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The mediodorsal thalamic nucleus (MDT) is a higher order thalamic nucleus and its role in
cognition is increasingly well established. Interestingly, components of the MDT also have
a somewhat unique sensory function as they link primary olfactory cortex to orbitofrontal
associative cortex. In fact, anatomical evidence firmly demonstrates that the MDT
receives direct input from primary olfactory areas including the piriform cortex and has
dense reciprocal connections with the orbitofrontal cortex. The functions of this olfactory
pathway have been poorly explored but lesion, imaging, and electrophysiological studies
suggest that these connections may be involved in olfactory processing including odor
perception, discrimination, learning, and attention. However, many important questions
regarding the MDT and olfaction remain unanswered. Our goal here is not only to briefly
review the existing literature but also to highlight some of the remaining questions that
need to be answered to better define the role(s) of the MDT in olfactory processing.
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Introduction

The thalamus is a crucial crossroad structure in the brain that is recognized as a major contributor
to the following functions: sensory perception, attention, sleep and arousal, memory, and cognition.
Thalamic nuclei can be divided into (at least) two categories: first-order and higher order thalamic
relays (Guillery, 1995). The first category, sensory recipient thalamic relays, processes information
arriving from the periphery. The second category, higher order thalamic relays, processes
information sent from many cortical areas. Higher order thalamic relays are key structures in
cortico-thalamo-cortical networks (Sherman and Guillery, 2002; Mitchell et al., 2014; Saalmann,
2014).

The mediodorsal thalamic nucleus (MDT) is an example of a higher-order thalamic relay
(Mitchell and Chakraborty, 2013). The MDT receives inputs from a wide variety of brain
areas including cortical structures (notably the prefrontal cortex), brainstem structures, basal
forebrain structures, and other thalamic nuclei (Groenewegen, 1988; Kuroda and Price, 1991a,b;
Ray and Price, 1992; Guillery, 1995; Kuroda, 1998). In return, the MDT projects massively
to the prefrontal cortex (Leonard, 1969; Krettek and Price, 1977a). The cytoarchitecture and
the topographical distribution of the different inputs and outputs have led to the separation
of the MDT into three subnuclei in the rat—medial, central, and lateral (Krettek and Price,
1977a; Groenewegen, 1988). The dense reciprocal connections between the MDT and the
prefrontal cortex have placed the MDT as a critical structure in the study of cognitive processes.
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In fact, lesions of the MDT in monkeys and rats are associated
with a wide range of cognitive deficits: mnesic deficits, deficits
in stimulus-outcome associations, deficits in representation
of outcome value, and deficits in action-outcome association
(Corbit et al., 2003; Mitchell and Gaffan, 2008; Ostlund and
Balleine, 2008; Baxter, 2013; Mitchell and Chakraborty, 2013;
Alcaraz et al., 2014; Mair et al., 2015). Electrophysiological
recordings of the MDT have also demonstrated the contribution
of the MDT in working memory, behavioral flexibility, goal-
directed behavior, and stimulus reward-association (Oyoshi
et al., 1996; Kawagoe et al., 2007; Yu et al., 2012; Han et al.,
2013; Parnaudeau et al., 2013; Mair et al., 2015). The role
of the MDT in cognition is thus increasingly well established
(reviewed in Baxter, 2013; Funahashi, 2013; Mitchell and
Chakraborty, 2013; Mitchell et al., 2014; Mitchell, 2015). In
addition to these cognitive functions, the MDT also has a sensory
component as the olfactory thalamus. As described below,
there are firm anatomical and physiological data demonstrating
the relationships among the olfactory cortex, the MDT, and
the orbitofrontal associative cortex. These connections are
particularly intriguing as they bring together one of the most
phylogenetically oldest sensory systems with one of the more
recently evolved cortical structures.

Anatomy of the Olfactory Thalamus

The thalamus is the major source of sensory information to the
primary sensory cortex for all of the senses except olfaction.
In fact, olfactory sensory neurons send their axons directly
to the olfactory bulb which in turn projects to the primary
olfactory cortex—a region including the piriform cortex, the
anterior olfactory nucleus, the olfactory tubercle, the cortical
nucleus of the amygdala, and the lateral entorhinal cortex
(Price and Powell, 1971; Haberly and Price, 1977; Figure 1A).
While there is no direct input from the olfactory sensory
neurons to the thalamus, the MDT both receives and sends
information to primary as well as secondary olfactory areas. An
example of a major secondary olfactory area is the orbitofrontal
cortex which has strong reciprocal connections with both the
MDT and piriform cortex (Illig, 2005). While this review
focuses on the MDT, the submedial nucleus of the thalamus
also receives olfactory inputs (Price and Slotnick, 1983; Price,
1985).

Olfactory Afferents
Powell et al. (1963) was one of the first to reveal the relationship
between the olfactory pathway and the MDT by showing axonal
fiber degeneration in the MDT following lesions in the piriform
cortex. In addition to the piriform cortex, the MDT also receives
direct input from the olfactory tubercle, the basolateral and
cortical nuclei of the amygdala, the lateral entorhinal cortex,
the anterior olfactory nucleus, the endopiriform nucleus, and
the orbitofrontal cortex (Figure 1A). The MDT is thus the
target of all the primary olfactory areas (e.g., piriform cortex)
as well as some secondary olfactory areas (e.g., orbitofrontal
cortex). Of note, the olfactory projections are topographical
and involve two distinct subregions of the MDT: the medial

and central subnuclei [in rats: (Powell et al., 1963; Heimer,
1968; Krettek and Price, 1974, 1977b; Inagaki et al., 1983; Price
and Slotnick, 1983; Price, 1985; Cornwall and Phillipson, 1988;
Kuroda and Price, 1991a,b; Kuroda et al., 1992a,b; Kowianski
et al., 1999; Bay and Cavdar, 2013; Wilson et al., 2014); in
hamsters: (Ferrer, 1969); Figure 1A]. The posterior piriform
cortex, the anterior olfactory nucleus, the basolateral and cortical
nuclei of the amygdala, the agranular insular areas, and the
lateral entorhinal cortex project more medially in the MDTwhile
the rostral piriform cortex (deep layers), the ventral and lateral
orbital areas, the olfactory tubercle (polymorphic area), and
the ventral endopiriform nucleus project mainly to the central
region of the MDT [(Krettek and Price, 1974; Inagaki et al.,
1983; Price and Slotnick, 1983; Price, 1985; Ray and Price, 1992;
Bay and Cavdar, 2013); a small number of neurons from the
endopiriform nucleus also project to the medial MDT (Cornwall
and Phillipson, 1988)]. The detailed synaptic organization of the
olfactory projections to the MDT is still poorly known. Kuroda
et al. (1992a,b) described two types of axon terminals (large
and small presynaptic terminals) from the piriform cortex to
the central MDT which both appear to be excitatory. However,
those two types of axon terminals still need to be characterized
physiologically to identify whether or not the cells of origin
differ. The targeting of specific cell types with cell-specific
viral manipulations (e.g., optogenetics) may help to answer this
question.

Olfactory-Related Efferents
The MDT is known to be the origin of dense projections to
the frontal cortex in the rat (Groenewegen, 1988). Furthermore,
topographical projections from the MDT to olfactory-related
structures, including the orbitofrontal cortex and the amygdala,
have been established (Krettek and Price, 1977a; Ray and
Price, 1992; Figure 1A). Interestingly, Kowianski et al. (1999)
demonstrated that the endopiriform nucleus receives input from
the MDT, though this has not been reported elsewhere.

In essence, the medial subnucleus of the MDT projects to
prelimbic and dorsal agranular insular areas, as well as to the
basolateral amygdala. The central subnucleus projects to the
lateral part of the orbitofrontal cortex and the ventral part of
the agranular insular area. Finally, the lateral subnucleus projects
to the anterior part of the cingular area, the medial precentral
area, and is reciprocally connected with orbital areas (Krettek
and Price, 1977a; Groenewegen, 1988; Ray and Price, 1992).
The projections of the MDT to the orbitofrontal cortex and
basolateral amygdala are of great interest as those two areas
are strongly involved in olfactory perception and odor-guided
behavior [in rats: (Schoenbaum et al., 1999; Sevelinges et al.,
2004; Feierstein et al., 2006; Roesch et al., 2007; Chapuis et al.,
2009); in monkeys: (Tanabe et al., 1975; Rolls et al., 1996); in
humans: (Jones-Gotman and Zatorre, 1993; Zald and Pardo,
1997; Gottfried and Zelano, 2011)].

The different anatomical studies provide strong evidence
establishing the relationship between the olfactory pathway and
the MDT. However questions related to the cells of origin
and ultrastructural and synaptic organizations of the olfactory
afferents in the MDT, as well as the neurotransmitters involved,
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FIGURE 1 | (A) Simplified schematic representation of the olfactory-related afferents and efferents of the mediodorsal thalamic nucleus (MDT) in rodents. Here we
focused on the medial and central subnuclei of the MDT. Afferents in green and orange project mainly to the medial and central subnuclei of the MDT, respectively.
Olfactory-related efferent projections of the MDT are outlined in pink (projection from MDT to endopiriform nucleus is represented with a dashed line because, to our
knowledge, only one study has demonstrated this connection). LO and VO correspond to lateral and ventral orbital areas, respectively and AI to agranular insular
areas. (B) Odor response in the MDT of urethane-anesthetized rats. (B1) Example of 3 odor responsive MDT units. From top to bottom: signal filtered between
300–3000Hz, raster plots of responses to the same odor presented three times and peristimulus time histograms (PSTH). Adapted from Courtiol and Wilson (2014).
(B2) Example of odor-evoked local field potentials in the MDT. Top: local field potential filtered between 0.1–300 Hz and bottom: local field potential filtered in the
beta band (15–35 Hz). Data used as an example here were described in Courtiol and Wilson (2014).

still need to be investigated. Furthermore, given the recent
demonstration that piriform cortical neurons projecting to
orbitofrontal cortex may be non-randomly spatially organized,
more detailed analysis of the olfactory cortex-MDT projection is
warranted (Chen et al., 2014).

Electrophysiological Studies of the
Olfactory Thalamus

As a first step in understanding the contribution of the MDT in
olfactory processing, it is important to characterize how olfactory
information is encoded in the MDT. Here, we will describe the
physiological responses of the MDT to olfactory stimulation.
These data are based on responses recorded in the central and
medial portions of the MDT.

First, evoked potentials and extracellular unitary responses
in the MDT following the electrical stimulation of the olfactory
bulb or lateral olfactory tract of various species have been
described [in rats, central subnucleus: (Price and Slotnick,
1983; Price, 1985); in monkeys, medial subnucleus: (Benjamin
and Jackson, 1974; Yarita et al., 1980; Takagi, 1986); in
rabbits, medial subnucleus: (Jackson and Benjamin, 1974;
Imamura et al., 1984)], with percentages of olfactory region-
driven MDT units ranging from 16% to approximately 70%
[(Imamura et al., 1984): 87/538 units in rabbits and Benjamin
and Jackson (1974): approximately 180 units recorded in

monkeys and 127 responsive units were localized in medial
MDT].

Second, MDT units can respond to various odorant categories
including biological, monomolecular, and mixture odorants [in
rats, we observed odor-responsive units in medial, central
and lateral MDT, but the boundary delimitation of the
different subnuclei was not always clear and may account
for the observation of odor-responsive units in the lateral
MDT: (Courtiol and Wilson, 2014); in rabbits (Imamura
et al., 1984); in monkeys: (Yarita et al., 1980; Takagi, 1986);
in cats: (Motokizawa, 1974); Figure 1B1]. We observed that
51% of rat MDT units were odor-responsive, Motokizawa
(1974) reported 44% of odor-responsive units in cats and
Imamura et al. (1984) reported 55% of odor-responsive units
in rabbits, although this last percentage was calculated only
on MDT neurons responding to lateral olfactory tract shocks
(48/87). The tuning of MDT neurons to odorants seems to be
dependent on the species, odorant set, and level of anesthesia
used. In fact, Courtiol and Wilson (2014) reported that, in
anesthetized rats, 63% of units responded to only one odor
out of the odor set used. Yet, this tuning has been shown to
be more broad in awake monkey and anesthetized rabbits,
with 41.5% of MDT neurons responding to four odors and
more than 80% responding to two odors or more, respectively
(Yarita et al., 1980; Imamura et al., 1984). Nevertheless,
two common features of these reports are that MDT
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units: (1) primarily display excitatory activities in response
to odors although suppressive responses can also be observed
(Figure 1B1) and (2) are similarly responsive to biological,
monomolecular or mixture odorants. In addition, our
work and the work of others reported that some MDT
units can display respiration-linked activity (Imamura
et al., 1984; Courtiol and Wilson, 2014). Interestingly, at
least in anesthetized rabbits and unanesthetized monkeys,
the majority of odor responsive neurons are sensory
specific as they do not respond to visual, auditory nor
somatic stimulation (Yarita et al., 1980; Imamura et al.,
1984).

Finally, the response of the MDT to odorant stimulation can
also be recorded at the network level. In recording the local field
potentials in the MDT of urethane-anesthetized rats (Courtiol
and Wilson, 2014; Figure 1B2), we observed that odorants
induce the conjoint emergence of beta frequency oscillations in
the MDT and piriform cortex. Interestingly, a subset of MDT
units fire in phase with the beta frequency oscillations recorded in
the piriform cortex. These beta oscillations may offer an effective
mechanism for olfactory information transmission between the
piriform cortex and the MDT (Tallon-Baudry et al., 2001).

Taken together, these studies reveal that the MDT can
respond to and encode odorant information in a manner similar
to other primary and secondary olfactory structures. However,
future studies will need to determine: (1) the contribution of each
of the olfactory inputs to the MDT response; (2) the impact of
theMDT on downstream targets such as the orbitofrontal cortex;
and (3) given the rich variety of non-olfactory inputs to MDT,
how MDT neurons contribute to multi-sensory associations and
contextual effects on odor perception. Performing multi-site
unitary recordings and using a large set of odorants in behaving
animals may achieve this.

The Still Unclear Role of the MDT in
Olfaction

Beyond its basic odor responsiveness, the role of the MDT in
olfaction remains unclear. In this last section, we will review the
different studies involving the MDT in olfaction, point to some
common threads among the available literature, and highlight
remaining questions.

Studies of the effect of damage to the MDT in both humans
and animal models have provided some useful information
about its role in olfaction (Tham et al., 2009). The results
of these studies have demonstrated that both humans and
animal models with MDT damage are not anosmic and do not
present deficits in olfactory detection [in rats and hamsters:
(Eichenbaum et al., 1980; Sapolsky and Eichenbaum, 1980);
in humans: (Potter and Butters, 1980; Sela et al., 2009)].
Furthermore, humans with Korsakoff ’s disease presenting MDT
damage are not anosmic but odor detection effects vary between
studies, probably depending on the extent of the damage (Jones
et al., 1975; Potter and Butters, 1980; Pol et al., 2002). While
the results of those studies have shown that MDT damage
does not affect olfactory detection, they support the fact that
MDT lesions do affect other olfactory functions including

olfactory perception, discrimination, learning, and attention. In
respect to olfactory perception, Sapolsky and Eichenbaum (1980)
demonstrated that MDT-lesioned hamsters show distorted odor
preference, i.e., less interest in female and male odors and
reduced preference for genital sniffing, leading to maladaptive
sexual behaviors. Altered odor preference was also reported in
humans. In fact, patients with damage in the MDT present
altered olfactory hedonic perception (Rousseaux et al., 1996;
Asai et al., 2008; Sela et al., 2009). These results are interesting
given the reciprocal connections between the MDT and the
amygdala, as the neuronal activity in the amygdala has been
shown to be directly influenced by the hedonic valence of
olfactory stimuli in humans (Zald and Pardo, 1997). The
MDT may thus be part of a network, including the amygdala,
involved in the coding of the hedonic valence of the olfactory
stimuli.

With respect to discrimination, Eichenbaum et al. (1980)
showed that rats with lesions of the MDT exhibit deficits in
difficult odor discriminations. For instance, rats with MDT
lesions need more trials to reach the discrimination criterion
when the task difficulty is increased by using either novel
stimuli or perceptually similar stimuli (Eichenbaum et al.,
1980; Slotnick and Risser, 1990). However, these deficits can
be temporary and alleviated if the animals receive intensive
training (Staubli et al., 1987). Deficits in odor discrimination,
as well as in odor identification, were also reported in humans
with thalamic damage (Sela et al., 2009; Tham et al., 2011a).
Notably, Tham et al. (2011b) used both olfactory and visual
discrimination tests and demonstrated that patients with MDT
damage presented impaired performance selectively for olfactory
discrimination compared to visual discrimination. The effects
of MDT lesions extend beyond olfactory discrimination given
that deficits in olfactory learning have also been observed. For
example, rats with central MDT lesions perform as well as
controls for preoperatively learned visual discrimination tasks
and in the acquisition of a simple go/no-go odor discrimination
task (Slotnick and Kaneko, 1981). However MDT-lesioned rats
were impaired when performing odor reversal learning. The
authors also noticed in a set of preliminary experiments that three
MDT-lesioned rats were not impaired in their acquisition of a
visual discrimination reversal set suggesting that the deficits were
modality specific. Thus, lesions of the MDT seem to induce a
severe deficit in reversal learning and the degree of impairment
seems to be related to the extent of the lesion (Slotnick and
Kaneko, 1981; Staubli et al., 1987; Lu and Slotnick, 1990; Slotnick
and Risser, 1990; McBride and Slotnick, 1997). Importantly,
one of the reciprocally connected structures of the MDT—the
orbitofrontal cortex—has also been involved in reversal learning
(Roesch et al., 2007). The MDT-orbitofrontal cortex network
may integrate stimulus-outcome associations to flexibly guide
goal-directed behavior.

Rats with thalamic lesions which include the MDT
also present deficits in an olfactory continuous delayed
nonmatching-to-sample task with no effect on an odor
discrimination task. Although, when lesions were more
restricted to the MDT, the deficits were minimal in
this task (Koger and Mair, 1994; Zhang et al., 1998).
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The magnitude of the deficits due to MDT lesions is probably
related to the extent of the lesions, to the task used, as well as
to the difficulty of the task. In fact, Eichenbaum et al. (1980)
reported that the major effects of MDT lesions appear when
the task complexity is high. Interestingly, the difficulty level of
the task may be linked to the attentional demand. An attention
deficit may underlie the problems of rodents and humans with
damage to the MDT to perform difficult odor discrimination
tasks. The role of the MDT in olfactory attention was recently
investigated in humans. Plailly et al. (2008) measured attention-
dependent network activity using functional magnetic resonance
imaging (fMRI). They observed that attending specifically to
odor (compared to tone) increases the coupling between piriform
cortex to MDT and MDT to orbitofrontal cortex. Corroborating
these results, Veldhuizen and Small (2011) observed in humans,
using fMRI, activation of the MDT in response to attention
to odorants but not tastants. Those two studies support the
involvement of the MDT in attention to odors and may be
related to the fact that the MDT can be involved in prediction
error signaling where the response magnitude of the MDT is
significantly higher to unexpected compared to expected odor
stimuli (Zelano et al., 2011; Olofsson et al., 2013).

These results obtained with functional imaging are further
supported by lesions and neuropsychological studies (Tham
et al., 2009, 2011a,b) For example, Tham et al. (2011b) tested
whether the MDT was likely involved in top-down directed
olfactory attention by using a Target Odor Search Test and
showed that patients with damage to the MDT performed poorer
verbal-based search than controls. All these studies in humans
indicate a possible role of the MDT in olfactory attention
processing. However, this idea was debated by Keller (2011)
who proposed that the olfactory inputs to the MDT may not be
sufficient to support shift of attention toward odors. The question
about the contribution of the MDT in olfactory attention still
remains open and other studies are required to disentangle it.
For example, future studies can assess the impact of lesions of the
MDT in rats performing an attention-related task, such as the one
described in Ljubojevic et al. (2014) and measure not only their
performance relative to controls but also their sampling duration
and their latency to reply. Those studies can also assess how
and when during the attention-related task the MDT is required
by selectively and temporally inhibiting the MDT at different
periods of the task using optogenetics.

Lastly, electrophysiological recordings of the MDT in
behaving animals may also help to better characterize the
temporal contribution of the MDT in olfactory perception and
odor-guided behavior. Regarding electrophysiological recordings
of the MDT in behaving animals, to the best of our knowledge,
there is only one published study recording single-unit activity
in the MDT in animals actively engaged in olfactory tasks [in
rats: (Kawagoe et al., 2007); nota bene: in Yarita et al. (1980),
monkeys were awake though odors were presented passively].
Kawagoe et al. (2007) recorded the MDT activity in an olfactory
task requiring animals to discriminate odor cues associated
with reward or not. They observed that 10% (13/121 units) of
MDT neurons recorded in the central and medial subnuclei
responded to the odor cue. Most of these cue-responsive neurons

displayed odorant selectivity with a difference of activity between
odor cues associated to the same reinforcement category.
Combined with this sensory selectivity, the most remarkable
effect was that cue-responsive MDT neurons showed strong
response preference to cues associated with a reward, and those
responses were plastic to extinction and relearning and always
related to the reward contingency. The MDT is thus sensitive
to stimulus-reward association. Interestingly, the basolateral
amygdala and the olfactory tubercle, which project to the
medial and central subnuclei, respectively, can also encode the
associated outcome of odors, which could contribute to this
MDT activity (Schoenbaum et al., 1998; Gadziola et al., 2015).
Finally, we recently recorded MDT units in rats performing a
two alternative odor discrimination task (Courtiol and Wilson,
2015) and observed that a subset of units were odor selective.
Intermingled with this sensory function, we observed that the
MDT units displayed activity prior to odor sampling, presumably
anticipatory activity, and seemed to encode the choice direction-
goal location associated with the odor. This study as well as
the one by Kawagoe et al. (2007) emphasize that the MDT
may encode both basic sensory as well as complex olfactory
functions. This observation is not unique to the MDT as
coding both basic sensory and complex olfactory functions has
notably been reported in piriform cortex and orbitofrontal cortex
(Schoenbaum and Eichenbaum, 1995; Feierstein et al., 2006).
With these limited images of MDT function, many questions
remain, most notably what are the specific contributions of the
MDT in these functions compared to the piriform cortex or the
orbitofrontal cortex and what is the MDT adding to olfactory
processing?

Conclusion and Perspectives

Despite the unusual anatomy of the olfactory pathway, an
olfactory thalamus can be identified—the MDT receives direct
input from various olfactory areas (Figure 1A). By virtue of
this specific pathway, the thalamic contributions to olfaction are
woefully unexplored. Lesion studies in the 1980’s followed by
more recent humans studies have provided the first evidence
of the involvement of the MDT in olfactory processing and
suggest a role for the MDT in functions ranging from olfactory
perception to attention. While this work provides a glimpse of
the place of the MDT in olfaction, many questions, as described
above, remain unanswered. For example: Is the MDT role in
olfaction similar to the role of primary sensory relays such as
the lateral geniculate nucleus? If so, can principles of thalamic
function be generalized to all sensory systems? We hypothesize
that not to be the case. In olfaction, the functions of ‘‘primary
sensory thalamic relay’’ including sensory coding, gain control,
and state-dependent modulation may be distributed between the
olfactory bulb and the piriform cortex (Murakami et al., 2005;
Kay and Sherman, 2007). Moreover, given: (1) the anatomical
place of the MDT in the olfactory pathway (convergence of
many olfactory inputs); (2) the implication of the MDT in
higher order functions including olfactory attention; and (3) the
MDT being a higher order thalamic relay, the MDT may then
be viewed as a higher order olfactory thalamus rather than a
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primary sensory thalamic relay. Identifying the precise role of
MDT in olfactory perception and odor-guided behavior may be
an excellent avenue for exploring broader questions of higher-
order thalamic function.
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Kowianski, P., Lipowska, M., and Mory ś, J. (1999). The piriform cortex and the
endopiriform nucleus in the rat reveal generally similar pattern of connections.
Folia Morphol. (Warsz) 58, 9–19.

Krettek, J. E., and Price, J. L. (1974). A direct input from the amygdala to the
thalamus and the cerebral cortex. Brain Res. 67, 169–174. doi: 10.1016/0006-
8993(74)90309-6

Krettek, J. E., and Price, J. L. (1977a). The cortical projections of the mediodorsal
nucleus and adjacent thalamic nuclei in the rat. J. Comp. Neurol. 171, 157–191.
doi: 10.1002/cne.901710204

Krettek, J. E., and Price, J. L. (1977b). Projections from the amygdaloid complex
to the cerebral cortex and thalamus in the rat and cat. J. Comp. Neurol. 172,
687–722. doi: 10.1002/cne.901720408

Kuroda, M. (1998). Synaptic connections between the prefrontal cortex and the
mediodorsal nucleus of the thalamus. Kaibogaku Zasshi 73, 93–106.

Kuroda, M., and Price, J. L. (1991a). Synaptic organization of projections from
basal forebrain structures to the mediodorsal thalamic nucleus of the rat. J.
Comp. Neurol. 303, 513–533. doi: 10.1002/cne.903030402

Kuroda, M., and Price, J. L. (1991b). Ultrastructure and synaptic organization of
axon terminals from brainstem structures to the mediodorsal thalamic nucleus
of the rat. J. Comp. Neurol. 313, 539–552. doi: 10.1002/cne.903130313

Frontiers in Neural Circuits | www.frontiersin.org 6 September 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Courtiol and Wilson Olfaction and mediodorsal thalamic nucleus

Kuroda, M., López-Mascaraque, L., and Price, J. L. (1992a). Neuronal and synaptic
composition of the mediodorsal thalamic nucleus in the rat: a light and electron
microscopic Golgi study. J. Comp. Neurol. 326, 61–81. doi: 10.1002/cne.
903260106

Kuroda, M., Murakami, K., Kishi, K., and Price, J. L. (1992b). Distribution of the
piriform cortical terminals to cells in the central segment of the mediodorsal
thalamic nucleus of the rat. Brain Res. 595, 159–163. doi: 10.1016/0006-
8993(92)91468-t

Leonard, C. M. (1969). The prefrontal cortex of the rat. I. Cortical projection of the
mediodorsal nucleus. II. Efferent connections. Brain Res. 12, 321–343. doi: 10.
1016/0006-8993(69)90003-1

Ljubojevic, V., Luu, P., and De Rosa, E. (2014). Cholinergic contributions to
supramodal attentional processes in rats. J. Neurosci. 34, 2264–2275. doi: 10.
1523/JNEUROSCI.1024-13.2014

Lu, X.-C. M., and Slotnick, B. M. (1990). Acquisition of an olfactory learning-
set in rats with lesions of the mediodorsal thalamic nucleus. Chem. Senses 15,
713–724. doi: 10.1093/chemse/15.6.713

Mair, R. G., Miller, R. L., Wormwood, B. A., Francoeur, M. J., Onos, K. D., and
Gibson, B. M. (2015). The neurobiology of thalamic amnesia: contributions of
medial thalamus and prefrontal cortex to delayed conditional discrimination.
Neurosci. Biobehav. Rev. 54, 161–174. doi: 10.1016/j.neubiorev.2015.
01.011

McBride, S. A., and Slotnick, B. (1997). The olfactory thalamocortical system and
odor reversal learning examined using an asymmetrical lesion paradigm in rats.
Behav. Neurosci. 111, 1273–1284. doi: 10.1037/0735-7044.111.6.1273

Mitchell, A. S. (2015). The mediodorsal thalamus as a higher order thalamic relay
nucleus important for learning and decision-making. Neurosci. Biobehav. Rev.
54, 76–88. doi: 10.1016/j.neubiorev.2015.03.001

Mitchell, A. S., and Chakraborty, S. (2013). What does the mediodorsal thalamus
do? Front. Syst. Neurosci. 7:37. doi: 10.3389/fnsys.2013.00037

Mitchell, A. S., and Gaffan, D. (2008). The magnocellular mediodorsal thalamus
is necessary for memory acquisition, but not retrieval. J. Neurosci. 28, 258–263.
doi: 10.1523/JNEUROSCI.4922-07.2008

Mitchell, A. S., Sherman, S. M., Sommer, M. A., Mair, R. G., Vertes, R. P., and
Chudasama, Y. (2014). Advances in understanding mechanisms of thalamic
relays in cognition and behavior. J. Neurosci. 34, 15340–15346. doi: 10.
1523/JNEUROSCI.3289-14.2014

Motokizawa, F. (1974). Olfactory input to the thalamus: electrophysiological
evidence. Brain Res. 67, 334–337. doi: 10.1016/0006-8993(74)
90284-4

Murakami, M., Kashiwadani, H., Kirino, Y., and Mori, K. (2005). State-dependent
sensory gating in olfactory cortex. Neuron 46, 285–296. doi: 10.1016/j.neuron.
2005.02.025

Olofsson, J. K., Rogalski, E., Harrison, T., Mesulam, M. M., and Gottfried,
J. A. (2013). A cortical pathway to olfactory naming: evidence from primary
progressive aphasia. Brain 136, 1245–1259. doi: 10.1093/brain/awt019

Ostlund, S. B., and Balleine, B. W. (2008). Differential involvement of the
basolateral amygdala and mediodorsal thalamus in instrumental action
selection. J. Neurosci. 28, 4398–4405. doi: 10.1523/JNEUROSCI.5472-07.2008

Oyoshi, T., Nishijo, H., Asakura, T., Takamura, Y., and Ono, T. (1996). Emotional
and behavioral correlates of mediodorsal thalamic neurons during associative
learning in rats. J. Neurosci. 16, 5812–5829.

Parnaudeau, S., O’Neill, P. K., Bolkan, S. S., Ward, R. D., Abbas, A. I., Roth,
B. L., et al. (2013). Inhibition of mediodorsal thalamus disrupts thalamofrontal
connectivity and cognition.Neuron 77, 1151–1162. doi: 10.1016/j.neuron.2013.
01.038

Plailly, J., Howard, J. D., Gitelman, D. R., and Gottfried, J. A. (2008). Attention to
odor modulates thalamocortical connectivity in the human brain. J. Neurosci.
28, 5257–5267. doi: 10.1523/JNEUROSCI.5607-07.2008

Pol, H. E. H., Hijman, R., Tulleken, C. A. F., Heeren, T. J., Schneider, N., and van
Ree, J. M. (2002). Odor discrimination in patients with frontal lobe damage
and korsakoff’s syndrome. Neuropsychologia 40, 888–891. doi: 10.1016/s0028-
3932(01)00167-1

Potter, H., and Butters, N. (1980). An assessment of olfactory deficits in patients
with damage to prefrontal cortex. Neuropsychologia 18, 621–628. doi: 10.
1016/0028-3932(80)90101-3

Powell, T. P., Cowan, W. M., and Raisman, G. (1963). Olfactory relationships of
the diencephalon. Nature 199, 710–712. doi: 10.1038/199710b0

Price, J. L. (1985). Beyond the primary olfactory cortex-olfactory-related areas in
the neocortex, thalamus and hypothalamus. Chem. Senses 10, 239–258. doi: 10.
1093/chemse/10.2.239

Price, J. L., and Powell, T. P. (1971). Certain observations on the olfactory pathway.
J. Anat. 110, 105–126.

Price, J. L., and Slotnick, B. M. (1983). Dual olfactory representation in the rat
thalamus: an anatomical and electrophysiological study. J. Comp. Neurol. 215,
63–77. doi: 10.1002/cne.902150106

Ray, J. P., and Price, J. L. (1992). The organization of the thalamocortical
connections of the mediodorsal thalamic nucleus in the rat, related to the
ventral forebrain-prefrontal cortex topography. J. Comp. Neurol. 323, 167–197.
doi: 10.1002/cne.903230204

Roesch, M. R., Stalnaker, T. A., and Schoenbaum, G. (2007). Associative
encoding in anterior piriform cortex versus orbitofrontal cortex during odor
discrimination and reversal learning. Cereb. Cortex 17, 643–652. doi: 10.
1093/cercor/bhk009

Rolls, E. T., Critchley, H. D., and Treves, A. (1996). Representation of olfactory
information in the primate orbitofrontal cortex. J. Neurophysiol. 75, 1982–
1996.

Rousseaux,M.,Muller, P., Gahide, I., Mottin, Y., and Romon,M. (1996). Disorders
of smell, taste and food intake in a patient with a dorsomedial thalamic infarct.
Stroke 27, 2328–2330. doi: 10.1161/01.str.27.12.2328

Saalmann, Y. B. (2014). Intralaminar and medial thalamic influence on cortical
synchrony, information transmission and cognition. Front. Syst. Neurosci. 8:83.
doi: 10.3389/fnsys.2014.00083

Sapolsky, R. M., and Eichenbaum, H. (1980). Thalamocortical mechanisms in
odor-guided behavior. II. Effects of lesions of the mediodorsal thalamic nucleus
and frontal cortex on odor preferences and sexual behavior in the hamster.
Brain Behav. Evol. 17, 276–290. doi: 10.1159/000121804

Schoenbaum, G., Chiba, A. A., and Gallagher, M. (1998). Orbitofrontal cortex
and basolateral amygdala encode expected outcomes during learning. Nat.
Neurosci. 1, 155–159. doi: 10.1038/407

Schoenbaum, G., Chiba, A. A., and Gallagher, M. (1999). Neural encoding in
orbitofrontal cortex and basolateral amygdala during olfactory discrimination
learning. J. Neurosci. 19, 1876–1884.

Schoenbaum, G., and Eichenbaum, H. (1995). Information coding in the rodent
prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared
with that in pyriform cortex. J. Neurophysiol. 74, 733–750.

Sela, L., Sacher, Y., Serfaty, C., Yeshurun, Y., Soroker, N., and Sobel, N. (2009).
Spared and impaired olfactory abilities after thalamic lesions. J. Neurosci. 29,
12059–12069. doi: 10.1523/JNEUROSCI.2114-09.2009

Sevelinges, Y., Gervais, R., Messaoudi, B., Granjon, L., and Mouly, A. M.
(2004). Olfactory fear conditioning induces field potential potentiation in rat
olfactory cortex and amygdala. Learn. Mem. 11, 761–769. doi: 10.1101/lm.
83604

Sherman, S. M., and Guillery, R. W. (2002). The role of the thalamus in the
flow of information to the cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357,
1695–1708. doi: 10.1098/rstb.2002.1161

Slotnick, B. M., and Kaneko, N. (1981). Role of mediodorsal thalamic nucleus
in olfactory discrimination learning in rats. Science 214, 91–92. doi: 10.
1126/science.7280684

Slotnick, B. M., and Risser, J. M. (1990). Odor memory and odor learning in rats
with lesions of the lateral olfactory tract and mediodorsal thalamic nucleus.
Brain Res. 529, 23–29. doi: 10.1016/0006-8993(90)90807-n

Staubli, U., Schottler, F., and Nejat-Bina, D. (1987). Role of dorsomedial thalamic
nucleus and piriform cortex in processing olfactory information. Behav. Brain
Res. 25, 117–129. doi: 10.1016/0166-4328(87)90005-2

Takagi, S. F. (1986). Studies on the olfactory nervous system of the old world
monkey. Prog. Neurobiol. 27, 195–250. doi: 10.1016/0301-0082(86)90022-5

Tallon-Baudry, C., Bertrand, O., and Fischer, C. (2001). Oscillatory synchrony
between human extrastriate areas during visual short-term memory
maintenance. J. Neurosci. 21:RC177.

Tanabe, T., Iino, M., and Takagi, S. F. (1975). Discrimination of odors in olfactory
bulb, pyriform-amygdaloid areas and orbitofrontal cortex of the monkey. J.
Neurophysiol. 38, 1284–1296.

Tham, W. W., Stevenson, R. J., and Miller, L. A. (2009). The functional role of the
medio dorsal thalamic nucleus in olfaction. Brain Res. Rev. 62, 109–126. doi: 10.
1016/j.brainresrev.2009.09.007

Frontiers in Neural Circuits | www.frontiersin.org 7 September 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Courtiol and Wilson Olfaction and mediodorsal thalamic nucleus

Tham, W. W., Stevenson, R. J., and Miller, L. A. (2011a). The impact
of mediodorsal thalamic lesions on olfactory attention and flavor
perception. Brain Cogn. 77, 71–79. doi: 10.1016/j.bandc.2011.
05.008

Tham, W. W., Stevenson, R. J., and Miller, L. A. (2011b). The role of the
mediodorsal thalamic nucleus in human olfaction. Neurocase 17, 148–159.
doi: 10.1080/13554794.2010.504728

Veldhuizen, M. G., and Small, D. M. (2011). Modality-specific neural effects
of selective attention to taste and odor. Chem. Senses 36, 747–760. doi: 10.
1093/chemse/bjr043

Wilson, D. A., Xu, W., Sadrian, B., Courtiol, E., Cohen, Y., and
Barnes, D. C. (2014). Cortical odor processing in health and disease.
Prog. Brain Res. 208, 275–305. doi: 10.1016/b978-0-444-63350-7.
00011-5

Yarita, H., Iino, M., Tanabe, T., Kogure, S., and Takagi, S. F. (1980). A
transthalamic olfactory pathway to orbitofrontal cortex in the monkey. J.
Neurophysiol. 43, 69–85.

Yu, C., Fan, D., Lopez, A., and Yin, H. H. (2012). Dynamic changes in single
unit activity and gamma oscillations in a thalamocortical circuit during
rapid instrumental learning. PLoS One 7:e50578. doi: 10.1371/journal.pone.
0050578

Zald, D. H., and Pardo, J. V. (1997). Emotion, olfaction and the human amygdala:
amygdala activation during aversive olfactory stimulation. Proc. Natl. Acad. Sci.
U S A 94, 4119–4124. doi: 10.1073/pnas.94.8.4119

Zelano, C., Mohanty, A., and Gottfried, J. A. (2011). Olfactory predictive codes
and stimulus templates in piriform cortex. Neuron 72, 178–187. doi: 10.1016/j.
neuron.2011.08.010

Zhang, Y., Burk, J. A., Glode, B. M., and Mair, R. G. (1998). Effects of thalamic
and olfactory cortical lesions on continuous olfactory delayed nonmatching-
to-sample and olfactory discrimination in rats (Rattus norvegicus). Behav.
Neurosci. 112, 39–53. doi: 10.1037/0735-7044.112.1.39

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Courtiol and Wilson. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution and reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neural Circuits | www.frontiersin.org 8 September 2015 | Volume 9 | Article 49

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive

	The olfactory thalamus: unanswered questions about the role of the mediodorsal thalamic nucleus in olfaction
	Introduction
	Anatomy of the Olfactory Thalamus
	Olfactory Afferents
	Olfactory-Related Efferents

	Electrophysiological Studies of the Olfactory Thalamus
	The Still Unclear Role of the MDT in Olfaction
	Conclusion and Perspectives
	Acknowledgments
	References




