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Studies of behavioral and neural responses to distorted auditory feedback (DAF) can help
shed light on the neural mechanisms of animal vocalizations. We describe an apparatus
for generating real-time acoustic feedback. The system can very rapidly detect acoustic
features in a song and output acoustic signals if the detected features match the desired
acoustic template. The system uses spectrogram-based detection of acoustic elements.
It is low-cost and can be programmed for a variety of behavioral experiments requiring
acoustic feedback or neural stimulation. We use the system to study the effects of acoustic
feedback on birds’ vocalizations and demonstrate that such an acoustic feedback can cause
both immediate and long-term changes to birds’ songs.
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INTRODUCTION
Distorted auditory feedback (DAF) is used for assessing the effects
of auditory input on vocal production. Presenting DAF and
assessing its effects on the song and on the neural activity have
been used in songbirds to study the mechanisms of song pro-
duction and learning (Leonardo and Konishi, 1999; Sakata and
Brainard, 2006; Andalman and Fee, 2009; Keller and Hahnloser,
2009; Tschida and Mooney, 2012). Human speech is sensitive to
certain types of DAF (Lee, 1950; Houde and Jordan, 1998), and
DAF is used to study speech mechanisms. It is often desirable to
have real-time DAF, i.e., to rapidly (in a few milliseconds or faster)
detect the occurrence of specific acoustic elements in vocalization
and present an auditory stimulus once the target acoustic element
is detected.

In this paper, we describe an automated system for real-time
DAF and demonstrate its use to study both the immediate and
the long-term effects of DAF on the song of Bengalese finches.
The system uses open-source software and, therefore, is extremely
flexible and customizable by the user. It has a significantly lower
cost than commercial systems.

Songbirds use auditory feedback to learn to sing when they
are young and to maintain their songs in adulthood (Konishi,
1965; Brainard and Doupe, 2000). Long-term exposure to DAF
has been shown to cause song degradation in songbirds (Okanoya
and Yamaguchi, 1997; Woolley and Rubel, 1997; Leonardo and
Konishi, 1999). Some bird species’ songs exhibit immediate
sensitivity to acoustic input. For these birds, DAF can have
an immediate effect on the timing and acoustic structure of
the song (Sakata and Brainard, 2006). Analyzing the effects of
DAF can yield new understanding of the neural organization

of the song and the mechanisms of song learning (Brainard
and Doupe, 2000). To study the questions about the effects
of time-localized DAF on birdsong, it is important to be able
to deliver DAF with high temporal precision in relation to
vocalization. To do this, it is necessary to rapidly and reliably
detect the specific acoustic elements of the bird’s song and,
after detection of the acoustic element, generate an acoustic
output.

It is a challenging technical task for an acoustic feedback
system to be real-time. Real-time performance is most easily
achieved with analog systems (Cynx and Von Rad, 2001), but dig-
ital systems offer significant advantages in terms of convenience
and flexibility. However, the advantages of a digital system are
accompanied by the difficulties of making a digital system have
small and constant processing delays. The system has to per-
form analog-to-digital conversion, fast analysis of the recently
acquired data and digital-to-analog conversion, and these oper-
ations have to take place with reliable timing and concurrently
with saving the acquired data. Custom-made DAF systems have
been developed and used in behavioral studies (Leonardo and
Konishi, 1999; Kao et al., 2005), but their real-time processing
characteristics have not been reported. Oftentimes, custom-made
systems have significant and not well-controlled delays, espe-
cially for systems based on PC’s running Windows. Commercial
systems for real-time acoustic processing are available but
are expensive.

We developed a real-time DAF system based on a PC run-
ning Linux and the Real-Time eXperiment Interface (RTXI)
software (Lin et al., 2010) and a National Instruments A/D
card. The system is low-cost (the cost is only the cost of the
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hardware, the software is free). The system is capable of A/D
bandwidth of over 30 kHz with real-time processing of acoustic
signals.

METHODS
A PC with an Intel i7 six-core processor (2.66 GHz) and 4 GB
or RAM running Ubuntu Linux 2.6.29.4-rtai with RTXI ver-
sion 1.1.2 and a National Instruments PCIe-6251 A/D card is
used. The A/D card receives audio input from a microphone
(AudioTechnika PRO-44, used with Behringer Shark DSP110
microphone amplifier). The output is sent to a speaker ampli-
fier (SLA-1, Applied Research and Technology); the output of the
amplifier is connected to a speaker.

The Data Recorder software within RTXI is custom modified.
The simplified diagram of signal processing is shown in Figure 1.
The system has two modes of operation—a non-triggered (idle)
mode and a triggered (active) mode. At the core of the modified
software is the circular buffer that takes data points one-by-one
from the data acquisition engine once they become available.
In the non-triggered mode [Figure 1 (top)], the system contin-
uously (every 1 ms) computes the rms of the last 10 ms of the
input signal. If the signal rms exceeds the threshold, the system
is switched into triggered mode.

FIGURE 1 | Block diagram of the acoustic feedback system. When not
triggered (top), the system computes the rms of the input signal. When
the rms exceeds the threshold, the system is triggered. When triggered
(bottom), the system computes the spectrogram of the most recent 20 ms
of signal and computes the correlation coefficient of this spectrogram with
the spectrogram of the template sound (e.g., song syllable). The template
sound is detected when the correlation coefficient exceeds a threshold
value; in this case, acoustic feedback can be generated. Both the input and
the acoustic output are saved to the computer hard drive.

In triggered mode, the system does real-time processing of
auditory data. In Figure 1 (bottom), we show the processing done
for recognizing the song syllable of a Bengalese finch. The FFT
of the past 256 data points (∼8.4 ms) is computed every 1 ms
and stored in an FFT circular buffer. Every 1 ms, the spectro-
gram of the most recent 40 ms of the input signal is obtained
from the FFT circular buffer. A correlation coefficient between
the input signal spectrogram and the spectrogram of the template
is computed. If the correlation coefficient exceeds the threshold,
the system detects the occurrence of the target song syllable, and
acoustic feedback can be generated, or further processing can be
done. While generating acoustic feedback, the system keeps going
through all of the above steps, but is disallowed from register-
ing another detection to prevent it from triggering on its own
output.

The presence of the data circular buffer allows very fast
access to chunks of the most recent data for processing with-
out affecting the timing of the data acquisition process. The
FFT circular buffer also allows extremely fast computations of
the spectrograms of the sound (computing the spectrogram is a
computationally-intensive task). This enables the system to rec-
ognize complex vocal elements based on their spectrogram (e.g.,
frequency sweeps) without compromising the timing. While trig-
gered, every 1 s, the system computes the rms of the previous
200 ms of the input signal to check if the acoustic input is still
present. If the rms is below a threshold (no signal), the system
goes into the idle mode. While triggered, the system continually
saves all the data acquired in a separate array and saves the data
to the hard drive once it is switched back to idle mode. A more
detailed description of this system, along with the source code, is
available at http://www.phys.psu.edu/∼akozhevn/ac_feedback/.

RESULTS
We tested the performance of our DAF system in several tasks
which are often needed in behavioral experiments using acoustic
feedback. We also used the system to assess the effects of acoustic
feedback on the song of Bengalese finch. All animal procedures
were carried out in accordance with the locally approved IACUC
protocol.

DELAY BETWEEN INPUT AND OUTPUT TEST
A simple task is generating acoustic feedback when the input level
exceeds a certain threshold. Although this task may be too simple
for most behavioral experiments, the delay in the system between
detecting the crossing of the threshold and producing the output
is a useful figure for indicating how fast the system can be when
it is solely converting A/D and D/A and saving data without any
complex data processing.

The system was programmed so that, once the input exceeded
a fixed threshold, the acquired input signal was sent to the D/A
output with no extra processing. A square wave with the ampli-
tude exceeding the threshold was applied to the input; the delay
between the input and the output was measured with the digi-
tal oscilloscope. The measured delay between the output and the
input was 27 ± 9 µs (mean ± SD, min = 9 µs, max = 43 µs). The
sample rate was 30.3 kHz, so the observed delays corresponded
to a delay of 1 data point between the input and the output.
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The observed variations of the delay are due to the difference in
timing between the external input signal and the timing of the
A/D events. In all cases, however, the delay between the input and
the output does not exceed 1 datapoint. Therefore, the system has
real-time capability.

DETECTION OF SPECIFIC VOCAL ELEMENTS IN THE BIRD’S SONG
A typical task in experiments using acoustic feedback is detec-
tion of a certain “template” sound. The template can be either
a sound of a certain frequency or a more complex combina-
tion of frequencies, frequency sweeps, etc. Once the template is
detected, the acoustic feedback can be played back to the ani-
mal. This task is computationally intensive because one needs to
compute the characteristics of the recently acquired input sig-
nal, then compare these with the characteristics of the template
and, if the input is sufficiently similar to the template, decide
that the detection has occurred and generate acoustic output.
The computation has to be done fast enough to enable real-
time performance and not interfere with the data acquisition
process.

Common techniques that have been used for detecting acous-
tic elements are spectrogram-based techniques (Leonardo and
Fee, 2005) and feature-based techniques (Tchernichovski et al.,
2000). In a spectrogram-based approach, the spectrogram of
the recently acquired signal is computed and compared to the
template spectrogram. A common way to accomplish this is to
compute the correlation coefficient between the two spectro-
grams. Detection of the template sound occurs if the correlation
coefficient exceeds a threshold value.

We tested the performance of the system for detection of spe-
cific syllables in the song of a Bengalese finch. The Bengalese
finch song consists of a sequence of syllables separated by silences
(inter-syllable gaps) (Figure 2). The acoustic structure of the song
syllables is fairly stable; the main source of variability from one
song to another is the sequence of syllables in each song (Honda
and Okanoya, 1999).

To detect a specific song syllable, the system continuously com-
putes the correlation coefficient of the spectrogram of the most
recent 20 ms segment of the acquired signal with the spectrogram
of a 20-ms syllable template (see Methods, Figure 1). The target
syllable is detected by the system when the correlation coefficient
exceeds the threshold value of 0.8. The value of the threshold was
chosen by examining the target syllable detections by the DAF sys-
tem in a set of about 20 songs and comparing the detected syllable
occurrences with the actual occurrences of the target syllables
determined by visual examination of the song spectrograms. If
the threshold is set too high, the probability of missing the tar-
get syllable increases. Setting the threshold too low increases the
probability of false positive detections. After the syllable detec-
tion, acoustic feedback (either white noise or the song syllable)
can be played back to the bird.

Typical performance of the system on the real-time syllable
recognition task is shown in Figure 2. The top spectrogram shows
“detection only” mode—the system detects the target syllable in
real time, but no playback is generated. The bottom spectro-
gram shows detection and playback generation—after detecting
the target syllable, the system plays back another song syllable

FIGURE 2 | Top: spectrogram of the song of a Bengalese finch and the
times of occurrence of one of the song syllables. The system was
programmed to only detect the occurrences of the target syllable in real
time, no acoustic feedback was generated. The detection times are shown
as vertical red lines. Bottom: the system is detecting the target syllables
(vertical red lines) and is generating acoustic feedback after detection. The
acoustic feedback waveform is shown below. The feedback signal is one of
the birdsong syllables; the acoustic feedback pickup by the microphone is
visible on the spectrogram. The zoomed-in spectrogram of the template is
shown on the right.

to the bird. The vertical red lines indicate the detection times of
the target syllable. The zoomed-in spectrogram of the template
is shown on the right. The template contains part of the inter-
syllable interval and the first 20 ms of the target syllable, so the end
of the template (detection time) is approximately in the middle of
the 40-ms long syllable.

Performance of the system was checked by comparing the
results of automatic detections of the system with the manual
identification of the target song syllables carried out by off-line
examination of the spectrograms. Out of 659 target syllables, 610
were correctly detected and 49 were missed. There were zero false
positives. Thus, the system shows robust performance with the
real-time syllable recognition task: over 92% of the target syllables
were correctly identified.

This demonstrates that the system is capable of real-time
detection of target syllables in the song. Note that the sylla-
bles occurring after the target syllables in Figure 2 are frequency
sweeps that overlap with the template’s frequencies. The system
discriminates them from the target syllables because they have a
different frequency profile. Such discrimination is an advantage
of the spectrogram-based detection; this would not be possible if
only instantaneous frequencies were detected.

Additionally, we tested the system on the detection of sylla-
bles in the song of a zebra finch—another bird species. We used
our dataset of zebra finch songs with known syllable sequences
obtained in a previous study (Kozhevnikov and Fee, 2007). Zebra
finch songs were played back through the speaker, and the results
of the real-time detection by our DAF system were compared to
the known occurrences of the target syllable.

A small subset of songs (10 songs) was used as a test set: the
threshold value for the syllable detection was adjusted to opti-
mize the percentage of correctly detected syllables in this small
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test set. After this, the threshold kept was fixed, and the per-
formance of the system was tested on the whole dataset (about
100 songs). Out of 756 target syllables in the dataset, 728 were
correctly detected, 28 were missed; there were 4 false positives.
The system correctly detected over 96% of the target syllables
in the dataset; the probability of a false positive detection was
less than 1%.

EFFECTS OF AUDITORY FEEDBACK ON THE TIMING OF THE BIRDSONG
Auditory feedback has been shown to have immediate effects on
some animal vocalizations. For Bengalese finches, DAF has been
shown to affect the timing of song syllables. DAF played after
the song syllable increases the time interval between that sylla-
ble and the next syllable in the song (Sakata and Brainard, 2006).
We tested whether our feedback system is effective in causing
real-time changes to the Bengalese finch song. The system was
programmed to detect one of the song syllables and, once the
syllable was detected, to play back the same song syllable with
a probability of 0.05. This ensured that the feedback was suffi-
ciently sparse so almost in all cases there was only one playback
during each song. The feedback and control trials were randomly
interleaved. This simplified the analysis of the syllable timing
and eliminated any confounding effects from playbacks being too
close to one another. The delay between the syllable sung by the
bird and the syllable playback was 40 ms.

The playback causes some pickup on the input channel, which
can cause difficulties in precise determination of the timing of
the syllable that is occurring during the playback. Therefore, the
time interval between the target syllable and the following sylla-
ble (which is partially overlapped with playback) was computed as
one half of the difference between the detection time of the target
syllable and the detection time of the second syllable after the tar-
get syllable. The same procedure was performed in control trials
to ensure consistency in data analysis. Since the distributions of
time intervals may not be Gaussian, we use a non-parametric sta-
tistical test—two-way Kolmogorov–Smirnov test—to assess the
statistical significance of DAF effects on the song timing.

Figure 3 shows the distributions of the time intervals between
the target syllable and the following syllable when the feedback
is present (blue histogram) and when there is no feedback (red
histogram). The widths of the distributions are due to the nat-
ural variability of the song timing. In the presence of feedback,
the time intervals between the syllables become longer. Without
DAF, the mean interval is 74.8 ms (N = 637 syllables); in the pres-
ence of DAF, the mean interval is 75.7 ms (N = 97 syllables).
Although the change of the mean duration is small compared
to the widths of the distributions, the effect is highly statisti-
cally significant (p = 0.001, two-way Kolmogorov–Smirnov test).
The observed lengthening of the time interval between the song
syllables is consistent with previous observations (Sakata and
Brainard, 2006). Thus, our acoustic feedback has an immedi-
ate effect on the song: DAF immediately and reversibly affects
song timing.

LONG-TERM EFFECTS OF DAF ON ACOUSTIC STRUCTURE OF THE SONG
DAF has been shown to cause long-term changes to animal vocal-
izations. For songbirds, prolonged repeated presentation of DAF

FIGURE 3 | DAF increases the duration of the time interval between

Bengalese finch song syllables. Shown above are the histograms of the
time intervals between two subsequent syllables in the song in the
presence of DAF (blue) and without DAF (red). The means are:
�tmean = 74.8 ms (control, N = 637 syllables) and �tmean = 75.7 ms
(feedback, N = 97 syllables), the difference is statistically significant
(p = 0.001, two-way Kolmogorov–Smirnov test).

can cause gradual change of the song (Leonardo and Konishi,
1999; Warren et al., 2011). We tested out system on the task of
causing long-term changes of the frequency of one of the song
syllables.

The system is programmed to detect the fundamental fre-
quency of one of the song syllables. After the target song syllable
is detected, the temporal profile of the pitch (defined as the largest
peak in the FFT of the latest 256 points) was computed. The low-
est value in the pitch profile in the time window between 3 and
12 ms after the detection time was taken to be the pitch of the syl-
lable. The feedback (white noise) is conditional on the detected
pitch of the song syllable. For example, the feedback can be gener-
ated if the detected syllable pitch is smaller than a threshold value.
Continuous exposure to such feedback has been shown to cause
the bird to gradually shift the mean pitch of the syllable so that
the feedback is generated less often—the bird adapts its song to
avoid hearing DAF (Warren et al., 2011).

We tested whether such conditional DAF could shift the mean
syllable pitch in both directions. Figure 4 shows the long-term
effects of DAF which is conditional on the syllable pitch. During
days 1–6, the feedback was played back if the pitch was less than
3530 Hz; during days 7–12, the feedback was played back if the
pitch was greater than 3530 Hz; during days 13–18, the feedback
was played back if the pitch was less than 3510 Hz.

Our feedback is effective in causing gradual changes in the syl-
lable pitch. Playing back DAF when the frequency is lower than
the threshold value causes an upward drift of the mean pitch (days
1–6 and 13–18). Presenting feedback when the pitch is higher
than the threshold causes a downward drift in pitch (days 7–12).
This shows that the system is suitable for studies of long-term
effects of DAF on animal vocalizations.
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FIGURE 4 | Prolonged exposure of the bird to DAF causes gradual

changes in the song. The mean pitch of one of the target song syllable was
manipulated by feedback conditional on pitch. Each datapoint is the pitch of
the target syllable averaged over all the renditions of the target syllable sung
by the bird on a given day. The number of renditions varies from day to day
(mean = 208, min = 126, max = 288). Error bars are s.e.m. Dashed lines are
the values of the threshold. Arrows indicate the direction in which the syllable
frequency was expected to change in response to DAF. Larger error bars on
day 12 are mostly due to the smallest number of target syllable renditions
(n = 126) sung on that day.

DISCUSSION
The described real-time acoustic feedback system is a versatile
tool for studies of the effects of auditory feedback on ongoing
animal vocalization. The advantage of the system is the flexibil-
ity of the processing than can be realized. The circular buffer
allows real-time acquisition of arbitrary-length segments of the
most recent data without affecting the timing of data acquisi-
tion. In addition, having a separate FFT buffer facilitates real-time
spectral processing of acquired signals. This feature enables a very
quick creation of the spectrograms of long (tens or even hun-
dreds of milliseconds) segments of signals at a high rate (the
spectrogram is updated every 1 ms).

This capability is very useful for the detection of complex vocal
signals. Often, it is not just a certain frequency that needs to be
detected, but rather a certain spectrogram pattern, like multiple
frequencies or the frequency sweeps frequently seen in birdsong
syllables. Since the same frequency can occur in many syllables,
it is the whole pattern of the spectrogram that allows real-time
detection of the syllable. Our system is very well-suited for rapid
spectrogram-based detection of acoustic elements.

The performance of the system will vary depending on the
type of animal vocalization and the nature of the acoustic element
being detected for two main reasons. First, there is always a nat-
ural variability in the acoustic structure of a vocal element, and
the degree of this variability may be different for different vocal
elements; this will affect the reliability of detection. For example,
a birdsong syllable can possess a more or less stereotyped spec-
trogram; the detection will be easier for a more stereotypical song
syllable. Second, a given vocal element can be more or less similar
in its acoustic structure to other vocal elements; reliable detec-
tion of a target vocal element will be easier if it is spectrally more

dissimilar to other vocal elements. To achieve optimum perfor-
mance, adjustments to the threshold or detection algorithm may
be needed; thus, it is important to have a highly customizable
system.

It is worth mentioning that, when the song syllables are
detected, data processing is not a time-limiting step, and signif-
icantly more complex processing can be done without decreasing
the A/D rate. We tested the system with longer templates (60 and
100 ms); they did not affect performance. We also tested the
simultaneous detection of two templates, so that, every 1 ms, the
system computed the correlation coefficient of the sound spectro-
gram with two template spectrograms, and that also did not affect
the A/D rate. For a template 60 ms long, the computation of the
correlation coefficient takes 16 µs; this time scales linearly with
the length of the template. The computation of the FFT (to fill the
column in the spectrogram buffer) takes 7–8 µs. FFT and corre-
lation coefficient computations are the slowest signal processing
steps; all other steps combined take less than 1 µs. Thus—If the
spectrogram update rate is kept at 1 ms—the system should be
capable of simultaneously detecting of over 10 different song syl-
lables. Therefore, fairly complex real-time analysis and detection
of multiple vocal elements can be done without compromising
the speed of the system.

The system is usually used with 1 output channel and 2 input
channels (one input channel for acoustic input and one channel
for recording the actual output of the A/D card). It is possible to
increase the number of input channels. This way, one could use
the data recording capability of the system to collect physiological
data (e.g., EEG or neural) during acoustic feedback experiments.
However, the process limiting the speed of the system appears to
be reading the data from the A/D card and sending the data to
the D/A. Thus, increasing the number of channels will slow the
system down and decrease the A/D rate. We tested the perfor-
mance of the system with 3 input channels and 1 output channel.
To achieve stable operation, the A/D rate had to be decreased to
20 kHz. Despite this decrease, this is an acceptable rate for many
experiments where acoustic and electrophysiological data have to
be collected.

Finally, the real-time processing capabilities of the system
could be used for neural feedback experiments. The spectrogram-
based signal processing capability can be useful for the detection
of neural oscillations. The output can be used for targeted micros-
timulation. The described auditory feedback system is a flexible
low-cost tool for behavioral neuroscience research.
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