
METHODS ARTICLE
published: 24 January 2014

doi: 10.3389/fncir.2014.00001

N2A: a computational tool for modeling from neurons to
algorithms
Fredrick Rothganger*, Christina E. Warrender , Derek Trumbo and James B. Aimone*

Cognitive Modeling Department, Sandia National Laboratories, Albuquerque, NM, USA

Edited by:

Guillermo A. Cecchi, IBM Watson
Research Center, USA

Reviewed by:

Guillermo A. Cecchi, IBM Watson
Research Center, USA
A. Ravishankar Rao, IBM Research,
USA

*Correspondence:

Fredrick Rothganger and James B.
Aimone, Cognitive Modeling
Department, Sandia National
Laboratories, 1515 Eubank Blvd
MS-1327, Albuquerque, NM 87185,
USA
e-mail: frothga@sandia.gov;
jbaimon@sandia.gov

The exponential increase in available neural data has combined with the exponential
growth in computing (“Moore’s law”) to create new opportunities to understand neural
systems at large scale and high detail. The ability to produce large and sophisticated
simulations has introduced unique challenges to neuroscientists. Computational models
in neuroscience are increasingly broad efforts, often involving the collaboration of experts
in different domains. Furthermore, the size and detail of models have grown to levels
for which understanding the implications of variability and assumptions is no longer trivial.
Here, we introduce the model design platform N2A which aims to facilitate the design and
validation of biologically realistic models. N2A uses a hierarchical representation of neural
information to enable the integration of models from different users. N2A streamlines
computational validation of a model by natively implementing standard tools in sensitivity
analysis and uncertainty quantification. The part-relationship representation allows both
network-level analysis and dynamical simulations. We will demonstrate how N2A can
be used in a range of examples, including a simple Hodgkin-Huxley cable model, basic
parameter sensitivity of an 80/20 network, and the expression of the structural plasticity
of a growing dendrite and stem cell proliferation and differentiation.

Keywords: neuroinformatics, computational modeling, computational neuroscience, structural plasticity,

biologically realistic modeling

INTRODUCTION
Computational neuroscience methods for constructing and sim-
ulating biologically realistic models have increasingly been rec-
ognized as important for understanding the function of complex
neural circuits. The role for computational tools will continue
to grow in the near future, with significant policy efforts such
as the EU Human Brain Project (Markram, 2012) and the pro-
posed Brain Activity Map (Alivisatos et al., 2013). These programs
emphasize the high-throughput collection of neural data through
both connectomics research and large scale physiology mea-
surements of neuronal behavior in circuits. While the role of
computational tools for modeling and simulation is increasingly
recognized, the path from this raw data to interpretable model
results is unclear.

Constructing neural simulations typically involves several dis-
tinct stages once a conceptual approach has been established
(Figure 1A). (1) Relevant data from the biological world must be
identified, filtered, and represented in a computationally tractable
form. This is often a challenge because a substantial portion of
neurobiological data is qualitative in nature. (2) A model must
be assembled from this raw data, which involves critical deci-
sions on the appropriate level of abstraction and desired scope.
(3) The model is typically simulated, either directly in the model
construction tool or in a separate environment. (4) Finally, the
simulation data must be analyzed, which is often non-trivial
due to the potential scale of models today. Each of these four
stages is unique, often requiring distinct forms of insight and
benefiting from different aspects of expertise on the part of the
user.

There are numerous software applications available for parts
of one or several of these stages, some of which have been opti-
mized over decades (Table 1). In particular, the simulation of
neural systems (step 3) has benefited greatly from tools such
as NEURON and GENESIS/MOOSE which facilitate the rep-
resentation and simulation of complex neuronal dynamics and
morphologies (Hines and Carnevale, 1997; Bower and Beeman,
1998; Dudani et al., 2009). Recently introduced simulators such
as Brian and NEST have focused more on network simula-
tions, and similar capabilities have been added to NEURON and
GENESIS (Gewaltig and Diesmann, 2007; Goodman and Brette,
2008). Many of these network simulators have been parallelized
to run on supercomputers. In general, simulators require the user
to describe models in a programming language. Notably, some
simulators, such as NEURON and GENESIS, also provide an inte-
grated modeling environment that facilitates the user’s work at
various steps in the process, such as editing models and managing
simulations. Having a programming language such as Python or
C at the foundation of a neural modeling tool is greatly enabling
for its functionality, as in theory these languages are both agnostic
to scale or complexity.

Nevertheless, despite this plethora of tools, modeling neural
systems is becoming ever more challenging, particularly as avail-
able computing resources and available biological data approach
previously unimaginable heights. This trend toward incorporat-
ing more biological detail into models and integrative community
efforts has led to the development of XML based descriptions
such as NeuroML and NineML (Gleeson et al., 2010, 2011;
Raikov, 2010) and model generation tools such as PyNN and

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 1

NEURAL CIRCUITS

http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/about
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/journal/10.3389/fncir.2014.00001/abstract
http://www.frontiersin.org/people/u/13050
mailto:frothga@sandia.gov; jbaimon@sandia.gov
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive
http://community.frontiersin.org/people/FredrickRothganger/131838

Rothganger et al. Neurons to algorithms

NeuroConstruct (Gleeson et al., 2007; Davison et al., 2008) that
are moving the community beyond stand-alone platforms toward
model-sharing. Nonetheless, the use of standard parts, which
is useful for model interchange, can be limiting when build-
ing models with complex features, such as structural plasticity
or non-standard dynamics. Relying on a formal coding inter-
face to go beyond pre-packaged modeling components often
presents a challenge to the typical neuroscientist user. We expect
this need to be particularly notable when a prospective mod-
eler faces challenges such as structural plasticity (often important
for clinical models), uncertainty quantification (necessary for any
model with numerous free parameters), and parallelization of
large-scale simulations. These are general problems with solu-
tions that are often specific to a given network. For instance,

FIGURE 1 | (A) Simple overview of computational modeling process and
relationship to neurobiological data. (B) Illustration of where N2A tool
contributes to neural modeling studies; we envision that N2A will
eventually be capable of mapping into a wide range of common neural
simulation platforms.

while some network architectures map well onto GPUs (Richert
et al., 2011), other networks map better to different system
architectures.

Here, we present a new tool, Neurons to Algorithms, or N2A,
which complements these existing approaches. Rather than focus
on the simulation aspects, which are often specialized to the
type of model being computed, we focus on the first two stages
of modeling, the computational representation of neurobiolog-
ical data (e.g., describing the projection pattern from DG to
CA3 as a narrow Gaussian with sparse connection probabil-
ity) and the descriptions of models themselves (Figure 1B). In
this respect, it is most similar to PyNN, though with several
important differences. First, N2A represents information in a
flexible computable format that permits almost any neurologi-
cal dynamics; whereas PyNN is more specialized to use canonical
standards or native models represented within lower-level simula-
tors. Second, N2A’s hierarchical and relational design is inherently
scale agnostic, forming a computable database for neural data.
Finally, the part-relationship representation is suitable for both
standard dynamical simulations as well as higher level network
analysis.

We have designed N2A to be general in how it represents mod-
els, so we expect that it will be suitable for a wide range of neural
modeling approaches. However, we recognize that some tools are
exceptional in certain application areas (i.e., biophysical single
neuron multi-compartment models in NEURON), and we expect

Table 1 | Overview of different neural modeling tools.

Language Model generation and translation Simulation Interface Typical use

N2A Integrated
development
environment (IDE)

Large scale simulations of
biologically realistic networks

NEURON IDE Biophysically realistic models
of neurons and small
networks

GENESIS/MOOSE IDE Biophysically realistic models
of neurons and small
networks

Brian Code (Python) Network simulations of user
defined neurons

NEST Code (Python) High performance simulations
of large scale point neuron
networks

PYNN Code (Python) Scripted description of models
for multiple simulation
platforms

NeuroML Code (XML) Model interchange using
standard parts

NineML Code (XML) Model interchange using
user-defined parts

Neuroconstruct IDE Development and visualization
of biologically realistic neurons
and small networks

Primary scope is illustrated by bold arrows, with limited capabilities shown by shaded arrows.

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 2

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Rothganger et al. Neurons to algorithms

those to remain the tools of choice in those domains and will
seek to integrate N2A with their existing functionality. Rather, we
believe that N2A will provide differentiating capabilities in high
fidelity, large scale network models. These models have several
key characteristics, including many distinct neuron and con-
nection types, non-trivial connectivity patterns and part-to-part
variability, and large parameter spaces with at times poor biolog-
ical constraints that will require considerable sensitivity analysis
and parameter exploration. This type of high-detail modeling is
relatively new to neuroscience and is an increasingly common
approach, enabled in large part by modern computing resources
and the advances in high density physiology and anatomical data
acquisition (Izhikevich and Edelman, 2008; Aimone et al., 2009;
Richert et al., 2011; Markram, 2012) and by the recognition that
therapeutic models will require consideration of the complexity
of neural dynamics (Aimone and Weick, 2013).

OVERVIEW OF N2A FRAMEWORK
The translation from raw biological information into a model
suitable for simulation is a non-trivial process. We recognized
that a systematic approach capable of model development would
require a structured language, a dedicated software platform,
and use of community resources. Along these lines, the overall
N2A framework we describe here has three significant compo-
nents: the N2A language, the N2A software, and integration into
the broader community. First, we will introduce the N2A lan-
guage, which is our approach for describing neural models that
enables the description of neural data in a computable format
from which models can be constructed. Second, we will describe
the current N2A software application, which includes both a user
interface and a custom database. Third, we will discuss our vision
for how N2A fits into the broader neuroscience community,
which includes both the integration of N2A into existing neu-
roinformatics frameworks and collaborative N2A peer-to-peer
networks.

The N2A tool is open source and is available at http://code.
google.com/p/n2a.

MODEL DESCRIPTION LANGUAGE
The N2A language was designed with the primary goal of being
capable of representing as much neural data as possible in a sim-
ple computable format. In this context, computable refers to the
ability for an observer, whether a human or a machine, to read
the description and integrate it into a simulation. A simple rule-
of-thumb is that for a model to use neural information, it either
has to be represented by an equation or in the structure of the
model. For some classes of neural data, such as the behavior of
ion channels and membrane voltage dynamics often character-
ized in electrophysiology studies, representation in a computable
format is as simple as writing the canonical differential equations
(see HH example below). For other types of data, computabil-
ity is less straightforward; for instance describing the dynamics
of dendrite growth will likely be a non-trivial pursuit involving
approaches such as L-Neuron (Ascoli and Krichmar, 2000). N2A
refers to units with largely self-contained dynamics (e.g., a neu-
ron or a dendritic spine) as parts and the equations governing its
dynamics as its equation set.

The conversion of neural anatomy information into a model’s
structure is a major goal of N2A which is best illustrated by an
example. Figure 2 illustrates a few cell types in the hippocampus
from one common point of view. Ontologies, such as those at
NeuroLex and Open Source Brain (Gleeson et al., 2012; Larson
and Martone, 2013), describe the parts and relationships of a
system. Each object in the ontology can have any number of
attributes, and an important job of the ontology is to provide con-
sistent naming of those attributes across the entire community.
Attributes may contain any kind of data, from a single num-
ber to text to an entire data series captured by a physiological
experiment.

Examples of attributes might be:

Name = Hippocampus CA3 pyramidal call
Organism = Vertebrata
Neurotransmitter released = Glutamate
Dendrite Length = 12481.9 ± 2998.9 um

Most attributes can be thought of as a simple pair: attribute =
value. N2A takes this one step further by representing the dynam-
ics of a part as a set of equations. The attributes are the variables,
and the values describe how those variables evolve over time.
Equations describe how attributes interact with each other in an
explicit computable manner. Such a mathematical representation
can be incorporated into the metadata of any part in the ontology.
The Examples section below shows what several models look like
in practice.

PART INHERITANCE AND INCLUSION
The N2A language specifies rules for how equation sets are com-
bined which are motivated by object oriented principles from
programming. When part C also is a part P (e.g., a granule cell
is a neuron), part C inherits all the equations and metadata con-
tained in P. C can inherit from any number of parents. A named
value (equation or metadata) that is defined directly in C hides
any value with the same name in a parent.

When a part M has a part P (e.g., the dentate gyrus has gran-
ule cells), a prefix is added to each equation from P as it is
included into M. This allows the user to reference equations within
included parts. N2A uses the full-stop character (.) to delimit pre-
fixes. A value with P’s prefix that is defined directly in M hides any
value in P with the same name, in much the same way that names
in M hide names in M’s parents. P may in turn include a part
Q, whose equations are all prefixed and placed in P. M can then
hide any name in Q by using both prefixes. This can continue
any number levels deep. For example, the brain model includes
a hippocampus which includes a granule cell model. The brain
model could contain an equation that specifically sets the number
of granule cells in the population.

CONNECTIONS
To understand connections in N2A, it is important to recognize
the difference between a part and an instance of that part. N2A
distinguishes these notions in much the same way that an object-
oriented language such as Java distinguishes between a class and
an object. When a simulation runs, each part in the model can

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 3

http://code.google.com/p/n2a
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive
http://code.google.com/p/n2a

Rothganger et al. Neurons to algorithms

generate an entire population of instances, and each instance has
its own distinct set of values for the state variables defined in
the part. An equation set should be thought of as a template for
stamping out instances.

A part C that connects two parts X and Y (e.g., the mossy ter-
minal in Figure 2) is able to access their equation sets and make
statements about how they couple to each other. C associates a
prefix with each of X and Y, and uses those prefixes to access the
respective variables. During a simulation, an instance of C may
add to or otherwise modify values in the connected instances.
C specifies rules about which members of population A to con-
nect with which members of population B. Instances of C are
created or destroyed automatically as the populations grow and
shrink.

STRUCTURAL DYNAMICS
When an instance of part P becomes an instance of part Q (e.g.,
the progenitor cell becomes a granule cell in Figure 2), all values
with matching names are copied into the new instance. P can
split into any number of types, allowing one to model develop-
ment and population dynamics. The N2A language commits to
the notion that all morphology and connectivity are the conse-
quence of the dynamics governing individual parts. These include
rules for creating and destroying parts, splitting and changing
type, and moving in space. The language provides a way to express
all of these as equations.

SCALE INDEPENDENCE
The N2A language is designed to model a system at a wide range
of scales. Gene regulatory networks can be represented either as
coupled parts or as a collection of state variables within a given
part. Common protein interaction sequences, such as the MAPK
pathway, can be represented as a part that is included in many
other structures.

The interaction of neuron populations is illustrated in
Figure 2. Entire brain regions can be wrapped into parts and

FIGURE 2 | Example of hierarchical relationship of a neural system that

can be mapped into N2A. N2A uses a parts/connections framework to
describe a model’s components and how they interact. Further, parts and
connections can inherit dynamics and relationships from parent parts (e.g.,
a granule cell is a neuron) that allow the models described within N2A to be
related to neurobiological data characterized within neuroinformatics
ontologies.

connected with each other. Each level of model can be represented
by either a simple or a detailed part, allowing successive abstrac-
tion as one studies a system (Figure 3).

SOFTWARE
The N2A software attempts to ease many of the obstacles that
researchers face while developing, executing and fine-tuning
physiological models. To this end the software embodies these
basic principles: transparency, traceability, repeatability, and
sharing.

The system is a Java-based desktop application (Figure 4) with
an embedded database (Figure 5). The interface provides the
user with a method to locate models and other supplemental
records, modify models, and create new sets of simulations (“run
ensembles”) against a given model. Supplemental records could
be references to papers, associated lab results, input data, or other
related information that you want to track alongside the mod-
els. The user interface provides context sensitive help. It shows
part hierarchies along with associated equation sets, metadata and
references.

To support repeatability, the N2A software stores all model
runs. A planned part of the design is to keep a version history
for models (see below), so researchers can make changes without
affecting the equations used in a previous simulation. Currently,
run ensembles and individual runs maintain all parameter infor-
mation in addition to their associated model. Run results are
stored separately for analysis. Post-run/analysis products can
potentially be tracked by the software given the right plug-in
support. By recording every aspect of the model creation and exe-
cution, including system-generated random numbers and seeds,
we enable repeatability for quality assurance and double-checking
purposes.

No single tool can serve all purposes, so N2A is built from the
ground up with extensibility in mind. The software uses a plug-in

FIGURE 3 | Illustration of application of part-connection-model

framework to different scales of neural simulations. The structure of the
N2A language allows it to be applied in scales ranging from molecular
kinetics models of cell signaling to neural network models comprised of
complex neurons and synapses.

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 4

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Rothganger et al. Neurons to algorithms

FIGURE 4 | Screenshot of N2A User Interface. The N2A application allows
users to create and edit equation sets for parts, define how they connect
within a model, and incorporate metadata and references regarding literature

sources into the model. Equations are input in a straightforward
mathematical notation, with differential equations written using the “X′=”
notation and constants defined directly.

infrastructure to allow others to extend the product to meet their
needs. A key class of extension is the handler (“backend”) for a
given simulator, and a simple interface is provided for creating
new ones. Additionally, new types of model and supplemen-
tal records can be added and visualized in the user interface
according to the plug-in designer’s wishes.

SIMULATION CAPABILITIES
N2A is a model description language, but to make it useful in
practice the tool is able to translate models into inputs to several
different simulators. Each simulator is handled by a separate
“backend” module. Currently, N2A has backend modules for
two simulators: C++ and Xyce. To be fully useful it will need
additional backends to support commonly used simulators
such as NEURON, GENESIS, Brian, or NEST, and common
middleware such as PyNN. As N2A becomes integrated with
evolving neuroinformatics standards such as NeuroML, we hope

to leverage multiple additional simulators. This is a key part of
future work.

C++
The C-backend is the reference implementation of the N2A lan-
guage. It is capable of simulating any construct expressible in the
language, including structural dynamics. The price for such gen-
erality is a loss of efficiency in specialized cases. For example, the
C-backend is primarily designed for a general dynamical system,
so it is less efficient on large spiking networks. The C-backend
works by translating the model into a set of C++ classes, which
are then coupled with a runtime library that handles object man-
agement and numerical integration. The entire simulation is a
self-contained executable program.

XYCE
Xyce is a parallelized version of the electrical circuit simulator
SPICE that is capable of natively simulating large scale circuits

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 5

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Rothganger et al. Neurons to algorithms

FIGURE 5 | Structure of N2A software database. N2A stores three types
of information within the database. (1) Raw data such as references and
parameter fits that helps define parts’ behavior (left), (2) model descriptions
which consist of a set of parts and connections and information concerning
their initialization and inputs (center), and (3) ensembles of runs that include
model configuration, runtime metadata and results (right). N2A uses
external simulation tools and analytical environments, though it does
include a reference simulator implemented in C++ (bottom).

on supercomputers. Recently, we have extended its capabili-
ties for very large scale simulations of neural networks (Schiek
et al., 2012). In addition to its traditional devices (transistors,
capacitors, etc.), Xyce now also has neuron and synapse “devices.”
Xyce parses and solves a broad range of explicit mathematical
expressions, so model dynamics not covered by built-in devices
can also be included. Currently, N2A is capable of translat-
ing most of its neural models into Xyce simulations, through a
combination of direct equations and specialized neural devices.

FUTURE CAPABILITIES: MODEL SHARING AND
INTEGRATION INTO THE NEUROINFORMATICS COMMUNITY
The N2A tool is still under development, and the methods of shar-
ing described in this section are aspirational, but high-priority
future work. We summarize existing and projected capabilities in
Table 2.

Ideally, all models associated with a given part should be
stored in a central repository accessible to everyone, such as the
Neuroscience Information Framework (NIF) or Open Source
Brain (Gleeson et al., 2012). NIF is particularly compatible
with our vision because they organize all data according to the
NeuroLex ontology and they offer curation for small quantities of
data. Since N2A models are very concise they fit into this category.

Figure 6 illustrates a second means of sharing. A user asks
the N2A tool to act as a server online and allow peers to access
data and compute resources. This Peer-to-Peer (P2P) arrangement
brings up two closely related issues: versioning of models and the
repeatability of simulations. The problem is this: if a researcher
configures a model a certain way, simulates it, and later some part
that the model depends on is changed, it is no longer possible to
produce exactly the same simulation again.

We propose to keep all parts/models under version control.
Examples of version control systems in the software-development
world include Subversion, Git, Mercurial, etc. An N2A data-store
would not directly use these tools, but instead implement similar

Table 2 | Status of current and future features of N2A.

Feature Status

LANGUAGE SPECIFICATION

Part and connection
descriptions and inheritance

Documented and implemented in N2A
tool

Structural dynamics Documented and implemented in N2A
tool, limited backend support

Composition of models as
parts in other models

Documented with some backend
support. Tool allows composition of parts,
but currently treats models distinctly

N2A SOFTWARE

Model/part search,
metadata, reference
documentation, version
control

Implemented in N2A tool

Uncertainty
quantification/sensitivity
analysis

Tool drives multiple simulations with
parameter variation using different
standard approaches

Analysis of simulation
results

Not implemented; user must export to
other tool (e.g., Matlab or Excel)

Peer to peer communication Not yet implemented

Exchange models with
community

Not yet implemented. Plan to add
NeuroML import/export

Visual editing of network
structure

Partially implemented

SIMULATION BACKENDS

C++ Backend (reference
implementation)

Implements most N2A language
specifications. Structural plasticity only
partially implemented

Xyce Implements dynamical equations directly;
implements event-driven synapses
through pre-built devices

Other simulators Future intent to develop export capability
to other tools

FIGURE 6 | Schematic of N2A peer-to-peer collaborative community

vision. N2A can be run with either a local database or through a common
network repository. Users will be able to directly share models between
collaborators or with the broader community through opening their
database to the broader neuroinformatics community.

concepts. Any time a model is transmitted between two peers
or simulated, a version is permanently recorded in the database.
All parts it depends on are also permanently versioned. Ongoing
development of a part goes into a subsequent version, and does
not have any influence on the content of a model. To ensure
repeatability of simulations, it is necessary to record a number

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 6

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Rothganger et al. Neurons to algorithms

of details beyond the model itself, such as the simulator used,
random number seeds, platform, etc. It may not be possible to
capture every detail and make a simulation perfectly repeatable,
but a record of the key variables will help in interpreting the
results of the experiment.

To further drive integration into the neuroinformatics land-
scape, we envision that the N2A tool will be compatible with
existing tools by leveraging the increasingly common standards
for model definition, such as NeuroML, LEMS, and NineML.
As other simulation frameworks and environments specializ-
ing in other classes of neural simulations develop support these
growing standards, we expect that linking the models defined
within N2A into those simulation environments to be relatively
straightforward.

EXAMPLES
Here, we show three different examples of the neuroscience
systems implemented within the N2A tool to illustrate how it rep-
resents progressively more sophisticated neural circuits. These are
not a complete sample of N2A’s applicability; rather these exam-
ples are intended to highlight the scope of N2A and its eventual
vision.

HH MODEL
The Hodgkin-Huxley (HH) model of spike generation and prop-
agation underlies many computational modeling studies and is
well suited to illustrate how N2A represents neural dynamics
(Hodgkin and Huxley, 1952). Briefly, the Na+/K+ ion channel
version of the HH model is a system of four differential equa-
tions with two state variables governing the dynamics of Na+ ion
channels (m and h), one state variable governing dynamics of K+
ion channels (n) and a state variable (V) representing the inter-
nal voltage of the neuron or axon. V is often represented by the
equation

CV ′ = gNam3h(ENa − V) + gK n4(EK − V)

+ gleak(Eleak − V) + I

where C is membrane capacitance; gNa, gK , and gleak are maxi-
mum conductances for Na+, K+ and leak currents, respectively;
ENa, EK , and Eleak are the reversal potentials for those respective
currents; and I is input current. The state variables m, n, and h
typically take the form

x′ = αx(V) (1 − x) − βx(V) x

where αx(V) and βx(V) are functions of voltage specific to each
state variable.

N2A REPRESENTATION
Within N2A, we represented the HH model using the equations
outlined in (Koch, 2004) in a simple 3-segment cable configu-
ration (Figure 7). While N2A can represent the HH dynamics
of individual compartments using a part that contains all of
the equations for the sodium, potassium, and leak currents, we
chose to construct the demonstration model as a part with only
passive membrane dynamics that “includes” the appropriate ion

channels, in this case Na+ and K+. This separation of ion chan-
nels from host compartments facilitates the reuse of well-tuned
ion channels in multiple independent neuron models as well as
the rapid interchange of one ion channel to another within a
given model. Each of the three HH compartments are coupled
by a simple connection part that implements the cable equation

A.V ′ = gr(B.V − A.V)

B.V ′ = gr(A.V − B.V)

where A.V and B.V are the voltages of the two connected HH
compartments and gr is the lateral membrane conductance.

Below is the complete set of equations expressed in the N2A
language (Figure 7A). This example contains seven parts: the
abstract ion channel, two ion channels that inherit from it, the
abstract passive compartment, the HH compartment that inher-
its from it and includes the two ion channels, the HH connection,
and finally the model that incorporates the HH compartment and
HH connection into a cable. For a more thorough explanation of
how the language expresses this model, see the “N2A Language
Overview” in the supplementary material.

We illustrated simple HH dynamics and propagation of
action potentials by injecting 10pA into the left compartment
(Figures 7B,C) and, in an effective current clamp condition,
observed voltage deflection representing the 100 mV spiking
event in the compartment (Figure 7D). The spike propagates to
the right-most compartment with a short delay (Figure 7E). A
longer current injection yields a series of spikes in the leftmost
compartment (Figure 7F) that again is manifested two compart-
ments away (Figure 7G), albeit at a short delay and with a notable
failure to propagate of one spike.

SENSITIVITY ANALYSIS OF BALANCED
EXCITATION/INHIBITION NETWORKS
Balanced excitation/inhibition (E-I) networks have attracted
attention as a coarse model of cortical dynamics (Vogels and
Abbott, 2005; Brette et al., 2007). Often containing a mix-
ture of 80% excitatory and 20% inhibitory spiking neurons
(though studied with both other ratios and in non-spiking sys-
tems), E-I networks can show a range of non-trivial “phases”
of dynamical network activity, including oscillatory and chaotic
(or near-chaotic) behaviors. Balanced E-I models are interest-
ing for a number of reasons, among which is their increasing
relevance in understanding motor and prefrontal cortex dynam-
ics and their relationship to the reservoir computing research
area in machine learning. Specifically, it appears that the chaotic
dynamics observed under certain conditions are computationally
uniquely powerful (Laje and Buonomano, 2013).

Clearly, not all configurations will produce complex chaotic or
near-chaotic behavior; indeed understanding the effects of design
and parameters on these dynamics is an active area of research
(Litwin-Kumar and Doiron, 2012). Here, we illustrate the param-
eter exploration capabilities of the N2A tool by systematically
varying two basic parameters that affect the behavior phase:
strength of recurrent excitation (E) and strength of recurrent
inhibition (I).

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 7

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Rothganger et al. Neurons to algorithms

FIGURE 7 | HH model defined within N2A and simulated on Xyce. (A)

N2A language depiction of HH dynamics (B) Cartoon illustration of 3
compartment HH cable. Current is injected into left compartment and
measured in left and right compartments (C) N2A representation of HH

cable. (D) Action potential in left compartment (site of current injection). (E)

Propagating action potential in right compartment. (F) Spike train in left
compartment in response to persistent current. (G) Propagating spike train in
right compartment.

N2A REPRESENTATION
We implemented the model described in benchmark 3 of (Brette
et al., 2007) in N2A, then used N2A to define and execute a “run
ensemble” of 121 simulations with different values of synaptic
conductance (Figures 8, 9). Building the 80-20 network model
consisted of creating the necessary parts, defining cell populations
(“Layers”), and defining connections between cells (“Bridges”)
both within and across populations. The N2A parts used for this
model were: (1) a variant of a Hodgkin-Huxley neuron described
in the Brette paper (Figure 8A) (2) a conductance-based synapse
also described in the Brette paper (Figure 8B), (3) an artifi-
cial “Spiker” neuron to provide input into the network, and
(4) another exponential synapse to connect the “Spiker” cells to
selected cells in the main population. Xyce has built-in implemen-
tations of the Brette neuron and synapse models, so the N2A parts
included metadata indicating that those implementations should
be used. Figures 8C,D shows how populations and connections
are identified in N2A. All neurons in the 80-20 network have
the same dynamics, so we created a single population of neurons
using the same N2A part, but made excitatory connections only
to the first 80% by index. Excitatory and inhibitory connections
used the same “Brette synapse” part. We used connection equa-
tions both to override part parameter values as appropriate for
excitatory or inhibitory connections and to specify which neurons
can be connected.

The “Runs” tab shown in Figure 9A allows the user to create
and run one or more simulations of the model. Any parameter
defined in the model can be dragged from a pre-populated list
into the run ensemble definition, with search strategies ranging
from simple step protocols to Monte Carlo and Latin Hypercube
sampling. The figure below shows selection of the two synap-
tic conductance coefficients varied to produce Figures 9B–D, the
number of values for each and how they varied. In this case
we simply stepped through a range of values at fixed inter-
vals. Certain simulation parameters such as seed or integration
method can be chosen or varied in the same way.

Unsurprisingly, for low E the network exhibits very low aver-
age firing rates, whereas high E with low I yields very high
average firing rates (Figure 9B). For roughly balanced E and I
levels, the overall firing rates appear to be comparable in spite
of absolute magnitude. However, a simple measure of activity
distribution (Figure 9C) shows that even for E, I combinations
with comparable firing rates, the dynamical state of the net-
work can differ considerably; suggesting that there are at least
four clear states of network activity observable in our small
search space (it should be noted that it is not surprising that
high-dimensional networks such as these can exhibit many dif-
ferent phases of behavior). Figure 9D shows representative exam-
ples of network activity at different positions in the parameter
space.

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 8

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Rothganger et al. Neurons to algorithms

FIGURE 8 | 80/20 E-I network definition in N2A. (A) Screenshot of part
equation set for spiking neurons used in 80/20 model. (B) Screenshot of
synapse equation set for connections between neurons in 80/20 model. (C)

Simple network illustration of 80/20 model from a block perspective (left) and

instantiation perspective (right). (D) Screenshot of model definition equation
set for 80/20 network in N2A; differences in excitatory and inhibitory
connections (namely conductance and reversal potential) as well as the
sparse inputs are defined at this level.

It is interesting to note that even this simple illustration of
the parameter searching capabilities of the N2A tool provides
results that merit more detailed exploration. It was not surprising
that these networks not only exhibit silent (1) and hyperactive
(4) states in addition to the originally published asynchronous
state (2), but we did not expect this simple parameter exploration
exercise to show a state where the network activity is preferen-
tially localized to a subset of highly active neurons (3). What is
not clear from this study (or indeed many other studies of these
abstract networks) is how these dynamics relate to real in vivo
cortical function. For instance, it has been suggested that work-
ing memory in the pre-frontal cortex (and other cortical areas)
involves a switch from asynchronous activity to a more persis-
tent activity of a subset of neurons holding a trace (Durstewitz
et al., 2000; Wang, 2001). These illustrative parameter search
results are far too preliminary to make any strong links to this
neurobiological phenomenon, however it would be interesting
to expand the search to include the both more realistic network
connectivity (Litwin-Kumar and Doiron, 2012)and extrinsic neu-
romodulatory influences such as dopamine(Brunel and Wang,
2001) that may effectively alter the excitation/inhibition balance
dynamically.

STRUCTURAL DYNAMICS
In addition to challenges in understanding parameter sensitivity
of models, many neural systems involve dynamics or structures
that are not well suited to existing tools. One such example is
structural plasticity of neural systems. While most modeling stud-
ies treat neural circuits as effectively fixed, at most implementing
plasticity in synaptic weights, there are many neural processes that
necessitate changing the network itself over extended time scales.
These include neurological and psychiatric disorders, develop-
ment, and even structural plasticity in the healthy adult brain
through neurogenesis and dendritic spine dynamics.

N2A REPRESENTATION
The structure of parts within N2A allows for the representation
of the regulated birth, transitions, and death of instances. Here,
we show two examples of how structural plasticity would be rep-
resented within the N2A language. There are two key language
commands: assigning type to an instance of a part will transition
it to a different type of part (i.e., differentiation), and assigning
multiple types to an instantiated part will replicate the instance.
This division can either be symmetric (where both children are
equivalent to one another, regardless of whether the parent’s type

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 9

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Rothganger et al. Neurons to algorithms

FIGURE 9 | Model simulations of 80/20 E-I network in N2A. (A)

Screenshot of parameter search window within N2A; any model parameter
can be varied either randomly or systematically and in isolation or in
conjunction with other parameters. (B) Firing rates in response to
parameter sweep of differing E and I synaptic conductance levels. (C)

Distribution of activity in response to parameter sweep. (D) Representative
raster plots of spiking from E-I network at different positions in parameter
state space; 1—all neurons effectively silent; 2—asynchronous firing
dynamics; 3—skewed firing dynamics, with subset of neurons exhibiting
persistent activity; 4—hyperactive network with most neurons persistently
active.

is maintained) or asymmetric (where the children are different
parts, with one perhaps retaining the parent’s type).

Figure 10 shows two examples of what the N2A language
will accommodate. Figure 10A shows a growing dendrite, with
a dynamic growth cone (purple) at the end. This growth cone
is capable of linear growth (basically splitting into an ordinary
compartment and the growth cone), branching (splitting into
multiple growth cones and a stable compartment), differentiation
(growth cone becomes a compartment), or death (growth cone
simply disappears).

Figure 10B illustrates a different form of structural dynamics,
the proliferation and differentiation of a dentate gyrus stem cell
into an eventual granule cell population during the adult neuro-
genesis process. In this example, a radial glial cell (RGC, green),
which is considered the primordial stem cell type in the adult
dentate gyrus, is capable of asymmetric division, producing a

FIGURE 10 | Examples of how structural plasticity would be expressed

within N2A. (A) Growing dendrite with growth cones. Progressive series
of growth cone (GrCn) branching, differentiation, and death can lead to the
construction of a complex arborization. Each step of this process could be
regulated by other variables, such as external chemical signals or intrinsic
activity. (B) Proliferation and Differentiation from a stem cell population. A
radial glial cell (RG, green) can divide asymmetrically, producing a copy of
itself and a neural progenitor cell (NPC, red). This NPC can then itself divide
symmetrically, asymmetrically, differentiate, or die. As with the growing
dendrite, each of these events can simply be probabilistic or regulated by
other factors.

neural progenitor cell (NPC, red) as well as a “copy” of itself. This
NPC subsequently exhibits several rounds of symmetric cell divi-
sion, amplifying the number of children. Finally, the NPCs will
either die (black) or differentiate into granule cells (blue).

SUMMARY
N2A has been designed to enable the general neuroscientist to
achieve the scope and depth of models that heretofore have
been mostly limited to those with considerable programming
expertise. Concepts such as structural plasticity and parameter
searching that are illustrated can all be achieved using other tools
or conventional languages, but they often require considerable
work on the modeler’s part. We believe that the trends in neu-
roscience toward more detailed characterization of systems and
increased emphasis on clinical conditions (such as diseases and
therapeutic mechanisms) will further amplify the importance of
having a tool to effectively capture neurobiological complexity in
a straightforward manner.

The increase in high throughput data acquisition, improved
neuroinformatics tools, and growing availability of computing
resources all will facilitate the trend toward more biologically
detailed approaches to modeling neural systems. An important
consideration is that the rationale behind biologically realistic
models is quite different than that of other modeling approaches,
such as large scale simple models and abstract models of neural
system functions. Briefly, in contrast with models that illustrate
how a neural circuit can map to a known function, “bottom up”
detail oriented models can suggest novel computational func-
tions for neural processes that otherwise would not have been
considered. Such work has in the past been useful in identify-
ing the functions of complex neural processes; for instance a
high resolution model of neurogenesis was able to suggest that
new neurons may provide a previously unknown function of

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 10

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Rothganger et al. Neurons to algorithms

encoding time into episodic memories (Aimone et al., 2009), a
function that has subsequently been measured in rats (Morris
et al., 2013).

Notably, the potential value of “bottom up” models in provid-
ing novel functional insight into a brain region is dependent on
a design of the model that is not biased toward desired results.
The brain is, of course, considerably more complex than any
single model is capable of representing, and abstraction is thus
always necessary to some extent. However, abstraction should be
performed with careful consideration to minimize disruption to
behavior, not simply guided by the ease of implementation or
the ready availability of data. The N2A tool is well suited for this
challenge; as its representation of neuronal dynamics enables the
incorporation of complex processes that are often neglected into
models, such as adult neurogenesis or cellular protein kinetics.
Furthermore, we believe that as N2A is further integrated into the
broader neuroinformatics community, modeling biases due to the
local availability of information will be minimized (e.g., someone
may include the oft-ignored CA2 region in a hippocampal model
if N2A can pre-populate the relevant details).

We recognize that N2A’s data-centric, dynamical representa-
tion of neural information makes it less well suited for other
modeling approaches, for which we expect many existing tools
to be preferable. This includes Monte Carlo type simulations of
molecular dynamics (e.g., MCell) and morphologically defined
models of dendritic dynamics (e.g., NEURON). Notably, the orig-
inal motivation of N2A was to automatically extract computa-
tional structures (the “algorithms” in the name) from data about
neurons and their interconnections. Although the goal of auto-
matic model reduction for algorithm discovery is now considered
remote, its influence lingers in the design of the language and
tools. For example, an increasing fraction of data in neuroscience
exists in databases and is machine readable and computable,
incorporating both graphical structures and dynamics.

The long-term goal of understanding the computation of the
entire brain appears in the community sharing and neuroinfor-
matic aspects of the tool. It is necessary, after all, to have a com-
putational framework capable of representing the entire nervous
system. In that sense N2A shares aspirations with cognitive frame-
works such as ACT-R and SOAR, but it makes far fewer commit-
ments to specific structure. Rather the expectation is that a large
community of experts will jointly assemble what they know onto
the scaffolding to create a digital mind. Undoubtedly the current
incarnation of the language will evolve many times and perhaps
even go extinct before the community reaches that goal.

ACKNOWLEDGMENTS
This work was supported by the Laboratory Directed Research
and Development (LDRD) program at Sandia National
Laboratories. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000. We would
like to thank Rich Schiek, Corinne Teeter, and Alex Duda for
helpful discussions and comments.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/Neural_Circuits/10.3389/
fncir.2014.00001/abstract

REFERENCES
Aimone, J. B., and Weick, J. P. (2013). Perspectives for computational modeling of

cell replacement for neurological disorders. Front. Comput. Neurosci. 7:150. doi:
10.3389/fncom.2013.00150

Aimone, J. B., Wiles, J., and Gage, F. H. (2009). Computational influence
of adult neurogenesis on memory encoding. Neuron 61, 187–202. doi:
10.1016/j.neuron.2008.11.026

Alivisatos, A. P., Chun, M., Church, G. M., Deisseroth, K., Donoghue, J. P.,
Greenspan, R. J., et al. (2013). The brain activity map. Science 339, 1284–1285.
doi: 10.1126/science.1236939

Ascoli, G. A., and Krichmar, J. L. (2000). L-Neuron: a modeling tool for the
efficient generation and parsimonious description of dendritic morphology.
Neurocomputing 32, 1003–1011. doi: 10.1016/S0925-2312(00)00272-1

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS: Exploring Realistic
Neural Models with the GEneral NEural SImulation System. New York, NY: Telos.
doi: 10.1007/978-1-4612-1634-6

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,
et al. (2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Brunel, N., and Wang, X.-J. (2001). Effects of neuromodulation in a cortical net-
work model of object working memory dominated by recurrent inhibition.
J. Comput. Neurosci. 11, 63–85. doi: 10.1023/A:1011204814320

Davison, A. P., Bruderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.
(2008). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Dudani, N., Ray, S., George, S., and Bhalla, U. S. (2009). Multiscale modeling and
interoperability in MOOSE. BMC Neurosci. 10:P54. doi: 10.1186/1471-2202-10-
S1-P54

Durstewitz, D., Seamans, J. K., and Sejnowski, T. J. (2000). Neurocomputational
models of working memory. Nat. Neurosci. 3, 1184–1191. doi: 10.1038/81460

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (neural simulation tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M.,
et al. (2010). NeuroML: a language for describing data driven models of neu-
rons and networks with a high degree of biological detail. PLoS Comput. Biol.
6:e1000815. doi: 10.1371/journal.pcbi.1000815

Gleeson, P., Crook, S., Silver, A., and Cannon, R. (2011). Development of
NeuroML version 2.0: greater extensibility, support for abstract neuronal mod-
els and interaction with Systems Biology languages. BMC Neurosci. 12:P29. doi:
10.1186/1471-2202-12-S1-P29

Gleeson, P., Piasini, E., Crook, S., Cannon, R., Steuber, V., Jaeger, D., et al. (2012).
The open source brain initiative: enabling collaborative modelling in computa-
tional neuroscience. BMC Neurosci. 13:O7. doi: 10.1186/1471-2202-13-S1-O7

Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuroConstruct: a tool for
modeling networks of neurons in 3D space. Neuron 54, 219–235. doi:
10.1016/j.neuron.2007.03.025

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks
in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.
117, 500.

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian
thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593–3598. doi:
10.1073/pnas.0712231105

Koch, C. (2004). Biophysics of Computation: Information Processing in Single
Neurons: Information Processing in Single Neurons. Oxford: Oxford University
Press.

Laje, R., and Buonomano, D. V. (2013). Robust timing and motor patterns by
taming chaos in recurrent neural networks. Nat. Neurosci. 16, 925–933. doi:
10.1038/nn.3405

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 11

http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2014.00001/abstract
http://www.frontiersin.org/Neural_Circuits/10.3389/fncir.2014.00001/abstract
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

Rothganger et al. Neurons to algorithms

Larson, S. D., and Martone, M. (2013). NeuroLex. org: an online framework
for neuroscience knowledge. Front. Neuroinform. 7:18. doi: 10.3389/fninf.2013.
00018

Litwin-Kumar, A., and Doiron, B. (2012). Slow dynamics and high variability
in balanced cortical networks with clustered connections. Nat. Neurosci. 15,
1498–1505. doi: 10.1038/nn.3220

Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55. doi: 10.1038/
scientificamerican0612-50

Morris, A. M., Curtis, B. J., Churchwell, J. C., Maasberg, D. W., and Kesner, R. P.
(2013). Temporal associations for spatial events: the role of the dentate gyrus.
Behav. Brain Res. 256, 250–256. doi: 10.1016/j.bbr.2013.08.021

Raikov, I. (2010). NineML - a description language for spiking neuron network
modeling: the abstraction layer. BMC Neurosci. 11:66. doi: 10.1186/1471-2202-
11-S1-P66

Richert, M., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2011). An efficient
simulation environment for modeling large-scale cortical processing. Front.
Neuroinform. 5:19. doi: 10.3389/fninf.2011.00019

Schiek, R. L., Warrender, C. E., Teeter, C., Aimone, J. B., Thornquist, H., Mei,
T., et al. (2012). Simulating Neural Systems with Xyce. No. SAND2012-10628.
Sandia National Laboratories.

Vogels, T. P., and Abbott, L. (2005). Signal propagation and logic gating in
networks of integrate-and-fire neurons. J. Neurosci. 25, 10786–10795. doi:
10.1523/JNEUROSCI.3508-05.2005

Wang, X.-J. (2001). Synaptic reverberation underlying mnemonic persis-
tent activity. Trends Neurosci. 24, 455–463. doi: 10.1016/S0166-2236(00)
01868-3

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 September 2013; accepted: 06 January 2014; published online: 24 January
2014.
Citation: Rothganger F, Warrender CE, Trumbo D and Aimone JB (2014) N2A: a
computational tool for modeling from neurons to algorithms. Front. Neural Circuits
8:1. doi: 10.3389/fncir.2014.00001
This article was submitted to the journal Frontiers in Neural Circuits.
Copyright © 2014 Rothganger, Warrender, Trumbo and Aimone. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic prac-
tice. No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neural Circuits www.frontiersin.org January 2014 | Volume 8 | Article 1 | 12

http://dx.doi.org/10.3389/fncir.2014.00001
http://dx.doi.org/10.3389/fncir.2014.00001
http://dx.doi.org/10.3389/fncir.2014.00001
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive

	N2A: a computational tool for modeling from neurons to algorithms
	Introduction
	Overview of N2A Framework
	Model Description Language
	Part Inheritance and Inclusion
	Connections
	Structural Dynamics
	Scale Independence

	Software
	Simulation Capabilities
	C++
	Xyce

	Future Capabilities: Model Sharing and Integration into the Neuroinformatics Community
	Examples
	HH Model
	N2A Representation

	Sensitivity Analysis of Balanced Excitation/Inhibition Networks
	N2A Representation

	Structural Dynamics
	N2A Representation

	Summary
	Acknowledgments
	Supplementary Material
	References

