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Dynamic neuronal networks are a key paradigm of increasing importance in brain research,
concerned with the functional analysis of biological neuronal networks and, at the same
time, with the synthesis of artificial brain-like systems. In this context, neuronal network
models serve as mathematical tools to understand the function of brains, but they might
as well develop into future tools for enhancing certain functions of our nervous system.
Here, we present and discuss our recent achievements in developing multiplicative point
processes into a viable mathematical framework for spiking network modeling. The per-
spective is that the dynamic behavior of these neuronal networks is faithfully reflected
by a set of non-linear rate equations, describing all interactions on the population level.
These equations are similar in structure to Lotka-Volterra equations, well known by their
use in modeling predator-prey relations in population biology, but abundant applications
to economic theory have also been described. We present a number of biologically rel-
evant examples for spiking network function, which can be studied with the help of the
aforementioned correspondence between spike trains and specific systems of non-linear
coupled ordinary differential equations. We claim that, enabled by the use of multiplicative
point processes, we can make essential contributions to a more thorough understanding
of the dynamical properties of interacting neuronal populations.

Keywords: point processes, Lotka-Volterra equations, winners-take-all mechanism, central pattern generator,

interacting Poisson processes, stochastic resonance, linear classifier

INTRODUCTION
Dynamic neuronal networks represent an important new para-
digm in neuroscience. The field has increasing impact in funda-
mental brain research, and it is relevant for some new branches
of neural engineering. It is concerned with the analysis of biolog-
ical neuronal networks and, at the same time, with the synthesis
of artificial brain-like systems. Neuronal network models serve as
mathematical tools to understand the function of brains, and they
may develop into future tools to enhance brain function. Both
analysis and synthesis of neuronal networks rely on a thorough
understanding of the dynamical properties of neural populations.
Currently, this understanding is episodic and elusive, and even the
most basic questions about non-linear networks impose serious
mathematical challenges.

In a previous paper (Cardanobile and Rotter, 2010) we intro-
duced a framework that allows the concise analysis of dynamic
activity patterns in structured networks of spiking neurons. Here,
we exploit the new theory to analyze small meta-networks of
neural populations (“networks of networks”), with a particular
focus on functional properties that are considered relevant for
biological brains.

Neural spike trains exhibit fluctuations of random appearance,
which span different spatial and temporal scales, and which have
both intrinsic and extrinsic causes (Marom, 2010). On the one
hand, isolated neurons fire with limited reliability, depending on
the circumstances of their stimulation (Mainen and Sejnowski,

1995). On the other hand, ongoing activity of unknown origin
strongly modulates the activity of cortical networks that are part of
an active brain (Arieli et al., 1996). It was also shown theoretically
that balanced excitation and inhibition in large recurrent networks
is bound to generate a very complex dynamics, resulting in strong
intrinsic fluctuations of activity (van Vreeswijk and Sompolinsky,
1998; Jahnke et al., 2009). All this suggests the use of stochastic
methods to model neuronal populations. In turn, it is possible
that biological networks exploit such random effects to boost
their computational properties, as, e.g., in stochastic resonance
(Wiesenfeld and Moss, 1995; McDonnell and Abbott, 2009).

A useful framework to define and study stochastic dynamics for
spiking neurons and networks is that of a Wiener cascade (Wiener,
1958; Rotter, 1996; Herz et al., 2006), which is related to the con-
cept of escape noise or threshold noise (Plesser and Gerstner, 2000).
Cascade models are characterized by linear input integration, and
a non-linear transfer function, which specifies how the linear state
variable (typically the membrane potential) is mapped onto the
instantaneous firing rate of the neuron, see Figure 1.

For exponential transfer functions, specifically, networks of cas-
cade units have a predictable mean-field dynamics (Cardanobile
and Rotter, 2010). The corresponding coupled non-linear differ-
ential equations for the ensemble firing rates turn out to be a
competitive system of Lotka-Volterra type. A similar approach
has been developed by Buice et al. (2010) starting from certain
field equations (Wilson and Cowan, 1972). The long history of
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FIGURE 1 | Schematic of cascade models. In a neural model with escape
noise, the state variable (membrane potential) V is mapped to the
instantaneous firing rate r via the transfer function f. The firing rate is used
to generate a Poissonian spike train. Thus, the probability of firing a spike in
a short interval (t, t + ε) is given by f (V (t ))ε. Escape noise models have the
advantage that the spike generation itself is stochastic, making the
statistical analysis of such neurons more accessible than deterministic
integrate-and-fire neurons with additive noise.

Lotka-Volterra equations in the mathematical literature, starting
with Lotka (1910) and Volterra (1926), opens very interesting
possibilities for the applications pursued here. In particular, it is
possible to reversely engineer any prescribed Lotka-Volterra type
competitive system, and to specify the connectivity pattern of the
network of neuronal populations that have the given rate equa-
tions as a mean-field description. The suggested framework has
two main advantages as compared to other models of networks of
spiking neurons.

The first advantage is of practical nature: the essential behavior
of spiking networks can be studied mathematically by analyzing
the associated rate equations. Surprisingly, the rate equations pro-
vide an accurate description of the population dynamics not only
in the case where the system converges to an attractive fixed point,
but also if the rates undergo highly transient dynamics, even in the
chaotic case. An important criterion for our choice of the examples
was to demonstrate this feature in different situations. Moreover,
the known mathematical properties of the non-linear rate equa-
tions can be exploited to construct networks of neural populations
with prescribed behavior. In the sequel, we will give several exam-
ples for this modeling strategy. The second criterion for the choice
of the examples was their relevance for better understanding bio-
logical spiking networks in the brain, and for designing artificial
spiking networks in the emerging field of neural engineering, in
which Lotka-Volterra equations already found application (Asai
et al., 1999).

The second advantage offered by our framework is more of con-
ceptual nature. Multiplicatively interacting point processes, i.e.,
cascade models with exponential transfer function, offer a frame-
work to easily implement so-called “scaled-rate” models (Marom,
2010) for networks of spiking neurons. Marom suggests that

One good reason to bother with formulation of an abstract
model is the hope that it will lead up to a mathematical construct
that dramatically reduces the dimensionality of the problem at
hand.

Multiplicatively interacting point processes offer an amazingly
rich behavior already in low-dimensional cases, thus providing

experimentalists and theoreticians with a powerful and innovative
set of tools.

MATERIALS AND METHODS
COMPARISON TO EXISTING POPULATION RATE MODELS
Rate-based descriptions of neural networks have a long tradition
in neuroscience. To embed our work into this context we briefly
review the most important approaches.

Temporal coarse-graining was introduced by Wilson and
Cowan (1972) in their seminal paper. In this approach, the
dynamic variables are given by the expected number of non-
refractory cells receiving input above threshold in a (small) region.
Averaging over times shorter than the time-scale of the population
dynamics (which is assumed to be in the range of the refractory
period) leads to non-linear rate equations. These equations take
the form of a linear equation, complemented by a sigmoidal cou-
pling function. These equations have recently been generalized to
take fluctuations and higher-order moments into account (Buice
and Cowan, 2007; Buice et al., 2010), as well as time-dependent
inputs (Ledoux and Brunel, 2011). Already in the original paper by
Wilson and Cowan arguments have been given that guarantee that
fast dynamics on the time-scale of the refractory period does not
affect the population dynamics. Different rate equations have been
derived by resorting to ensemble averaging rather than temporal
coarse-graining for the case of spiking neurons with refractoriness
(Deger et al., 2010). Indeed, the refractory period was found to
have a strong effect on the population dynamics.

A very successful, and by now classical theory for studying rate
dynamics in homogeneous networks of integrate-and-fire neurons
is based on a Fokker-Planck approach (Abbott and van Vreeswijk,
1993; Fusi and Mattia, 1999; Brunel, 2000; Knight et al., 2000).
Some results about correlations arising from network interactions
have recently been obtained, though (Ostojic et al., 2009). We will
not follow this approach here, since the use of second-order par-
tial differential equations makes the study of network dynamics
difficult.

Ensemble averaging is the preferred approach for studying
time-evolution of activity in neural networks. Ensemble averag-
ing can be used to study neural dynamics both on the single cell
and on the population level (Kriener et al., 2008; Deger et al.,
2010; Pernice et al., 2011). In this manuscript, in particular, we
assume that the instantaneous firing rate of a neuron is a func-
tion of its membrane potential, and we use ensemble averaging
to obtain the average firing rate of a homogeneous population of
independent units. For the transfer function, a common choice
for population models is a threshold-linear non-linearity (Wilson
and Cowan, 1972; Ledoux and Brunel, 2011). Such models have
been used, for example, for the investigation of orientation selec-
tivity in the early visual system (Carandini and Ringach, 1997;
Ernst et al., 2001). Recently, a theory for the analytic deriva-
tion of transfer functions in the case of leaky integrate-and-fire
neurons has been proposed (Ostojic and Brunel, 2011). In our
manuscript, we chose an exponential transfer function (Jolivet
et al., 2006). Both the reset and refractoriness are incorporated
in the self-inhibition of neurons. The rate equations arising from
this choice are of Lotka-Volterra type and have already been used
in modeling neural activity (McCarley and Hobson, 1975; Fukai
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and Tanaka, 1997; Billock et al., 2001; Rabinovich et al., 2006;
Cardanobile and Rotter, 2010). In some cases, Lotka-Volterra
equations display the same attractor landscape as linear integra-
tors complemented by a threshold-linear non-linearity (Hahnloser
et al., 2003).

An important feature of our method is the correspondence
between stability properties of the rate equation and of the under-
lying point process model. This correspondence goes far beyond
the matching of attractive fixed points, and includes more com-
plex attractors and associated bifurcations. The main aim of the
present work is to demonstrate the correspondence between the
point process model and the associated rate equations in differ-
ent situations. We study feed-forward networks, but also recurrent
networks both in the case of single (attractive or repulsive) fixed
points, as well as in the multistable case. Finally, we show that sta-
ble limit cycles are also correctly mapped from the rate equation
to the point process model.

RATE EQUATIONS
Here, we briefly recapitulate the model introduced in Cardanobile
and Rotter (2010). In this model, a neuronal population is char-
acterized by its mean membrane potential V (t ). The mean mem-
brane potential is assumed to obey a perfect integrator dynamics
(Tuckwell, 1989).

V̇i(t ) =
∑

j

αij Sj(t ). (1)

where Sj(t ) = ∑
k δ(t −t

j
k) represent the spike train of population

j, and αij the net synaptic coupling from neurons in the population
j to neurons in the population i. At this step, we have assumed that
the populations are statistically homogeneous in the sense that the
distribution of synaptic strengths from neurons of population j to
neurons in population i is narrow. Action potentials are emitted
according to a stochastic mechanism, as in escape noise models for
single neuron dynamics (Gerstner and Kistler, 2002).

Such models rely on the assumption that the instantaneous fir-
ing rate λ(t ) is only a function of the instantaneous value of the
internal state variable V (t ), which is the mean membrane potential
in our case.

The interpretation of escape noise models is the following: the
membrane potential as well as the spike threshold are subject to
spontaneous fluctuations on very short time scales. These fluc-
tuations are both due to internal noise (on the level of synapses
and on the level of membrane) and to fluctuating input. There-
fore, the probability of observing a spike in a small interval (t,
t + �t ) is a non-linear function of the membrane potential V (t )
at time t. This transfer function depends on the state of both the
neuron and the network. A good choice for the transfer function
for neurons is an exponential function (Rotter, 1996; Carandini,
2004; Jolivet et al., 2006). We have verified through simulations
(data not shown) that this choice is also suitable for populations
of integrate-and-fire neurons.

Under these assumptions, we can write, up to normalization
constants

λ(t ) = f (V (t )) = eV (t ). (2)

Inserting Eq. 2 into Eq. 1, rearranging, taking the ensemble
mean, and ignoring covariances leads to the following non-linear
dynamic equations

λ̇i(t ) = λi(t )
∑

j

αijλj(t ). (3)

We refer to them as the rate equations of the system. They reflect
the ensemble behavior of a homogeneous population of spiking
neurons. We will use these equations exactly with this interpreta-
tion in mind. We would like to stress that the same type of dynamic
equations has previously been employed in the neuroscientific lit-
erature (McCarley and Hobson, 1975; Fukai and Tanaka, 1997;
Billock et al., 2001; Rabinovich et al., 2006), although without the
biological motivation of the model offered here. We use the term
homogeneous loosely, without a specific statistical framework in
mind. Although the exact matching of spiking units to rate equa-
tions is a very interesting issue, the focus of this paper is to show
that the rate equations offer a precise description of the expected
behavior of multiplicatively interacting point process also in the
time-dependent regime and to exploit the possibilities offered by
this description.

In our firing rate equation, we have disregarded the leak term
in the voltage dynamics. The question of whether leak terms can
be consistently included into the equation is subject of current
research.

The focus of the present work is to demonstrate with neu-
roscientifically relevant examples that the mapping from the
spiking model to Lotka-Volterra equations holds for all stable
regimes. The examples included here are multistable systems,
and systems with stable limit cycles. We have verified the map-
ping also for chaotic attractors and Hopf bifurcations, but we
have excluded these examples from the present manuscript for
the sake of readability. The arguments given in this and our
previous manuscript, and the examples of microcircuit design dis-
cussed here demonstrate unambiguously that the framework of
Lotka-Volterra equations can indeed establish a solid connection
between spiking dynamics of neural networks and their mean-field
description.

MONTE CARLO SIMULATIONS
All simulations of networks of spiking neurons were implemented
in the programming language Python (van Rossum, 1995), the
scripts are available upon request. We employed time-driven
solvers, based on a fixed step size. Time steps were chosen between
0.5 and 5 ms, depending on the expected spike rates. The goal was
to keep the probability of missing a spike as small as possible. In all
cases, we have checked that our results are robust against a further
decrease of step size (data not shown).

For the simulations, we resorted to a natural reformulation of
the model in discrete time. Let Si(t ) again denote the spike train of
neuron i, now with the convention that Si(t ) = 1 if neuron i fired
a spike at time t, and Si(t ) = 0 otherwise. Due to the exponential
transfer function, firing rates couple multiplicatively to incoming
spikes such that

λi(t + dt ) = λi(t )e
∑

j αij Sj (t ) (4)
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where dt is the step size of the simulation. In each time step

(i) a spike in neuron i is generated with probability 1 − e−λi (t )dt ,
and then

(ii) all spikes are propagated, and the rates are updated according
to Eq. 4.

Simulations are quite effective, since only the state variables of
those neurons must be updated that receive spikes. In addition,
Python supports vectorized computations of using the numpy
(Oliphant, 2006) module. For the for the estimation of the prob-
ability of observing an unstable network (Figure 4) and for the
simulation of the spiking central pattern generator (Figure 5) we
used an event-based solver for increased precision, based on the
Doob-Gillespie algorithm (Doob, 1945; Gillespie, 1976).

RESULTS
POWER-LAW RELAXATION IN FEED-FORWARD SYSTEMS
A specific strength of our approach is the possibility of deter-
mining the stationary response rate analytically, for a constant
stimulus. To appreciate this result, it is instructive to first look
at a very elementary “network,” composed of one input popula-
tion and one output population (Figure 4). We assume that the
input population fires at a constant rate λin ≥ 0. The strength of
the connection is αsyn, which can be either positive (excitation) or
negative (inhibition). We further assume that the output popula-
tion is self-inhibiting with strength αself < 0, implementing some
sort of membrane potential reset after having produced a spike.

This population model describes a set of unconnected, inde-
pendently firing neurons. Equivalently, it can be interpreted as the
expected behavior of a single neuron, inferred from multiple inde-
pendent observations (trials). This arrangement typically leads to
an output spike train that is slightly more regular than a Poisson
process (Softky and Koch, 1993; Shadlen and Newsome, 1998),
and that has weak negative serial correlations between adjacent
inter-spike intervals (Nawrot et al., 2008).

The system (3) of rate equations simplifies here to

λ̇out(t ) = λout(t )[αselfλout(t ) + αsynλin(t )]. (5)

This non-linear ordinary differential equation governs the evo-
lution of λout(t ). Some elementary conclusions can be drawn right
away: the output rate λout(t ) remains always non-negative, pro-
vided the initial value is chosen non-negative. The two fixed points,
which characterize the stationary solutions of Eq. 5, are 0 and
λ∗ = −αsyn

αself
λin. It is easy to verify that the more positive of the

two fixed points is always globally attractive, and the other one
is always globally repelling. That is, arbitrary non-negative initial
output rates relax back to max {0, λ∗}. Considering αsynλin as the
total signed input, a threshold-linear output characteristic (“half-
wave rectifier”) results from this behavior, cf. also (Wilson and
Cowan, 1972).

Apart from this simple non-linear response to stationary inputs,
a feed-forward multiplicative unit also exhibits a power-law tran-
sient in its relaxation behavior, see Figure 2. Power-law relaxation
to equilibrium has been described in real neurons (Lundstrom
et al., 2008). In this paper fractional differentiation was used to
model neuronal integration properties, with the aim describe slow
time-scale dynamic properties.

INPUT-SELECTIVE RESPONSE
If a unit has more than one input population, its total signed
input is the sum of all input rates, weighted by the corresponding
coupling constants. This suggests that the equilibrium dynam-
ics of a multi-layer feed-forward network can be obtained by
the following simple step-by-step procedure: first, one computes
the equilibrium firing rates of the populations at the lowest
level, induced by their respective inputs. The equilibrium rates
of populations at higher levels are then obtained by the same
method, treating the activity of all lower level populations as
input.

As an example to illustrate the potential of such simple feed-
forward networks, we demonstrate how to implement a system
that is selective for inputs of strength within a prescribed range.
This can be achieved with an arrangement of four populations,
as depicted in Figure 3. Following the algorithm explained above,
the output rate is given by

λout = − 1

α44

[
α41λin − α43

α33
[α31λin + α32λI]+ + α42λI

]
+

(6)

FIGURE 2 | Feed-forward populations. Left panel: schematic of a
two-population feed-forward circuit. Right panel: the decay of firing rate for a
multiplicative process follows a power-law with exponent − 1. The analytic

solution of the differential equation y ′ = αy 2, y (0) = y 0 is given by
y (t) = y0

1−y0αt
, plotted in blue for a particular choice of parameters

(α = −3,y (0) = 50). Solid line marks the power-law region.
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FIGURE 3 | Band-pass filter. Left panel: population 1 is the input firing at λin,
and population 4 is the output firing at λout. Population 2 provides a global
inhibitory signal of rate λI that sets the point at which the circuit starts
responding. Population 3 modulates the activity to adjust both the width and
the slope of the filter. Center panel: the theoretical equilibrium response (light
gray) was computed by determining the fixed points of Eq. 3. Simulations
were performed by imposing Poissonian spike trains with different rates for

the input population. The axes indicate input rate vs. output rate as extracted
from single trials of 10 s duration. Right panel: normalized histograms of
output rates measured during multiple trials, for three different input levels:
onset (green), midpoint between onset and peak (red), peak (blue) of the
tuning curve. The area under the ROC curve is always greater than 0.95. The
parameters chosen for the simulation are w 41 = 1.1, w 31 = 1.05, w 32 = 0.9,
w 42 = 0.9, w 33 = 0.7, w 44 = 0.9, λ2 = 10.

where we used the notation [λ]+: = max{λ,0}. Furthermore, λI

is a constant level of inhibition, and λin is the variable excitatory
input.

For very strong input λin, the total excitation to the out-
put unit is given only by the paths including the input, i.e., by
(α41 − α31α43

α33
)λin. So, if the term in the brackets is positive, the

output activity will increase for increasing input, whereas if it is
negative, the output activity will be 0 for strong inputs. Since we
want to construct a network selective for a certain range of inputs,
we impose that

α41 − α31α43

α33
< 0 (7)

such that the output vanishes for high input rates. On the other
hand, given that the input vanishes for high rates, the output is
maximal at the point where the input rate to unit 3 overcomes the
global inhibitory signal to unit 3, i.e., when

α32λin + α31λI = 0 ⇔ λmax
I = −α32

α31
λin.

Inserting this value in Eq. 6 we obtain a maximal output of

λmax
out = − 1

α44

[
α41λin − α43

α33

[
α31λin − α32

α32

α31
λin

]
+

−α42
α32

α31
λin

]
+

We now assume that λmax
out > 0. Since α31 > α32 then λmax

out > 0
if and only if

α41 − α43

α33

(
α31 − α32

α32

α31

)
− α42

α32

α31
> 0 ↔

α31α41 − α43

α33
(α31 − α32) (α31 + α32) − α42α32 > 0

The only negative term in the sum is −α42α32. So we obtain a
bound on the global inhibition level given by

α42α32 < α31α41 − α43

α33
(α31 − α32) (α31 + α32) . (8)

Under the conditions Eq. 7 and Eq. 8, the network is sen-
sitive for rates in a certain range, given by the onset of the
two threshold-linear functions. An example for a specific set of
network parameters is given in Figure 3.

All computations in this network are performed on the level of
mean firing rates of the neurons. Therefore, it is important to assess
the behavior of the corresponding spiking network, e.g., its perfor-
mance in a discrimination task. Results are given in Figure 3 and
show, using ROC analysis, that different inputs can be well distin-
guished based on spike counts that are extracted from observations
of finite duration.

EXCITATION-INHIBITION INTERPLAY
The situation for a recurrent network is typically more involved.
The attractive regimes are not necessarily corresponding to stable
fixed points. Depending on the number interacting units, com-
petitive Lotka-Volterra systems can display a variety of different
phenomena:

(i) continuous manifold of periodic trajectories in the classical
two-dimensional case (Arnol’d, 1984);

(ii) periodic orbits with increasing periods, single and multiple
limit cycles in three-dimensions (May and Leonard, 1975;
Hofbauer and So, 1994; Rabinovich et al., 2006);

(iii) genuine chaotic dynamics in four dimensions (Wang and
Xiao, 2010).

Here, we focus on one specific question of both theoretical and
practical relevance: do the stability properties predicted by the
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rate Eq. 3 also determine the stability of the spiking system? Sim-
ilar investigations have, in fact, been carried out for networks of
integrate-and-fire neurons (Brunel, 2000; Mattia and Del Giudice,
2002; Ledoux and Brunel, 2011) as well as for binary neurons (van
Vreeswijk and Sompolinsky, 1996, 1998).

We obtain a condition similar to the saddle-node bifurcation
caused by a rate instability in LIF networks (Mattia and Del
Giudice, 2004; Ledoux and Brunel, 2011).

To start our investigation, we recall that a sufficient condition
for the dynamic stability of a non-linear equation can be derived
from the existence of a so-called Lyapunov function for the system.
Under certain conditions, such a function can be constructed for
our networks. Specifically, if Ar denotes the recurrent part of the
coupling matrix, then the system is stable, if all eigenvalues of Ar

have a negative real part. With a slight abuse of terminology we
will refer to such (not necessarily symmetric) matrices as negative
definite. In this case, the total firing rate of all populations taken
together is a Lyapunov function of the system, thus guaranteeing
stability. This gives a handy sufficient (but not a necessary) con-
dition for bounded rates in the system (Cardanobile and Rotter,
2010).

In two-dimensional systems describing mixed networks of
homogeneous excitatory and inhibitory populations, dynamic sta-
bility can be assessed independently of a Lyapunov function. Such
a system has dynamic variables λE(t ) and λI(t ), respectively, which
are coupled by the two equations

λ̇E(t ) = λE(t ) [αEEλE(t ) + αEIλI(t )] (9)

λ̇I(t ) = λI(t ) [αIIλI(t ) + αIEλE(t )] (10)

where αEE, αIE > 0 and αII, αEI < 0. For such a system, the condi-
tions for stability can be stated exactly, here made plausible using
a simple heuristic argument. If the system was feed-forward and
in equilibrium, the stationary rates of both populations would

be λE = − αEI
αEE

λI and λI = −αIE
αII

λE, respectively. Inserting one
expression into the other, we obtain

λE = αEIαIE

αEEαII
λE. (11)

This is a self-consistency condition. The system has a transition
when

αEIαIE

αEEαII
= 1,

or, equivalently, when

η := αEE − αEIαIE

αII
= 0. (12)

We tested numerically the validity of this heuristic condition.
Figure 4 shows simulation results that confirm the heuristic argu-
ments made here. The condition given here is, in fact, a dissipativity
condition which guarantees that the rate decays to 0 in absence of
external input. Accordingly, if external input is present, the con-
dition guarantees that the expected rate settles to an equilibrium
value. It is interesting to mention that a linear system with the same
coupling matrix has an additional stability condition. In fact, the
condition given in Eq. 12 is a condition on the determinant of the
connection matrix. The system is stable if and only if the determi-
nant is larger than 0. For linear systems, one needs that additional
constraints that the trace must be negative, which is not needed
here.

SPIKING CENTRAL PATTERN GENERATOR
Central pattern generators have been studied on an abstract level
by many authors, for a review see Rabinovich et al. (2006). Lotka-
Volterra type equations have also been used as specific models
(Venaille et al., 2005). However, no conclusive argument has been

FIGURE 4 | Stability properties. Shown is a Monte Carlo experiment that
illustrates the condition for dynamic network stability derived in the main text.
200 Networks were initialized, with random couplings drawn from an
exponential distribution with mean 1. For each network, a simulation was
started and stopped whenever the total population rate would leave the range

(10−10, 10200). If the total rate was small, the network was classified as stable,
otherwise as unstable. For each network 1000 trials were performed. Plotted
is the probability of being classified as unstable against the value of
η = αEE − αEI αIE

αII
. This probability has a sharp transition from 0 to 1 at the value

η = 0.
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given why these systems would describe the mean-field dynamics
of a neuronal network. In our framework, in contrast, using Eq. 3
and the exponential transfer function, one can map the parameters
of the Lotka-Volterra oscillators onto the parameters of a spiking
network, which is known to have the same mean-field dynamics.
The main goal of this section is to demonstrate that the spiking
networks behave according to the predictions of the rate equations
also the latter have stable limit cycles, rather than attractive fixed
points.

There are two fundamental alternatives to generate periodic
patterns with Lotka-Volterra equations. Already the classical two-
dimensional Lotka-Volterra system used in population dynamics
predicts periodic orbits under certain conditions. More specifi-
cally, in that case a whole family of periodic orbits exists, sur-
rounding a stable fixed point. This can be proven by using the
fact that the system possesses a constant of motion with closed
contour lines. As a consequence, oscillations can occur at different
distances from the fixed point, and with possibly different frequen-
cies (Arnol’d, 1984). Thus, due to intrinsic noise of the spiking
system, these oscillations will not generate periodic patterns with
a stable, precise frequency. Multiplicative point processes indeed
exhibit periodic activity patterns with drifting frequencies, when
connections are chosen according to the classical Lotka-Volterra
system. However, we do not address this type of oscillator in this
work.

Alternatively, it has been observed that higher dimensional
Lotka-Volterra systems can have stable limit cycles (May and
Leonard, 1975). In this case, the noise produced by the system
is counterbalanced by the attractivity of the limit cycle. As a con-
sequence, such oscillations have a stable frequency. Furthermore,
since the limit cycle is attractive, the spiking network described by
the rate equation is attracted to a periodic activity regime.

Mapping the parameters of such Lotka-Volterra systems back
to its spiking counterpart allows to construct a spiking system
generating precise periodic patterns of spiking. Figure 5 depicts
an example of such behavior.

It is actually possible to design spiking networks that imple-
ment a given central pattern generator using spikes as signals. We
have observed that, although strictly the firing rate description
holds only for the mean-field model, periodic behavior is also
exhibited in single trials, due to the absence of a competing sta-
ble regime. However, the spiking oscillator does not oscillate at
exactly the same frequency as the rate equation. This is due to
the intrinsically generated noise which continuously perturbs the
system, continuously inducing transient behavior. Nevertheless,
the oscillation frequencies of the rate equation and of the spiking
counterpart are monotonically related, as it is shown in Figure 5,
bottom panel.

A LINEAR CLASSIFIER BASED ON WINNER-TAKE-ALL DYNAMICS
Networks with mutual inhibitory couplings that exhibit some
kind of winner-take-all dynamics have long attracted the inter-
est of neuroscientists in different contexts (Fukai and Tanaka,
1997; Wang, 2002). Fully connected inhibitory networks of mul-
tiplicative processes implement such winner-takes-all behavior,
provided the total inhibitory output of each population exceeds
its self-inhibition.

FIGURE 5 | Central pattern generator. Left panel: a schematic of the
connectivity of a simple central pattern generator. It involves three units
with all-to-all inhibitory couplings (self-inhibition not shown), all provided
with Poissonian input (not shown). Each unit sends inhibitory projections to
its neighbors, one weak (inner, thin lines) and one strong (outer, thick lines).
The asymmetric inhibition drives the network into an isolated periodic orbit,
in which the three populations fire alternatingly. Right panel, upper box:
raster plot for 500 s cycle length of the central pattern generator. Lower
box: spike-time histogram of population 1. Spike counts are obtained in 30 s
bins. Parameters for the raster plot were chosen as w = exp(−0.2 × 0.5) for
weak inhibitory path, w = exp(−0.2 × 1.5) for the strong inhibitory path,
w = exp(−0.2) for the self-inhibition. Poissonian input is at rate λ = 1. For the
lower panel we randomized the coupling by drawing weights from a uniform
distribution. Period length was estimated by taking the average distance
between peaks of the autocorrelation of the simulated spike trains.

It can be shown that the probability of winning the competi-
tion is largest for the population which receives the strongest total
input. According to the rate Eq. 3, the input to the ith population
is given by

Ii =
K∑

j=1

αijλj (13)

where λj denotes the firing rate of the jth population in the input
layer, comprising K populations in total. Denote by

αi = [αi1, αi2, . . . , αiK ]� (14)

the vector of the synaptic strengths of the K input populations
projecting to the ith unit. The total synaptic input to population i
can thus be written as

Ii = 〈αi , λ〉 . (15)
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Here,〈v,w〉 denotes the standard scalar product between two
vectors v and w. The population iwin receiving the strongest
input maximizes 〈αi,λ〉. Therefore, the highest probability of win-
ning corresponds to the population for which the synaptic input
vector is best-matching the input firing rates. In this sense, a com-
pletely connected inhibitory network of multiplicative processes
performs a linear classification of input vectors.

The situation considered here is similar to the model described
by Wang (2002). The network performs a decision (Figure 6), con-
verging with high probability to the configuration where only the
population with the best-matching input is firing. Additionally, the
outcome of the (random) decision can be manipulated by adding
a“bias”to one population (Figure 7). The performance of the clas-
sifier degrades if the input rate vectors are almost collinear, and it
improves if they are close to orthogonal. This behavior imposes a
limit to the number of patterns that can be linearly discriminated,
but it also suggests that performance can be boosted by increasing
the dimensionality of the input vector. Our results bear a similarity
with the forbidden set theory developed by Hahnloser et al. (2003).

The main difference is that we are concerned with the mapping of
Lotka-Volterra equations to spiking systems.

DISCUSSION AND OUTLOOK
In our study, we have demonstrated that multiplicative point
processes (MPPs) provide a powerful new tool for the study of
biological neuronal networks and their functional properties. We
have constructed a number of previously unknown spiking net-
work models with functional properties that can be predicted
from the dynamics of the associated firing rate equations. In fact,
the availability of a higher-level description of the spiking net-
work dynamics in terms of population firing rates opens many
new possibilities in terms of mathematical analysis, but also in
terms of “engineering” spiking networks with desired properties.
In particular, MPPs have the following features:

(i) They can be fitted to networks of homogeneous neural
populations in terms of their first-order statistics (firing
rates).

FIGURE 6 | Decisions performed by a winner-takes-all network.

Left panel: schematic of a winner-takes-all network. Right panel: the
network performs a random decision between different alternatives.

The probabilities for deciding between the different alternatives
depend on the network parameters, on the initial states, and on the
input levels.

FIGURE 7 | Providing a bias to winner-takes-all networks. Additional
spikes are provided at the beginning of the simulation to one of the
populations of a symmetric inhibitory network. Shown is the relative
frequency that the primed alternative A∗ is selected. Left panel: relative
frequency for selecting A∗, displayed as a function of the number of

additional spikes provided to one population at the beginning of the
simulation. Right panel: reliability of the decision as a function of the
background noise for a fixed number (n = 5) of additional spikes. Noise level
was changed by increasing the synaptic strength while simultaneously
decreasing the input firing rates.
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(ii) Their expected behavior (ensemble mean) can be pre-
cisely characterized in terms of coupled ordinary differential
equations.

(iii) The mean-field rate equations give also useful information
also about single trial spike statistics.

These features make our framework ideal for use in fundamental
brain research, as well as in engineering applications. Specifically,
a working theory for interacting neural populations could help in
understanding the functional dynamics of interconnected brain
areas. Inspired by considerations based on the rate description,
research in modeling of the basal ganglia network has already been
conducted by the authors (Kumar et al., 2011).

BIOPHYSICAL EXTENSIONS
In this manuscript, we have addressed the construction of neural
circuits with prescribed properties, using a first-order non-linear
rate description. There are several directions in which the theory
could be extended to a more detailed and more precise biophysi-
cal theory. In previous work, Toyoizumi et al. (2009) derived rate
equations for leaky integrate-and-fire neurons based on a Markov
process model combined with a noisy threshold. The Markov
approximation is often combined with a Gaussian approximation
of the membrane potentials. This method is mainly limited by the
complexity of the resulting rate equations.

For multiplicatively interacting point processes, there are two
possible directions in which the model could be extended. On the
one hand, one could strive for more realistic models which include
additional dynamic phenomena observed in the activity of neu-
rons. Promising steps have been already performed by including
refractoriness into dynamical models (Deger et al., 2010). The dif-
ferential equations derived in this context could be easily adapted
to describe also networks, for the price of increased mathematical
complexity. Synaptic transmission delays can be also incorporated
into the description, leading to systems of delay Lotka-Volterra
equations. Such equations have been extensively studied in the
mathematical literature (Bomze, 1983, 1995; Tainaka, 1988), also
in a stochastic context (Mao et al., 2003; Cattiaux and Méléard,
2010) and with applications to neural networks (Yi and Tan,
2002).

To include more complex neuronal dynamics into the model
one can use a relation connecting the derivative of the mean-
field and the conditional derivative of a stochastic process (Nelson,
1987, Chap. 9)

d

dt
E0λ(t ) = E

[
d

dt
λ(t )|λ(t ) = E0λ(t )

]
. (16)

Here E0 denotes the best prediction for λ(t ) at time 0, the
“mean–field.” Based on this relation, seems possible, at least in

principle, to derive rate equations for any given neuronal dynam-
ics, provided that the rate only couples to the membrane potential.
The precise translation of this formalism into useful rate equations
depends, of course, on the details of the neuron model under
consideration.

HIGHER-ORDER MOMENTS AND CORRELATIONS
Another interesting question is whether the non-Gaussian
approach we have adopted in this work can be adapted to study
higher-order statistics of neural networks. Buice et al. (2010) intro-
duced a path integral formulation of neuronal interactions with
the aim of deriving expansions for higher-order moments. One
limit of their approach is the intrinsic complexity of the path
integral formalism.

For multiplicative processes one could attempt a similar treat-
ment exploiting the following idea. Assuming that unit i has rate
λi(0) at time 0, the rate at time t is given by

λi(t ) = λi(0) exp

⎛
⎝∑

j

Nj (t ) ln
(
wij

)⎞⎠ ,

where Nj(t ) denotes the number of spikes from unit j until time
t. Differentiating, this expression leads to

λ̇i(t ) = λi(t )
∑

j

Ṅj(t ) ln(wij).

Since Ṅj(t ) is nothing but the spike train produced by unit j,
taking expectations and ignoring covariances leads to Eq. 3. In fact,
this is an alternative derivation of those equations. The advantage
of this derivation is that now it becomes apparent that similar
higher-order equations can be derived using the formula

λi(t )λk(t ) = λi(0)λk(0) exp

⎛
⎝∑

j

Nj (t ) ln
(
wij

)

+
∑

�

N� (t ) ln (wk�)

)
.

After differentiations, mixed third-order moments appear in
the derivative of the rate product λi(t )λj(t ). Unfortunately, it is
not clear what are the terms that can be ignored. Further research
will be needed to derive rate equations for higher moments.
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