

Ying, H., and Yue, B. Y. (2012). Cellular and molecular biology of optineurin.
Int. Rev. Cell Mol. Biol. 294, 223–258. doi: 10.1016/B978-0-12-394305-7.
00005-7

Yokoseki, A., Shiga, A., Tan, C. F., Tagawa, A., Kaneko, H., Koyama, A., et al.
(2008). TDP-43mutation in familial amyotrophic lateral sclerosis.Ann. Neurol.
63, 538–542. doi: 10.1002/ana.21392

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Ruffoli, Bartalucci, Frati and Fornai. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution and reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 9 September 2015 | Volume 9 | Article 341

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

	Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis
	Introductory Statement
	The Characterization of Mitochondrial Alterations
	A Challenge to the Role of Mitochondria in ALS
	How to Reconcile the Altered Mitochondrial Calcium Homeostasis with Previous Point
	The Key Role of Mitochondrial Compartments
	Where Damaged Mitochondria Come From?
	The Close Connection Between Autophagy and Mitochondria
	A Few Examples of Specific Effects of Human ALS Genes on the Autophagy Machinery
	Conclusion
	References


