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When exposed to rewarding stimuli, only some animals develop persistent craving. Others
are resilient and do not. How the activity of neural populations relates to the development
of persistent craving behavior is not fully understood. Previous computational studies
suggest that synchrony helps a network embed certain patterns of activity, although
the role of synchrony in reward-dependent learning has been less studied. Increased
synchrony has been reported as a marker for both susceptibility and resilience to
developing persistent craving. Here we use computational simulations to study the effect
of reward salience on the ability of synchronous input to embed a new pattern of activity
into a neural population. Our main finding is that weak stimulus-reward correlations can
facilitate the short-term repetition of a pattern of neural activity, while blocking long-term
embedding of that pattern. Interestingly, synchrony did not have this dual effect on all
patterns, which suggests that synchrony is more effective at embedding some patterns of
activity than others. Our results demonstrate that synchrony can have opposing effects in
networks sensitive to the correlation structure of their inputs, in this case the correlation
between stimulus and reward. This work contributes to an understanding of the interplay
between synchrony and reward-dependent plasticity.
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learning, substance abuse

1. INTRODUCTION
Synchrony refers to a coordinated pattern of network activity.
Synchrony occurs between (i) action potentials, (ii) local field
potentials, or (iii) action potentials and local field potentials. The
latter two types of synchrony are frequently called coherence.
Neural networks with strong recurrent connections can demon-
strate synchronous activity that persists over seconds to minutes
(Tetzlaff et al., 2012). Changing synaptic strengths allows that
activity to persist over longer time scales (Holtmaat and Svoboda,
2009).

Synchrony between action potentials helps localize sounds
(Joris et al., 1998), signal the direction of motion (Meister et al.,
1995; Meister and Berry, 1999), and discriminate among odors
(Stopfer et al., 1997; Tetzlaff et al., 2012).

When exposed to addictive substances, only some individuals
develop an addiction or dependence (Ersche et al., 2010). Of those
who become addicted or dependent, only some respond to treat-
ment (Gawin, 1991). Alterations in activity-dependent learning
in areas of the brain involved in reward processing are important
in the pathogenesis of addictive disorders (Koob and Le Moal,
2005). Increased synchrony can predict intoxication (Li et al.,
2011), resilience, susceptibility (Coullaut-Valera et al., 2014), or
likelihood of relapse (Camchong et al., 2013), depending on in
which brain region the synchrony manifests.

These observations suggest that many aspects of addiction
can be understood as changes in the structure of synchroniza-
tion of neural networks. To explore this, we study the stability
of a pattern of activity in the face of different stimulus-reward
inputs.

2. RESULTS
2.1. SUMMARY OF MODEL
Equation (1) describes the dynamics of a group of neurons, v.
Those neurons interact linearly with each other according to the
intrinsic connection matrix M, and receive input, u, weighted
according to the feedforward connection matrix W. The weights
in W depend on (i) the correlation between the stimulus, u,
and network activity, v, denoted u⊗ v, and (ii) the correlation
between the the stimulus, u, and the reward associated with the
stimulus, r, denoted r⊗ v. The second line in Equation (1) is a
linear differential equation in M, which means that it can only
remove pairwise correlations.

The top line of Equation (1) describes the firing rate of a
population of neurons. That firing rate decays in the absence
of recurrent or feedforward input. The second line implements
Hebbian modification of the feedforward weights, modulated
the by the reward associated with the stimulus, r. The third
line implements anti-Hebbian modification of the recurrent
weights. Anti-Hebbian modification prevents the network from
responding identically to inputs with the same amount of active
units.

τv
dv

dt
= −v+M · (tanh v)+W · u

τW
dW

dt
= K ·W · u (r− v)

τM
dM

dt
= (I−M)− (W · u) v (1)
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The importance of correlations arises directly from the bottom
two lines in Equation (1) because the outer product of two vec-
tors can be interpreted as the cross-correlation between those two
vectors. In this paper, we only consider 1-dimensional stimuli
for simplicity. The dependence of the dynamics of connections
among neurons on the correlation between stimulus activity and
network activity allows patterns of network activity that are very
far from v∞ to maintain stable connections between neurons.

Connections between units in the network stabilize, that is
d
dt M→ 0, when the correlation between network activity, v, and
the filtered version of the input, W · u, lies parallel to the devia-
tion between the connection matrix, M and the identity matrix,
I. Connections between the network and input stabilize, that is
d
dt W→ 0, when network activity accurately predicts the reward,
r = v or the neurons in the network become autonomous, M = I
so K = 0.

2.2. COMPUTATIONAL RESULTS
2.2.1. Stimuli
We model (crudely) the initiation, continuation, and cessation of
drug use with three patterns of stimuli, exposure, chronic, and
cessation, respectively (Figure 1, left). We combine these stimuli
with two types of reward saliences, designed to model susceptible
and resilient individuals (Figure 1, right). The reward associated
with a stimulus is a log-Gaussian for susceptible individuals and a
Gaussian for resilient individuals. A log-Gaussian function was
chosen to reflect experimentally observed dynamics of positive
reinforcement (Koob and Le Moal, 2005; Koob, 2013). A Gaussian
function was chosen to model the slower and softer dynamics sug-
gested to occur in resilient individuals (Ersche et al., 2010). We
calculate the stimulus-reward patterns as the convolution of each
combination of stimulus and reward (Figure 2).

Figure 3 investigates the ability of our network to maintain a
preset pattern in the face of different stimuli and different rewards
associated with those stimuli. In that figure, all panels in a row
share the same reward. All panels in a column share the same
stimulus. Each panel has three components, a raster plot, the

stimulus, and the reward associated with that stimulus. The mid-
dle column, in which the stimulus is tonic, shows the greatest
deviation from the resting pattern. Each row of the raster indicates
the firing pattern of a neuron, with black indicating an action
potential and white indicating the absence of firing. The middle
graph in each panel indicates the stimulus pattern. The bottom
graph in each panel indicates the perceived reward.

Figure 3 shows that susceptible networks are more able to
maintain the preset pattern in the face of a chronic stimulus than
resilient ones are; however, resilient networks can better maintain
the present pattern once the stimulus stops. In the context of neu-
ral network computation, stability of our network in the face of
different stimulus-reward patterns reflects (i) the incompatibil-
ity between the patterns the inputs would embed and the preset
patterns embedded in the network, and (ii) the lower energy asso-
ciated with the preset patterns which favors maintaining them.
In the context of addiction, patterns that are stable in the face of
input could model the lack of alteration of synaptic weights in
resilient individuals or the perpetuation of destructive behaviors
in susceptible individuals who develop substance dependence.

To quantify the similarity in patterns between two panels, we
considered each of the N rows of each panel’s raster to represent
a vector. We calculated the similarity between two patterns, a and
b, denoted by qab, as the average of the cosine of the angle, θ ,
between each corresponding rows Equation (2).

qab = 1

N

N∑

n=1

vn,a · vn,b

||vn,a|| · ||vn,a|| (2)

Figure 4 shows the result of applying Equation (2) to Figure 2.
Changes greater than this magnitude are beyond the 85th per-
centile in the empiric cumulative distribution function created
from randomly shufffling all rows in all rasters in Figure 3. This
corresponds to a change in the cosine of the angle of more than
0.05. That is to say, the deeper blue the square, the more effective
the stimulus-reward input was at embedding its pattern.

FIGURE 1 | Patterns of stimuli and rewards used as input. Left: Templates for three different patterns of binary stimuli, isolated (exposure), tonic (chronic), and
cessation. Right: Templates for two different dynamics of reward salience, log-Gaussian (susceptible) and Gaussian (resilient). All templates last for 200 time steps.
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FIGURE 2 | Stimuli-reward patterns for simulation. Each panel shows
the reward in arbitrary units over time associated with different patterns
of drug use. Rows denote different network modes, susceptible or

resilient. Columns denote different patterns of drug usage, initiation
(exposure), chronic (continual use), or cessation. All patterns last for 200
time steps.

FIGURE 3 | Stability of network activity in the face of various

stimulus-reward inputs. Each panel shows the raster (top), stimulus
(middle), and associated reward (bottom) for one of the six stimulus-reward
patterns from Figure 2. The row (x-label of raster) indicates the reward
pattern, susceptible or resilient. The column (y-label of raster) indicates the

stimulus pattern (exposure, chronic, or susceptible). In the raster, each row
indicates a neuron. The x-axis of the raster indicates time. A black mark is
placed at the itth position if neuron i fired at time t. The simulations in all
panels began with the same initial condition, being within the basin of
attraction of v0.
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This stability (resistance to embedding) is lowest with the
most prolonged stimulus, chronic use, as shown by the deep
blue colors in Figure 4. The impairment persists only for net-
works whose reward correlation follows a susceptible scheme.
In the lowest three rows in the first column of Figure 4, the
square corresponding to chronic (prolonged) exposure is deep
blue, but the others are paler than their counterparts in the
susceptible scheme. Interestingly, the susceptible network has a
more profound negative reaction than the resilient network does

FIGURE 4 | Similarity between network activities in Figure 3. The color
of each box in the heat map shows the circular mean of the cosine of the
angles formed between each row of the corresponding panels in Figure 3.
A row makes an angle of 0 with itself, which corresponds to a cosine value
of 1. Cooler colors indicate more different patterns.

to initial exposure and sensation (bottom graph in the panels in
Figure 3).

Susceptible networks exhibit more stable patterns of activity
with continual exposure to a highly rewarding stimulus than do
resilient networks (Figure 5). We calculated stability according
to Equation (9) (see Materials and Methods). Taken with the
impairment in recall, this suggests that, in susceptible networks,
chronic use creates new fixed points while destabilizing exist-
ing ones. Figure 6 shows that previously stable patterns become
associated with higher energies in susceptible but not resilient
networks after ceasing to be exposed to a highly rewarding
stimulus.

3. DISCUSSION
This paper discussed the ability of a computational model of
neural population dynamics with activity-dependent plasticity
to maintain preset patterns of activity in the face of different
stimulus-reward patterns. The types of stimuli were chosen to
model patterns of drug use. Rewards and stimuli were chosen to
reflect the division into susceptible and resilient organisms, noted
in the experimental and clinical literature.

We found that a tonic stimulus, modeling chronic exposure,
was most effective in destabilizing the network. If the network
perceived rewards according to Gaussian (resilient) dynamics it
fully recovered. If it perceived rewards according to log-Gaussian
(susceptible) dynamics, then it remained altered. The discontin-
uation of the tonic stimulus promoted unstable network activ-
ity in networks that follows log-Gaussian (susceptible) but not
Gaussian (resilient) reward dynamics. Our computational results
agree with experimental and clinical findings. Chronic but not
acute use causes cognitive impairment for many drugs of abuse
(Block et al., 2002; Lundqvist, 2005). These impairments persist

FIGURE 5 | Energy of network activity in the face of various stimulus-

reward patterns. Left panel shows the stability of a susceptible network when
stimulated by exposure (solid line), continuous use (dashed line), or cessation

(dashed-dotted line). Right panel shows similar conditions for a resilient
network. The y-axis of each panel plots energy on the same arbitrary scale. See
Methods for how E (v) quantifies stability. Lower energies are more stable.
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FIGURE 6 | Stability of fixed points of network in the face of various

stimulus-reward schemata. Layout similar to Figure 3. The top row denotes
a susceptible reward profile, the bottom a resilient profile. The left column

indicates exposure to rewarding stimulus, the middle column continuous use
of a rewarding stimulus, and the right column shows the cessation of
continuous use. Lower energies are more stable.

in some people even after cessation (Gouzoulis-Mayfrank et al.,
2003). The chronic use of drugs of abuse impairs certain neu-
rocognitive domains more than others (Bechara, 2005).

Simulating the relationship between synchrony and network
activity may provide insight into the pathogenesis and treat-
ment of functional brain disorders. It also suggests that certain
patterns of deep brain stimulation may be more effective than
others for a given pathology. For example, structured patterns
of stimulation may be more effective for some neuropsychi-
atric disorders, while a noisier stimulus, similar to that used in
electroconvulsive therapy, may be more appropriate for other
disorders. In support of this postulate, the frequencies used in
deep brain stimulation, even in the same region, vary with the
disease being treated (McIntyre et al., 2004). Stimulation of
the internal capsule and adjacent ventral striatum are effective
for treating obsessive-compulsive disorder only at frequencies
between 100 and 130 Hz (Greenberg et al., 2010). Tonic but
not phasic stimulation of the medial prefrontal cortex at 100
Hz reverses a depressive phenotype in mice (Covington et al.,
2010).

Future work, beyond addressing the caveats below, could
investigate whether the stimulus-reward patterns used here
induce similar effects in networks with different classes of embed-
ded patterns. This network embedded patterns using a bivariate
covariance rule. Many other schemes exist for embedding pat-
terns, including those using multivariate covariance rules. Our
model considered only the rewarding effects of drugs. A more
realistic model could account for negative reinforcement of with-
drawal, which may be more important in the maintenance of
drug-seeking behavior (Koob, 2013).

3.1. CAVEATS
The network constructed here grossly simplified the interactions
in neural networks, assuming that (i) all units in the network
interacted linearly, (ii) the dynamics of the network followed
a Markov chain, and (iii) there is no learning of new mem-
ories. These assumptions limit how widely the conclusions of
this paper apply. The assumption of linear interactions simpli-
fies the analysis. However, neuromodulators, such as dopamine
and acetylcholine, are important in learning and memory and
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FIGURE 7 | Schematic of network. The vector v denotes the firing rates of
all neurons in the network. For illustration, the activity and connections of the
ith neuron are highlighted while those of two other neurons are displayed but

ghosted. The matrix element Mij denotes the connection strength from the
jth neuron to the ith neuron. The matrix element Wij denotes the connection
strength from jth component of the input, uj , to the ith neuron.

reward-dependent plasticity. Their effects on neural activity are
non-linear. The Markov assumption simplifies simulation and
allows the calculation of an energy function at the expense of
making this network unable to manifest very slow correlations
(Glauber, 1963; Kim and Nelson, 1999).

4. MATERIALS AND METHODS
4.1. OVERVIEW
This section details the construction of a model neural network
with (i) excitatory and inhibitory connections, (ii) external input,
and (iii) the ability to recover prior patterns of activity. For
more detail, refer to the Supplementary Material. All computer
code used in the project are available in the GitHub repository
synchrony.

Figure 7 sketches a portion of the network with three neurons,
i, j, and k. The matrix M contains the strength of connections
between neurons. The matrix W contains the strength of con-
nections between components of the input, u, and neurons in
the network. Equation (3) describes the dynamics of the network.
The equation inset in Figure 7 is a version of Equation (3) for one
neuron.

τv
dv

dt
= −v+M · F (v)+W · u F (v) = tanh v (3)

Equation (4) constructs a symmetric matrix, M, from a finite set
of memories,

{
a�

}
.

M = 1

(1− α) α| {a�
} |

∑

{a�}
(

a�
i − αn

) (
a�

i − αn
)− 1

α| {a�
} |

(4)

We introduce the terms Hebbian modification and anti-Hebbian
modification to denote a strengthening or weakening of connec-
tions in the presence of correlated activity, respectively. Without

an anti-Hebbian term in the dynamics of the recurrent connec-
tion matrix, M, each row of the feedforward weight matrix, W
will come to lie parallel to the principal eigenvector of the input
correlation matrix. This will make each target neuron respond
identically. To break this redundancy we allow anti-Hebbian
modification into the dynamics of M, using Equation (5) from
Goodall (1960).

τM
dM

dt
= (I−M)− (W · u) v (5)

4.1.1. Reward-dependent plasticity
Dysregulation of brain areas that process rewards plays a role
in the pathogenesis of addictive disorders (Everitt and Robbins,
2005). A simple way to account for the rewarding effects of a stim-
ulus, u, is to make the connections between that stimulus and
the network, W, dependent on the magnitude of that reward, r.
Equation (6) shows for one neuron, v, the Rescorla-Wagner rule,
a simple mathematical formulation of this concept (Rescorla and
Wagner, 1972).

v = w · u
w← w+ εδu

δ = r − v (6)

In Equation (6), u denotes input to the network. The vector w
weights those inputs. The scalar, ε, represents the associability of
the stimulus with the reward. The vector, δ, denotes the reward-
prediction error. This name for δ arises from interpreting the
second line in Equation (6) as a gradient descent rule that min-
imizes the quantity 〈(r − v)2〉, which is the mean squared error
between the actual reward, r, and the prediction, v.

Equation (7) modifies Equation (5) by incorporating
Equation (6).

τW
dW

dt
= KWu (r− v) (7)
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4.1.2. Stability of memories
If the state of any unit i in the network at some time t follows
Equation (8), then network activity, v, evolves as a Markov chain
(Glauber, 1963). Equation (8) assumes the activity of the ith unit,
vi follows Equation (3).

P [vi (t +�t) = 1] = 1

1+ e−vi
(8)

A network of binary units updated according to Equation (8) is
often called a Boltzmann machine because once the network has
reached equilibrium, a Boltzmann distribution defines the prob-
ability that a pattern of network activity will occur (Hinton and
Sejnowski, 1986). In a classical Boltzmann machine, one unit is
randomly selected and updated at each time point.

Every pattern of activity in the network, v, has an energy, E (v),
associated with it [top line of Equation (9)]. Patterns with lower
energy are more stable, that is more likely to occur, because they
are more likely to occur. The probability of a pattern, v occur-
ring, increases as the energy associcated with that pattern, E (v),
decrease [bottom line of Equation (9)] .

E (v, u) = −(u ·W · v)+ 1

2
(v ·M · v)

P[v] = e−E(v)

Z

Z =
∑

{v}
e−E(v)

(9)
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