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In recent experiments, synaptically isolated neurons from rat cortical culture, were stim-
ulated with periodic extracellular fixed-amplitude current pulses for extended durations of
days. The neuron’s response depended on its own history, as well as on the history of the
input, and was classified into several modes. Interestingly, in one of the modes the neuron
behaved intermittently, exhibiting irregular firing patterns changing in a complex and variable
manner over the entire range of experimental timescales, from seconds to days. With the
aim of developing a minimal biophysical explanation for these results, we propose a general
scheme, that, given a few assumptions (mainly, a timescale separation in kinetics) closely
describes the response of deterministic conductance-based neuron models under pulse
stimulation, using a discrete time piecewise linear mapping, which is amenable to detailed
mathematical analysis. Using this method we reproduce the basic modes exhibited by the
neuron experimentally, as well as the mean response in each mode. Specifically, we derive
precise closed-form input-output expressions for the transient timescale and firing rates,
which are expressed in terms of experimentally measurable variables, and conform with
the experimental results. However, the mathematical analysis shows that the resulting
firing patterns in these deterministic models are always regular and repeatable (i.e., no
chaos), in contrast to the irregular and variable behavior displayed by the neuron in certain
regimes. This fact, and the sensitive near-threshold dynamics of the model, indicate that
intrinsic ion channel noise has a significant impact on the neuronal response, and may help
reproduce the experimentally observed variability, as we also demonstrate numerically.
In a companion paper, we extend our analysis to stochastic conductance-based models,
and show how these can be used to reproduce the details of the observed irregular and
variable neuronal response.
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1. INTRODUCTION
Current approaches to single neuron modeling are usually con-
cerned with short term dynamics, covering timescales up to
seconds (Gerstner and Kistler, 2002; Koch and Schutter, 2004;
Izhikevich, 2007; Ermentrout and Terman, 2010 and references
therein). Naturally, it is also important to describe the behav-
ior of neurons at longer timescales such as minutes, hours, and
days (Marom, 2010). However, experiments on single neurons are
difficult to perform for such extended periods of time. Nonethe-
less, in a recent experiment Gal et al. (2010) performed days long
continuous extracellular recordings of synaptically isolated single
neurons, situated in a culture extracted from rat cortex. These
neurons, which did not fire in the absence of stimulation, were
stimulated periodically with constant amplitude current pulses
applied at physiological Action Potential (AP) firing frequencies
(1–50 Hz). For strong enough stimulation, the neurons generated
APs. As such they are excitable, non-oscillatory neurons. It was
observed (similarly to De Col et al., 2008) that, depending on the
AP generation probability and its latency, the neuronal response
could be classified to three different modes – “stable,” “transient,”
and “intermittent.” At low stimulation rates, APs were generated

reliably with a fixed latency (delay) after the stimulus – the stable
mode. An increase in the stimulation rate elicited an increase in the
latency, building gradually over a few dozen seconds – the transient
mode. If the latency climbed above a certain “critical latency,” then
AP generation failures began to appear – the intermittent mode.
Interestingly, the intermittent mode response was highly irregular
and displayed intricate patterns of AP firing. Despite the length
of the experiment, these patterns continued to change over its
entire duration, never converging to a steady state behavior with
predictable stationary statistics.

The present study aims to provide a theoretical explanation
for these observed phenomena. Specifically, we were interested
in identifying the source of the observed behavior and its impli-
cations on the neuronal input-output relation. However, given
the huge diversity of biophysical processes taking place at these
timescales (Bean, 2007; Sjostrom et al., 2008; Debanne et al., 2011),
it is not clear which phenomena should be included in such a mod-
eling effort. Moreover, including a multitude of effects in such a
highly non-linear model of an excitable system, necessarily incor-
porating a large number of poorly identified parameters, would
lead to models of large complexity and questionable usefulness,
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especially when considering such long timescales. Based on these
observations, we follow an Occam’s razor approach. We start from
the basic Hodgkin-Huxley (HH) model (Hodgkin and Huxley,
1952) and increase its complexity only as needed in order to
cover a wider range of experimentally relevant phenomena, within
the framework of Conductance-Based Neuron Models (CBNMs).
Such models provide the most common formulation used in neu-
ronal modeling (Hille, 2001; Izhikevich, 2007; Ermentrout and
Terman, 2010), and are thought to be the simplest possible bio-
physical representation of an excitable neuron, in which ion chan-
nels are represented by voltage-dependent conductances and the
membrane by a capacitor. Importantly, by understanding the lim-
itations of a model, we can find the most reasonable way to modify
it when some of its predictions are contradicted by the experiment
(as tends to happen eventually). However, it is generally hard to
find these limitations by numerical simulations, especially if the
model contains many parameters. Therefore, it is generally desir-
able to have an analytically tractable explanation for the behavior
of a model.

Fortunately, the simple form of stimulation used in the exper-
iments (periodic pulse train) allowed us to derive simple ana-
lytic input-output relations for neuronal responses for a large
class of deterministic CBNMs (see section 2). Specifically, we
find exact expressions for the transient mode dynamics, and the
firing rate and firing patterns during the intermittent mode –
all as a function of the neuronal input (stimulation rate and
amplitude). These simple relations rely on the analysis of a
simplified description for the dynamics of neuronal excitabil-
ity, derived from the full CBNM, under the assumption of
timescale separation [equation (2.9)] and a “step-like behavior
of the average kinetic rates” [equation (2.12)]. This simplified
version is essentially a piecewise linear recursive map, derived
by “averaging out” the fast dynamics. Such an averaging tech-
nique is usually used to derive qualitative features of bursting
neurons (section 9.2.3 in Izhikevich, 2007, and also Ermentrout
and Terman, 2010), and in a few cases, also quantitative results
(Ermentrout, 1998). Note that discontinuous maps similar to
ours [equation (2.14)] appear in many systems (Di Bernardo,
2008), and recently also in neuroscience (e.g., Medvedev, 2005;
Griffiths and Pernarowski, 2006; Touboul and Faugeras, 2007;
Juan et al., 2010). However, as explained in Ibarz et al., 2011
(section 1.2), in previous neuroscience works, time is discretized
either in fixed steps with some arbitrary size (usually small, as
in numerical integration) or in varying step sizes determined by
certain internal significant events such as APs. In contrast, our
method of discretization relied on the stimulus pulses arrival
times, which are both dynamically significant (APs can be gen-
erated only at these times) and do not depend on the inter-
nal neuronal dynamics. This allowed us to achieve greater ana-
lytic tractability, interpretability, and generality than was usu-
ally obtained using discrete maps in neuronal dynamics. More-
over, this enabled us to directly connect the map’s parame-
ters to the neuronal input. Note that since Gal et al. (2010)
used periodic stimulation, our time steps were fixed. How-
ever, it is straightforward to extend this method to a general
sparse input. Such a general method might be used numerically
to approximate the response of complex and computationally

expensive CBNMs in a fast and simple way, and with fewer
parameters.

In section 3 we relate the derived analytic relations, augmented
by extensive numerical simulations, to the experimental results of
Gal et al. (2010). We show how, by extending the HH model with
a single slow kinetic process that generates “negative feedback”
in the neuronal excitability (we use slow sodium inactivation,
but other mechanisms are possible) we can reproduce the dif-
ferent modes observed in Gal et al. (2010). We explain how the
intermittent mode is generated by the slow kinetic process “self-
adjusting” the neural response so that it becomes highly sensitive
to perturbations. The mean response in all modes, and its rela-
tion to the neuronal input can be explained in most cases using
this single slow variable (in some cases an additional “positive
feedback” variable is required – we used slow potassium inacti-
vation). However, using our analytic techniques we show that a
rather large class of deterministic CBNMs cannot generate the
variability and irregularity of the response (e.g., chaotic dynam-
ics), in both the transient and intermittent modes. This result,
together with the high sensitivity of the intermittent mode, led
us to conclude that ion channel noise (see White et al., 2000;
Faisal et al., 2008) must also be added to the model. Examin-
ing this numerically, we show that, indeed, the effects of ion
channel noise are far more significant here than is usually con-
sidered, and lead to a better fit to the variability observed in the
experiment. However, the introduction of noise requires us to
change the framework of discussion from deterministic to sto-
chastic CBNMs, and develop different analytic tools. Such work
is beyond the scope of the present paper. And so, in a com-
panion paper, we complete our mathematical analysis of sto-
chastic CBNMs, and the reproduction of the variability in the
experimental results.

2. MATERIALS AND METHODS
In this section we introduce the CBNMs used, and the methods
we employ to analyze them.

The inputs to our model will be similar to those used in
the experiment, a train of short fixed-amplitude current pulses,
periodically applied with period T (or, equivalently, frequency
fin � 1/T )

I (t ) = I0

∑

k

� (t − kT ) ,

where �(x) is the pulse shape, of width t 0 � T (so �(x) = 0 for
x outside [0, t 0]), and unit magnitude, with I 0 being the current
amplitude of the pulses (Figure 1). In numerical simulations1 we
used first order Euler integration (or Euler-Maruyama for stochas-
tic simulations) with a time step of dt = 5 μs (quantitative results
were verified also at dt = 0.5 μs). Each stimulation pulse was given
as a square pulse with a width of t 0 = 0.5 ms and amplitude I 0.
The results are not affected qualitatively by our choice of a square
pulse shape. In the following discussion, we analyze the neuronal
input/output (I/O) relation quantitatively with respect to fin but

1MATLAB code available on http://webee.technion.ac.il/∼rmeir/SoudryMeir2011
Deterministic_code.rar
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only qualitatively with respect to I 0. Since the amplitude depen-
dence is of secondary importance here we do not write explicitly
any dependence of the parameters on I 0.

The two neuronal response features explored in Gal et al. (2010)
are the occurrence of Action Potentials (APs) and their latency.
Therefore, we too shall focus on these features. More precisely, we
define an AP to have occurred if, after the stimulation pulse was
given, the measured voltage has crossed some threshold V th (we
use Vth = −10 mV in all cases). The latency of the AP, L, is defined
as the time that passed from the beginning of the stimulation pulse
to the voltage peak of the AP (Figure 1, inset ). Note that no APs
are spontaneously generated.

2.1. BASIC HH MODEL
Similarly to many discussions of neuronal excitability, we begin
with the classical Hodgkin-Huxley (HH) conductance-based
model (Hodgkin and Huxley, 1952):

CV̇ = INa + IK + IL + I (t ) = ḡ Na m3h (ENa − V )

+ ḡ K n4 (EK − V ) + ḡ L (EL − V ) + I (t ) (2.1)

ṁ = φ [αm (V ) (1 − m) − βm (V ) m] (2.2)

ṅ = φ [αn (V ) (1 − n) − βn (V ) n] (2.3)

ḣ = φ [αh (V ) (1 − h) − βh (V ) h] (2.4)

where I (t ) is the input current, V is the membrane’s voltage and
m, n, and h are the gating variables of the channels and the para-
meters are given their standard values (as in Hodgkin and Huxley,

FIGURE 1 | Schematic representation of the stimulation and the

measured response. No APs are spontaneously generated. When
stimulating a neuron with a periodic current pulse train with period T and
amplitude I0 we get either an AP-response or no-AP-response after each
stimulation. In the former case an AP appears with a latency L, where
L �T. Inset: AP voltage trace. An AP is said to occur if Vth was crossed, and
the AP latency L is defined as the time to AP peak since the stimulation
pulse (more precisely, its beginning).

1952; Ermentrout and Terman, 2010):

VNa = 50 mV,

ḡ Na = 120 (k� · cm2)
−1

,

VK = −77 mV,

ḡ K = 36 (k� · cm2)
−1

,

VL = −54 mV,

gL = 0.3 (k� · cm2)
−1

,

Cm = 1 μF/cm2, φ = 1, and we used the standard kinetic rate
functions

αn(V ) = 0.01(V + 55)

1 − e−0.1·(V +55)
kHz,

βn(V ) = 0.125 · e−(V +65)/80 kHz,

αm(V ) = 0.1(V + 40)

1 − e−0.1·(V +40)
kHz,

βm(V ) = 4 · e−(V +65)/18 kHz,

αh(V ) = 0.07 · e−(V +65)/20 kHz,

βh(V ) =
(

e−0.1·(V +35) + 1
)−1

kHz,

where in all the rate functions V is used in millivolts units.
We first note a discrepancy between this model and the exper-

iment – the width of the AP in the model is twice as large in
the model than in the experiment. To compensate for this we set
the temperature factor φ = 2 and the capacity Cm = 0.5 μF/cm2,
increasing the speed of the HH model dynamics by a factor of two,
which results in the correct pulse shape (Figure 2, inset ). We refer
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FIGURE 2 | Fitted HH model variables V, m, n, and h after an AP relax to

steady state on a shorter timescale than the minimal stimulation

period used (T ≥ 20 ms for Gal et al., 2010, marked as a vertical line).

This remains true when no AP is generated, since then the perturbation
from steady state is even smaller. This timescale separation indicates that
the system has no memory of previous pulses – so all stimulation pulses
produce the same response. Note also that the AP voltage pulse width is
similar to Figure S1B of Gal et al. (2010). Inset: −dV /dt during an AP, which
is proportional to extracellular measured voltage trace (Henze et al., 2011).
The AP pulse width is similar to Figures 1B, 2A, and 5C of Gal et al. (2010).
Parameters: I0 = 15 μA.
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to the model with these fitted parameters, as the“fitted HH model,”
while the model with the original parameters will be referred to as
the “original HH model.”

However, in either case, the HH model alone cannot repro-
duce the results in Gal et al. (2010). In both versions of the HH
model, given a short pulse stimulation generating an AP, all the
HH variables (V, m, n, and h) relax to close to their original
values within ∼20 ms (Figure 2). Therefore, pulse stimulation
at frequency fin < 50 Hz (or T > 20 ms), as in the experiment,
would result in each stimulation pulse producing exactly the same
AP each time. This “memory-less” response is far too simple to
account for complex behavior seen in the experiment, and so the
model must be extended. In the next section we discuss how this
is generally done.

2.2. HH MODEL DETERMINISTIC EXTENSIONS
The HH model has been extended many times since its original
development (Hodgkin and Huxley, 1952), in order to account for
the morphology of the neuron and for additional ionic currents
as well as other processes that had been discovered (Hille, 2001;
Bean, 2007). These extensions are generally done in a similar way,
by adding more variables that represent either different neuronal
compartments or various cellular processes, such as accumulat-
ing changes in the cell’s ionic concentrations or slow inactivation
of ion channels (see Izhikevich, 2007; De Schutter, 2010; Ermen-
trout and Terman, 2010 for a modeling-oriented review of this
subject). Such models were used, for example, to explore neuronal
adaptation and bursting activity (e.g., Marom and Abbott, 1994;
Fleidervish et al., 1996; Powers et al., 1999; Pospischil et al., 2008).
The general form of such a conductance-based neuron model
must include some spike-generating mechanism with rapid vari-
ables r � (r1, . . ., rm)� ((·)� denotes transpose), along with slow
variables s � (s1, . . ., sn)�, modulating the spikes over time:

ṙ j = fj (r, s, I (t )) , j = 1, . . . , R (2.5)

ṡ i = εhi (r, s) , i = 1, . . . , S , (2.6)

where ε > 0 is some small parameter – rendering the dynamics
of s (of timescale τ s) much slower than the dynamics of r (of
timescale τ r). We shall assume for simplicity that all slow variables
are normalized to the range [0, 1] (as is usually done for gating
variables).

For example, the HH model is a special case of this model where
r = (V, m, n, h)�, equation (2.5) are given by equation (2.1–2.4)
and all other quantities are held fixed, so ε = 0. Other basic models
of excitable neurons also exist (Fitzhugh, 1961; Morris and Lecar,
1981). In any case, we require that, given a constant value of s
(if ε = 0), the rapid variables r and equation (2.5) represent an
“excitable,” non-oscillating, neuron. By that we mean that:

1. r remains at a unique constant steady state if I (t ) = 0 (“resting
state”).

2. After each stimulation pulse, for certain values of initial con-
ditions and I 0, we get either a stereotypical “strong” response
(“AP-response”) or a stereotypical “weak” response in r (“no-
AP-response”). Only for a very small set of values of initial

conditions and I 0, do we get an“intermediate”response (“weak
AP-response”).

3. All responses are brief, and r rapidly relaxes back to steady state,
within time τ r. For example, τ r < 20 ms in both versions of the
HH model (Figure 2).

Next assume that ε > 0. Now s are allowed to change, and to mod-
ulate the neuronal activity in a history dependent way. Recall
that the dynamics of s are slow since ε is small, and there-
fore ε−1

∼ τ s � τ r. For simplicity, we assume, as is commonly
done (Izhikevich, 2007; Ermentrout and Terman, 2010), that hi(r,
s) = hi(r, si), a linear function,

εhi (r, si) = δi (r) (1 − si) − γi (r) si , (2.7)

where δi and γ i are kinetic rate functions of magnitude ε. Some
of this paper’s main results can be extended to general monotonic
functions hi(r, si) (see section C). Next we discuss some of the spe-
cific models we use in this work. Since we are interested in the tem-
poral rather than the spatial structure of the neuronal response,
we shall concentrate on single compartment (isopotential) models
which include additional slow kinetic processes.

2.2.1. HHS model: basic HH + sodium slow inactivation
The work of De Col et al. (2008), which has some similarities
with the work in Gal et al. (2010), implicates slow inactivation of
sodium channels in the latency changes of the AP generated in
response to stimulation pulses – as in the transient phase observed
in Gal et al. (2010). Since slow inactivation of sodium channels
(Chandler and Meves, 1970) has also been implicated in spike-
frequency adaptation (Fleidervish et al., 1996; Powers et al., 1999
and in axonal AP failures Grossman et al., 1979a), and since in
Gal et al. (2010) the latency change is clearly coupled with the
spike failures (e.g., the existence of a critical frequency), we first
wanted to examine whether slow inactivation of sodium channels
alone can explain the experimental results. We incorporate this
mechanism into the HH model (as in Chandler and Meves, 1970;
Rudy, 1978; Fleidervish et al., 1996), by introducing s, a new slow
inactivation gate variable, into the sodium current

INa = ḡ Na m3hs (ENa − V ) .

We model s as having first order kinetics,

ṡ = δ (V ) (1 − s) − γ (V ) s , (2.8)

with voltage-dependent inactivation rate γ (V ) = 3.4·(e−0.1·(V +17)

+ 1)−1 Hz and recovery rate δ(V ) = e−(V +85)/30 Hz as in Flei-
dervish et al., 1996; again, in all the rate functions V is used in
millivolts units). We call this the “HHS model.” In order to make
the timescale of the transient change in the latency comparable to
that measured in Gal et al. (2010), Figure 4A, we had to make the
rates γ and δ 20 times smaller (such small rates were previously
demonstrated (e.g., Toib et al., 1998). Also, using the fitted HH
model, which had a narrow AP, required us to increase the inacti-
vation rate γ to three times its original value, so sufficient inactiva-
tion could occur. However, this last change made inactivation level

Frontiers in Computational Neuroscience www.frontiersin.org February 2012 | Volume 6 | Article 4 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Soudry and Meir Slow dynamics of excitability

at rest too high, so we compensated by increasing the steepness of
the activation curve of γ to three times its original value. The
end result of this was γ (V ) = 0.51·(e−0.3·(V +17) + 1)−1 Hz and
δ(V ) = 0.05e−(V +85)/30 Hz. Using these rates together with the fit-
ted HH model, we get the “fitted HHS model,” which reproduces
the experimentally measured timescales of the transient response
(Figure 8A). Alternatively, if instead we refer to the “original HHS
model,” then it is to be understood that we used the original para-
meters of the HH model and γ (V ) and δ(V ), as in Fleidervish
et al. (1996). Finally, we comment that sodium channels’ recovery
from slow inactivation is known to be history dependent and to
occur at multiple timescales (Toib et al., 1998; Ellerkmann et al.,
2001). And so, one could argue that simple first order kinetics as
in equation (2.8) are not accurate enough to describe the chan-
nel’s behavior. However, in neurons under pulse stimulation, the
linear form of equation (2.8) is actually quite general – since
Soudry and Meir (2010) showed how in this case equation (2.8)
approximates the dynamics of an ion channel with power law
memory which reproduce the results of Toib et al. (1998), Ellerk-
mann et al. (2001). Therefore, the response of the HHS model
with slow inactivation of sodium as described in Soudry and
Meir (2010) is not significantly different from the response using
equation (2.8).

2.2.2. HHSAP model: HHS model + potassium activation
Slow activation of potassium current (either voltage or calcium
dependent) has been implicated many times in reducing the
neuronal excitability after long current step stimulation, termed
“spike-frequency adaptation” (e.g., Koch and Segev, 1989; Marom
and Abbott, 1994; Pospischil et al., 2008). When we take this into
consideration we change the fitted HHS model, rename {s, γ ,
δ} → {s1, γ 1, δ1}, and add a slowly Activating Potassium current
with M-current kinetics similar to those of Koch and Segev, 1989,
Chapter 4), so the total potassium current is

IK = ḡ K n4 (EK − V ) + ḡ M n4s2 (EK − V ) .

with ḡM = 0.01ḡK and

ṡ2 = δ2 (V ) (1 − s2) − γ2 (V ) s2 ,

where

δ2 (V ) = 3.3e(V +35)/σ + e−(V +35)/20

1 + e−(V +35)/10
Hz,

γ2 (V ) = 3.3e(V +35)/σ + e−(V +35)/20

1 + e(V +35)/10
Hz

In Koch and Segev (1989),σ = 40 mV,while we used σ = 15 mV
(again, in all the rate functions V is used in millivolts units). We
refer this model as the “HHSAP model.”

2.2.3. HHSIP model: HHS model + potassium inactivation
Both slow inactivation of sodium channels, and slow activation of
potassium channels have similar affect on the neuronal excitabil-
ity – they act to reduce it after an AP. As we shall see later, this
“negative feedback” type of behavior always results in very similar

neuronal dynamics. However, “positive feedback” type of behav-
ior is also observed – increased excitability after a depolarization
(Hoshi and Zagotta, 1991). To account for this we take the HHSAP
model, and switch the potassium rates {γ 2, δ2} → {δ2, γ 2} –
so now potassium is Inactivating (“positive feedback”) instead
of Activating (“negative feedback”). We name this the “HHSIP
model.”

2.3. SIMPLIFYING DETERMINISTIC CONDUCTANCE-BASED MODELS
Deterministic Conductance-Based Neuron Models (CBNMs) are
usually explored numerically, with the exception of several dynam-
ical systems reduction methods (Izhikevich, 2007; Ermentrout
and Terman, 2010). However, since in this work we concentrate
only on a specific form of stimulation (T -periodic, short current
pulses with amplitude I 0) which fulfills a timescale separation
assumption [equation (2.9)]

τr � T � τs, (2.9)

allows us to replace the full model with a simpler, approxi-
mate model. This condition is applicable here, since for all the
specific models we use (both fitted and original HH, HHS,
HHSAP, and HHSIP models, described in the previous sections),
τ r ∼ 10 ms and τ s ∼ 10 s, and since the stimulation protocol in
the experiment, used the (physiologically relevant) period range
of 20 ms < T < 1 s. Numerically, we found in all these specific
models, that the analytical results stemming from this assumption
remain accurate if fin ≤ 30 Hz.

Since τ r � T (e.g., Figure 2) and since we deal with an excitable
(non-oscillatory) neuron (as defined in 2.2), then after each stim-
ulation pulse, whether or not there was an AP, the rapid variables
relax to a unique steady state and do not directly affect the neuronal
response when the next stimulation is given. Only s, a vector rep-
resenting the slow variables of the system [equation (2.6)], retains
memory of past stimulations. Therefore, to determine the neu-
ronal behavior, it is only necessary to consider the dynamics of s
and how it affects the system’s response. Thus, we consider how
the neuronal response is determined by s.

2.3.1. Firing threshold
In response to a stimulation pulse with amplitude I 0 an AP will
occur if and only if the “excitability” of the neuron is high enough.
Since only s retains memory of past stimulations, we should only
care about the dependence of this excitability in the value of s, so
we write it as a function E(s) – where we say that an AP will occur
if and only if E(s) > 0. We denote by � the threshold region –
a set of values in which each s fulfills E(s) = 0. We calculated
numerically the location of this threshold region from the full
conductance-based model [equations (2.5 and 2.6)]. First, we set
ε = 0, disabling all the slow kinetics in the model. Then, for every
value of s we simulated this “half-frozen” model numerically by
first allowing r to relax to a steady state and then giving a stimula-
tion pulse with amplitude I 0. If an AP was generated then E(s) > 0,
and E(s) ≤ 0 otherwise.

For example, in the context of the HHS model, the sodium cur-
rent is depolarizing. Therefore, the stronger the sodium current,
the more likely it is that an AP will be generated after a stimu-
lation pulse. Since the sodium current increases with s, then if
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FIGURE 3 | AP threshold and latency. (A) AP latency, L(s), calculated
numerically from the fitted HHS model by setting ε = 0, and simulating the
neuronal response at different values of s and I0. Firing thresholds

θ � {s|E (s) = 0} are marked by black circles for each I0. When no AP occurred,
we define L � 0. (B) Similarly, we calculated AP latency in the HHSAP and
HHSIP models for I0 = 8 μA. Notice the linear shape of the threshold line �.

and only if s is above a certain threshold, which we denote by θ ,
the sodium current will be strong enough to create an AP. So, in
the HHS model (or anytime s = s, a scalar) we can always write
E(s) = s − θ (Figure 3A). In the HHSAP and HHSIP models (for
which s = (s1, s2)) we found numerically that the shape of � is
linear (see Figure 3B), so we can write E(s) = w·s − θ . Generally,
we expect E(s) to be monotonic in each component of s separately,
and monotonically increasing in I 0. Therefore, in the HHS model,
we expect the threshold θ to decrease with I 0 (Figure 3A).

2.3.2. Latency function
When an AP occurs in response to a stimulation pulse, its differ-
ent characteristics (amplitude, latency, etc.) are also determined
by s. We are interested mainly in the latency of the AP, and so
we define the latency function L = L(s) for all s for which an AP
occurs (when E(s) > 0). This function was also found numerically.
For every value of s we simulated the “half-frozen” model (with
ε = 0) response to a stimulation pulse, and measured the latency
of the resulting action potential (when it occurred). For example,
in the context of the HHS model, as can be seen in Figure 3A, an
AP will have a smaller latency (faster membrane depolarization)
the higher are s and I 0 – since both the sodium current and the
stimulation current are depolarizing. See Figure 3B for the (2D)
latency function in the HHSAP and HHSIP models.

2.3.3. Dynamics of s
Having described how s affects the neuronal response, all that
remains is to understand how s evolves with time.

Using equations (2.6 and 2.7) we write

si (t ) � ε

t+T∫

t

hi (r (u) , si (u)) du

= T
[
δ̄i (t ) (1 − si (t )) − γ̄ i (t ) si (t )

]+ O
(
(εT )2) ,

(2.10)

where we have used the following notation for a time-averaged
quantity

z̄ (t ) � 1

T

t+T∫

t

z (r (u)) du . (2.11)

We neglect the O((εT )2) correction term, since εT � 1. Since the
value of s(t ) determines the r dynamics in the interval [t, t + T ], it
also determines γ̄ i(t ) and δ̄i(t ). Thus, slightly abusing notation,
we write γ̄ i(s(t )) and δ̄i(s(t )) instead of γ̄ i(t ) and δi(t ), respec-
tively. Since the condition E (s) ≷ 0 determines whether or not
an AP is generated, we expect that generally the sharpest changes
in the values of γ̄ i(s) and δ̄i(s) occur near the threshold area �

where E(s) = 0. Following this reasoning, we make the assumption
that the kinetic rates may be approximated as step functions with
discontinuity near E(s) = 0,

γ̄ i (s) =
⎧
⎨

⎩
γ i+, if E (s) > 0

γ i−, if E (s) ≤ 0

δ̄i (s) =
{

δi+, if E (s) > 0

δi−, if E (s) ≤ 0
. (2.12)

The interpretation of this assumption is that the kinetic rates
are insensitive to the s induced changes the AP shape and the
steady state of r. For example, in the context of the HHS model,
as can be seen in Figure 4B, we get for the rate of sodium
inactivation

γ̄ (s) =
{

γ+, if s > θ

γ−, if s ≤ θ
, (2.13)

where γ + > γ −, while the recovery rate remains constant
δ̄(s) ≡ δ.
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FIGURE 4 | Calculation of the average kinetic rates in the fitted HHS

model, where s is held constant. (A) Dynamics of voltage V (t ) (top) γ (V (t ))
(middle) and δ(V (t )) (bottom) after a stimulation pulse, plotted for two values
of s. For s = 0.5 no AP occurred, while for s = 0.9 an AP was generated.
Notice how γ (V (t )) increases dramatically during an AP, while δ(V (t )) does not.
(B) We derived V̄ (s) (top) γ̄ (s) (middle) and δ̄(s) (bottom) using equation

(2.11), by simulations as in (A), for many values of s. Firing threshold θ is
marked by a black circle. Notice that γ̄ (s) changes significantly more than
δ̄(s), especially near θ , and that we can approximate γ̄ (s) to be a γ ±-valued
step function as in equation (2.12) while δ̄(s) ≡ δ, a constant. I0 = 10 μA,
T = 50 ms with V, m, n, h initial conditions set at steady state values (which
can be somewhat different for each value of s).

As can be seen in Figure 5, for the HHSAP model, we get

γ̄ 1 (s) =
{

γ 1+, if w�s > θ

γ 1−, if w�s ≤ θ
;

δ̄2 (s) =
{

δ2+, if w�s > θ

δ2−, if w�s ≤ θ

with γ 1+ > γ 1−, δ2+ > δ2− and δ̄1(s) ≡ δ1, γ̄ 2(s) ≡ γ2. In the
HHSIP model, γ̄ 2 (s) and δ̄2 (s) are switched.

In conclusion, together with equations (2.10 and 2.12) gives

si = T

{
δi+ (1 − si) − γ i+si , if E (s) > 0
δi− (1 − si) − γ i−si , if E (s) ≤ 0

, (2.14)

which is a diagonal, piecewise linear (or, more accurately,
affine) recursive map for s. Similar discontinuous maps appear
in many systems (Di Bernardo, 2008), and recently also in neu-
roscience (Ibarz et al., 2011). However, in contrast to this recent
work, our method of discretization relies on the stimulus pulses

arrival times, thereby allowing greater analytical tractability in
our case.

2.3.4. Dependence of kinetic rates on stimulation
Next, we show that γ i± and δi± are all linear in fin. Expressing the
integral on [t, t + T ] in equation (2.11) as the sum of two integrals
on [t, t + τ r] and [t + τ r, t + T ], we exploit the fact that most of
the response in r(t ) after an AP is confined to [t, t + τ r] (since
τ r � T ; Figure 4A). Denoting

1

τr

t+τr∫

t

γi (r (u)) du �
{

γ i
H , if E (s (t )) > 0

γ i
M , if E (s (t )) ≤ 0

.

(2.15)

1

T − τr

∫ t+T

t+τr

γi (r (u)) du � γ i
L . (2.16)

and using γ H, γ M, γ L (which are independent of T ) we get from
equations (2.11 and 2.12)

γ i+ =
(
γ i

H − γ i
L

)
τrfin +γ i

L ; γ i− =
(
γ i

M − γ i
L

)
τrfin +γ i

L . (2.17)
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FIGURE 5 | Average activation and inactivation rates for the HHSAP model, where s is held constant. (A) γ̄ 1(s) (B) γ̄ 2(s) (C) δ̄1(s) (D) δ̄2(s). δ̄1 and γ̄ 2 are
almost constant, while γ̄ 1 and δ̄2 have a sharp discontinuity near the threshold area � (Figure 3B). I0 = 8 μA, T = 50 ms with V, m, n, h initial conditions set at
steady state value.

Similarly defining δi
H , δi

M , δi
L we obtain

δi+ =
(
δi

H − δi
L

)
τrfin + δi

L ; δi− =
(
δi

M − δi
L

)
τrfin + δi

L . (2.18)

Notice that since τ r fin is small (since τ r � T ), γ i+ can be signifi-
cantly different from γ i− if and only if γ i

H > γ i
L and so, necessarily,

γ i+ > γ i−. Additionally, since γ i(r) are usually monotonic func-
tions, we get γ i

H > γ i
M > γ i

L . If instead γ i+ ≈ γ i− then we do not
care much about γ i

H , γ i
M , γ i

L anyway. This reasoning applies also
to the recovery rates δi±, δi

H , δi
M , δi

L , to the HHS model, where we
get that γH > γM > γL (implied also from Figure 4A), and also
in the HHSAP and HHSIP models.

Finally, we note that since I 0 has little effect on the steady state
of r (e.g., rest voltage), and just a mild effect on the development
of r during an AP (“all-or-none response”), γ i

H , γ i
L are expected

to have a very small dependence on I 0. Simulations confirm this
low sensitivity to I 0 for γ i

H , γ i
M , γ i

L and δi
H , δi

M , δi
L for the specific

models we considered, so hereafter we assume they are all inde-
pendent of I 0 for the specific models used. However, we may see

an increased sensitivity of γ i
M and δi

M to I 0 if I 0 is increased, or
the voltage threshold of the corresponding kinetic rate (V 1/2) is
decreased.

2.4. SIMPLIFIED DETERMINISTIC MODEL ANALYSIS
To summarize the main results of section 2.3, any extension to
the HH model of the generic form [equations (2.5–2.7)] can be
greatly simplified under pulse stimulation given the following two
assumptions:

1. Timescale separation [equation (2.9); Figure 2]
2. Step-like behavior of the average kinetic rates [equation (2.12);

Figures 4 and 5].

In this case we can write a simplified model for the dynamics of
s = (s1,. . ., sn)� and the neuronal response:

1. At each stimulation an AP is produced if and only if E(s) > 0,
where E(s) is “the excitability function,” calculated numerically
(Figure 3).
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2. The latency of an AP is also determined by a function – L(s),
calculated numerically (Figure 3).

3. The change in s between consecutive stimulations is given by
the piecewise linear map in equation (2.14).

4. The inactivation and recovery rates γ i± and δi± all change
linearly with fin, as derived in equations (2.18 and 2.19).

Additionally we note that for the specific models we examined
as I 0 increases, E(s) increases, L(s) decreases, while all the other
parameters remain approximately constant (Figure 3). Although
this behavior does not follow directly from the assumptions
as do the above results, we expect it to remain valid in many
cases (see section 2.3). This model is mainly useful in order
to analyze and explain the dynamics of the full conductance-
based model [equations (2.5–2.7)], as we do next. However, all
numerical simulations are performed on the full conductance-
based model, to demonstrate the validity of our results. In
section B we further explain our assumptions, and in section
C we show how we can replace some of the them with weaker
assumptions.

2.4.1. Transients
In equation (2.14) each si is coupled to the others only through
the threshold. Therefore, if s(0) is far from the threshold area
E(s) = 0, each si will change independently forever, or until s(t )
reaches the threshold area E(s) = 0. Until this happens it is per-
haps more intuitive to describe the dynamics by the coarse-grained
continuous-time version of equation (2.14),

ṡ i (t ) =
{

δi+ (1 − si (t )) − γ i+si (t ) , if E (s (t )) > 0

δi− (1 − si (t )) − γ i−si (t ) , if E (s (t )) ≤ 0
. (2.19)

The solution, for each case, is given by

si (t ) =
⎧
⎨

⎩
s+
∞,i +

(
si (0) − s+

∞,i

)
e−t/τ+

i , if E (s (t )) > 0

s−
∞,i +

(
si (0) − s−

∞,i

)
e−t/τ−

i , if E (s (t )) ≤ 0
,

(2.20)

where

τ±
i � 1

δ±
i + γ ±

i

(2.21)

is the timescale of the exponential relaxation, and

s±
∞,i �

δ±
i

δ±
i + γ ±

i

, (2.22)

so s(t ) relaxes toward s±∞ = (
s±
∞,1, ...., s±∞,n

)�
, depending on

whether E (s (t )) ≷ 0.

2.4.2. Steady state
Eventually s(t ) arrives at some stable steady state behavior.
There are several different possible steady state modes, depend-
ing on s±∞, which are affected by the amplitude and frequency of

stimulation. These can be found by the following self-consistency
arguments.

1. Stable: if E
(

s+∞
)

> 0, E
(

s−∞
)

> 0 then s(t ) stabilizes at s+∞, so
APs are generated after each stimulation.

2. Unresponsive: if E
(

s+∞
)

< 0, E
(

s−∞
)

< 0 then s(t ) stabilizes at
s−∞, so no APs occur.

3. Bi-stable: if E
(

s+∞
)

> 0, E
(

s−∞
)

< 0 then, depending on the
initial condition, s(t ) stabilizes either on s+∞ (as in the stable
mode) or on s−∞ (as in the unresponsive mode). This type of
behavior is exhibited only in cases when the neuron becomes
more excitable after an AP (“positive feedback”).

4. Intermittent: if E
(

s+∞
)

< 0, E
(

s−∞
)

> 0 then steady state
is always “on the other side” of the threshold. Thus s(t ) will
stabilize near the threshold E(s) = 0. In this regime, small
changes in s dominate the behavior of the neuron: the neu-
ron alternates between an “on” state, in which E(s) > 0 and
the neuron can generate an AP at each stimulation, and an
“off” state in which E(s) ≤ 0 and the neuron does not gen-
erate any AP. This type of behavior is exhibited in cases
when the neuron becomes less excitable after an AP (“negative
feedback”).

2.4.3. Firing rate
Suppose we count N m

AP , the number of AP generated over m stim-

ulation periods in steady state, and denote by pm � N m
AP/m the

time-averaged probability of generating an AP. Assuming that the
system has indeed arrived to a steady state, for large enough m,
pm does not depend on m, so we denote it just by p. The only
case where p �= {0, 1} is the intermittent mode. At this mode s is
near the threshold E(s) = 0, so p can be derived by solving the
self-consistent equation

E
(

s∞
(
p
)) = 0 , (2.23)

where we defined γ i
(
p
)

� γ i+p + γ i−
(
1 − p

)
, δi

(
p
)

� δi+p +
δi−
(
1 − p

)
, si∞

(
p
)

� δi
(
p
)
/
(
δi
(
p
)+ γ i

(
p
))

and s∞
(
p
)

�
(
s1∞
(
p
)

, ..., sn∞
(
p
))�

. Also, notice that if, for all i, γ i
M ≈ γ i

L

and δi
M ≈ δi

L , then we can rewrite equation (2.24) in the form

h(pfin) = 0, which entails that in this case p ∝ f −1
in = T .

2.4.4. Firing patterns
Assume that equation (2.23) has been solved for p. Under the
assumption that in steady state s remains near s∞ (p), from equa-
tions (2.12 and 2.14) we get that si (s) ≈ s+

i if E(s) > 0 and
si (s) ≈ s−

i if E(s) ≤ 0, where

s±
i � T

(
δi±
(

1 − si∞
(
p
))− γ i±si∞

(
p
))

(2.24)

Simple algebra gives that for all i, s+
i /s−

i = 1 − p−1 < 0. This
means that s+ has the opposite direction to s− – so s remains
on a simple one-dimensional limit cycle. If q � p−1 − 1 ≥ 1,
the AP firing pattern is simple and repetitive: one period with
an AP, followed by either �q� (integer part of q) or �q� + 1 peri-
ods in which no AP occurred (Figures 6A,C). If instead q < 1,
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A B

C D

FIGURE 6 | Schematic state space dynamics of s and firing patterns in

the intermittent mode. Recall that q�
∣∣s+

i

∣∣ /
∣∣s−

i

∣∣ . The simple dynamics
of the 1D model are shown with (A) q = 3 and (B) q = 1/3. For the 2D model,
the dynamics can be slightly more complicated. (C) For w�s+ < 0 we get,

from equation (2.25), a 1D limit cycle with s+ = − qs− (top, with q = 3).
This results in a 1: q (AP:No AP) firing pattern (bottom). (D) For w�s+ > 0 we
obtain a 2D limit cycle (top) which results in m:n firing patterns (“bursts”;
bottom). See Figures 9A–C for the corresponding numerical results.

the firing pattern is different, yet still simple and repetitive: one
period in which no AP occurred, followed by either �q−1� or
�q−1� + 1 periods with APs (Figure 6B). These two simple firing
patterns are the only possibilities in the 1D case (s = s). However,
in some other cases, this simple description cannot be true, as
we explain next. Assume that s remains near s∞(p). In this case

we can linearize E (s) = w� (s − s∞
(
p
))+ O

(∥∥s − s∞
(
p
)∥∥2
)

,

where w � ∇E|s=s∞(p). Without loss of generality, assume

that q > 1 and 0 < w� (s − s∞ (p)) at a certain period, so an
AP is produced. In this case, according to the above descrip-
tion, s increases in the next period to s + s+, and no AP
is produced – so 0 ≥ w� (s − s∞ (p) + s+). But this neces-
sarily means that 0 > w�s+. If this condition is not fulfilled
(or, equivalently, 0 < w�s−), then the above description of
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the firing patterns cannot be correct. Instead, s will still revolve
around s∞(p), but now in a higher-dimensional limit cycle
(not 1D). In this case, the firing patterns are somewhat more
general than before: s may remain on one side of the thresh-
old � for several cycles, so the neuron can fire a continuous
AP-response sequence for L+ periods, and then remain silent
(no-AP-response sequence) for L− periods, where both L+ > 1
and L− > 1 (Figure 6D). We noticed numerically that even in
this case, the value of q still approximates the L+/L− ratio
(Figure 9D).

In addition to the above approximate analysis, there are sev-
eral general attributes of the steady state solutions of equa-
tion (2.14), that lead us to believe that the firing patterns do
not generally exhibit complex patterns. These attributes are the
following:

• Finite, periodic: in the 1D case, as was explained above, the
firing patterns are periodical and composed of only two basic
repeating sub-patterns, but the overall period of a firing pat-
tern may be arbitrarily long. However, as the duration of the
overall period increases, the relevant parameter space (that
can produce such a period) decreases (Tramontana et al.,
2010) – so an infinitely long period can be achieved only in an
(uncountable) parameter set of measure zero (Keener, 1980).
A similar result is expected to hold in higher-dimensional sys-
tems, since, as in the 1D case, infinitely long periods seem to
be generated only in the rare (measure zero) cases (bifurca-
tions) in which the steady state (finite) limit cycle touches the
threshold.

• Stable, non-chaotic: since equation (2.14) is a piecewise lin-
ear diagonal contracting map (namely, |d(si + si)/dsi| < 1),
its eigenvalues are inside the unit circle, so any finite limit
cycle that does not touch � must be stable (Thompson and
Stewart, 2002, or section A.1). It can be shown that this
remains true even when hi (r, si) [equation (2.7)] is not
linear (but still monotonic), or when the timescale separa-
tion assumption τ r � T � τ s is relaxed to τ r � min (T, τ s)
(section C).

• Globally stable, unique: in the 1D case it was further proved
(Keener, 1980, or section A.2) that any such limit cycle must also
be globally stable – and therefore unique. Numerical simula-
tions indicate that such global stability (or, uniqueness) remains
true in higher-dimensional systems. However, a direct proof of
this might be hard, due to results of Blondel et al. (1999).

• Bounded L± durations: in the intermittent mode (where
E
(

s+∞
)

< 0, E
(

s−∞
)

> 0), from equation (2.21), we get L± ≤
log

(
1/d±)maxiτ

±
i , where d± = mins:E(s)=0

∥∥s − s±∞
∥∥ . And

so, the lengths of the L± periods are bounded if maxiτ
±
i < ∞

and d± �= 0. Again, the latter condition is violated only for a
measure zero set of parameters.

We emphasize that if even any of the above mentioned exceptions
are reached (either a limit cycle or s±∞ touching �) – these rare
cases will be structurally unstable, meaning they will disappear if
infinitesimally small changes occur in almost any parameter, such
as stimulation rate or amplitude.

3. RESULTS
In Gal et al. (2010), a single synaptically isolated neuron, resid-
ing in a culture of rat cortical neurons, is stimulated with a
train of extracellular periodic current pulses. This neuron is iso-
lated from other neurons by blocking all synaptic activity in
the network. For sufficiently strong pulse amplitudes the neuron
sometimes responds with a detectable AP. The observed neuronal
response was characterized by three different modes (Gal et al.,
2010; Figure 2). When the neuron is stimulated at low frequen-
cies (e.g., 1 Hz) it always responds reliably with an AP, which
peaks after the stimulus with a constant latency (∼5 ms). This
mode is termed a “stable mode.” When the neuron is stimu-
lated at higher frequencies, it begins to adapt and the latency
of its APs increases. This phase is termed “transient mode.”
If the stimulation frequency is higher than a certain “critical
frequency” (2–23 Hz) the transient mode terminates when the
latency reaches a certain “critical latency” (∼10 ms). When this
critical latency is reached, the neuron enters a phase in which
it sometimes “misses,” and an AP is not created in response to
the stimulation pulse. When an AP is created, its latency fluctu-
ates around the critical latency. This kind of irregular mode is
termed the “intermittent mode.” When the frequency of stimu-
lation is changed back to low frequencies (e.g., 1 Hz) the behavior
switches back again to a transient phase, in which the latency
now decreases back to its original steady state value in the stable
mode.

The main additional observations of Gal et al. (2010) can be
summarized as follows:

1. The critical latency of the intermittent mode does not depend
on the stimulation frequency (Gal et al., 2010; Figures 4A,D).

2. The rate of change in latency during the transient mode
increases linearly with stimulation frequency (Gal et al., 2010;
Figure 4B).

3. The firing rate in the intermittent mode decreases moderately
with stimulation rate (Gal et al., 2010; Figure 4C).

4. The response of the neuron in the stable and transient mode
is almost exactly repeatable (Gal et al., 2010; Figure 9).

5. During the intermittent mode, regular “burst”-like firing
patterns appear (Gal et al., 2010; Figure 8D).

6. During the intermittent mode, irregular firing patterns appear
(e.g., Gal et al., 2010; Figures 8C,E,F).

7. The irregular patterns of response in the intermittent phase
are not repeatable (Gal et al., 2010; Figure 9).

8. The variability of the AP latency fluctuations increase with
the latency magnitude during the transients (Gal et al., 2010;
Figures 4A,D), and reaches a maximum in the intermittent
mode.

9. During long recordings (55 h in Gal et al., 2010;
Figures 5A,B,D) it was observed that the firing rate, and the
type of firing patterns (see also Gal et al., 2010; Figure 10),
change with time. The shape of the AP, however, remains stable
throughout the experiment (Gal et al., 2010; Figure 5C).

10. The changes in the firing rate display self-similarity proper-
ties (Gal et al., 2010; Figure 6). This remains true for Poisson
stimulation (Gal et al., 2010; Figure 7).
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FIGURE 7 | Fitted HHS model – transient mode and arrival to

intermittent mode. Stimulation current pulses generate APs (top). Initially
we are at the transient mode where APs are reliably generated each period
until we reach intermittent mode, and AP failures start to occur. This
happens since (middle) sodium channels availability s(t ) decreases during
the transient mode, due to slow inactivation caused by APs, until the
excitability threshold θ is reached, and then s(t ) starts to switch
back-and-forth across θ (intermittent mode). Notice that analytical
approximation of equation (2.21) closely follows the numerical result during
the transient phase. Latency during transient mode (bottom) is increased,
as in (Gal et al., 2010) Figure 2. Notice that, as expected, using the latency
function L(s) (calculated numerically in Figure 3A) on s yields a similar value
as the latency calculated by direct numerical simulation. I0 = 7 μA.

Our aim in this section is to find the minimal model capable
of reproducing these results. In section 2.1 we have already estab-
lished that for the classical HH model the response to each stim-
ulation pulse must be the same and therefore cannot reproduce
these results. Therefore, we begin by investigating the dynamics of
the next simplest model – the HHS model (section 2.2.1), which
includes also slow inactivation of sodium channels. As we show in
section 3.1, the HHS model reproduces a significant portion of the
experimental results (the different modes and observations 1–4),
and its dynamics is easily explained using our simplified version
(section 2.3).

However, the HHS model fails to generate the specific firing
patterns seen in the experiment. In section 3.2 we extend the HHS
model to the HHSIP model, enabling us to reproduce some of
the burst patterns (observation 5). However, the irregular firing
patterns (observation 6) raise a more serious obstacle, which can-
not by easily surpassed by simply extending the model, taking into
account additional variables representing the states of other types
of channels or ion concentrations. We make the general argument
(based on our analytic treatment) that the irregular patterns and
variability (observation 6–10) cannot be created by such model
extension, in the framework of a generic neuron model of the form
of equations (2.5 and 2.6) and under our assumptions [equations
(2.9 and 2.12)]. Taking this result into account we try to employ
a different form of model extension. In section 3.3, we explore
numerically the effects of ion channel noise on the results. We
show that the sensitivity of the near-threshold dynamics of the

neuron in the intermittent mode render such noise highly signifi-
cant. Additionally, the stochastic model seems to better reproduce
the variability of the experimental results in both the transient and
intermittent modes. Finally, we reach the conclusion that extend-
ing from deterministic CBNMs to stochastic CBNMs is crucial
if we wish to reproduce the details of the variability and the
irregular patterns (observations 6–10). However, the analysis of
a stochastic model requires different tools from those developed
here. We therefore relegate the complete analysis of the stochastic
model, and the reproduction of remaining results, to a companion
paper.

3.1. HHS MODEL
As discussed in section 2.4, the full HHS model can be greatly
simplified under pulse stimulation at low enough frequencies, as
in Gal et al. (2010). Next, we explain how the different neuronal
response modes seen in the experiment were reproduced, with the
help of this simplification.

3.1.1. Transient mode
Assume an initial stimulation pulse had a current I 0 which was
strong enough to generate an AP (as in Gal et al., 2010) – so we get
the initial condition s(0) > θ on the sodium availability. According
to equation (2.21) as long as s(t ) > θ , s(t ) decreases exponentially.
Since the latency increases when s decreases this seems to confirm
(Figure 7) to the experimentally observed transient mode (Gal
et al., 2010; Figure 2). Additionally, according to the simplified
model [equations (2.22 and 2.18)], the rate of the transient is
indeed linear in the frequency of stimulation

1/τ+ ∝ fin + f0 , (3.1)

as in Gal et al. (2010, Figures 4A,B). And indeed, using the fitted
HHS model, we were able to numerically reproduce these results in
Figure 8A. As can be seen there, the transient mode ends either in
a stable steady state (when fin is low), or in an intermittent mode,
which occurs when s(t ) reaches θ (Figure 8B), or equivalently,
when the latency reaches L(θ) (Figure 8A) – the critical latency
observed in the experiment. Also, as can be seen in Figure A1A, the
duration of the transient mode also decreases when stimulation
current I 0 is increased – since the threshold θ decreases with I 0

(Figure A1B). Note also that in all cases the latency of the AP is
shorter and less variable than the measured one (Figure 8A). Later
we address these discrepancies (in sections 4.4 and 3.3, respec-
tively). Finally, we note that if, instead of the fitted HHS, we used
the original HHS, the duration of the transient mode would be
considerably shorter (∼1 s) – which indicates that perhaps the
kinetic variable responsible for this slow transients is significantly
slower than the slow sodium inactivation kinetics in Fleidervish
et al. (1996).

3.1.2. Steady state
In any case, eventually the transient mode ends, and s(t ) arrives
at some steady state behavior. Using the results of section 2.4, we
first explore analytically all the different types of behaviors feasible
in the context of the HHS model. The type of mode that would
actually occur depends on the model parameters and the inputs
fin and I 0. Using equations (2.18, 2.23, and 2.24) we find that there
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FIGURE 8 | Fitted HHS model –response dependency on f in. (A) Spike
latency as a function of time from stimulation onset (each color designates
a different stimulation rate): stimulation at I0 = 7.9 μA and rates of f in = 1,
5, 10, 15, 20, 25, 30, 35, 40 Hz (red, orange...,); The transient phase speeds
up when f in is increased, and ends at the same critical latency Lc. Similar
to Figure 4A of Gal et al. (2010). Inset: the rate is the reciprocal of the
timescale of the transient phase, defined as halftime the latency reaches
the critical latency, as in Gal et al. (2010). Notice that the rate is linear in f in,
as predicted by equation (3.1), and similar to Figure 4B of Gal et al. (2010).
Both of these results can be explained by (B) the sodium availability trace,
s(t ) [using same color code as in (A)] where s transient speeds up when
f in is increased, while θ does not change. (C) Dependency of steady state
firing rate on stimulation frequency. Comparison between simulation and

approximation of equation (3.3), for different values of I0: f̄ out(fin) in fitted
HHS model – f̄ out = fin for fin < f 1

c (stable mode), and then fin ≈ f 1
c for

fin ≥ f 1
c (intermittent mode). Compare with Figure 4C of Gal et al. (2010).

Notice also that in both cases, f 1
c increases with I0, as expected from

equation (3.2), and the fact that θ decreases in I0. (D) Mean latency at
steady state as a function of f in, shows an initial increase [stable mode,
where L ≈ L(s+

∞) should indeed increase in f in, by equations (2.23 and
2.18)] and then saturates (intermittent mode, where L ≈ L(θ ) is indeed
independent of f in), as seen in (Gal et al., 2010) Figure 4D. Also, the error
bars indicate the SD of the latency – or the latency fluctuations. These
fluctuations increase in the intermittent mode, as seen in (Gal et al., 2010)
Figure 4D, due to the back-and-forth motion of s around θ at this mode,
and the high sensitivity of L(s) near s = θ .

are three different possible steady states, depending on the two
parameters f 1

c and f 2
c , given by

f 1
c �

δ
(
θ−1 − 1

)− γL

τr (γH − γL)
; f 2

c �
δ
(
θ−1 − 1

)− γL

τr (γM − γL)
. (3.2)

Note that f 1
c corresponds to the measured critical frequency,

while f 2
c , larger than f 1

c , is a second critical frequency, which
was not observed in Gal et al. (2010). Note that f 1

c increases
with I 0, since θ decreases with I 0 (Figure 8C). Specifically, f 1

c
increases quadratically with I 0 (Figure A1C), similarly to θ−1 (not
shown).

If fin < f 1
c , then s−∞ > s+∞ > θ , and s(t ) stabilizes at s+∞, namely

above the threshold θ , implying that each stimulation generates an
AP (as the steady state for fin = 1.5 Hz in Figure 8A). The latency
of the AP in this case is stable at L

(
s+∞
)

(Figure 8D). Therefore,
this mode seems to agree with the experimentally measured stable
mode in Gal et al. (2010).

If fin > f 2
c , then θ > s−∞ > s+∞, and s(t ) stabilizes on s−∞,

namely below the threshold θ , and no APs are fired. We refer to

this as the “unresponsive mode,” which was not reached in the
experiment. It is possible that if a higher fin or I 0 were used, then
such a mode would be achievable. However, it is also generally
possible that fin > f 2

c violates the timescale separation assump-
tion τ r � T, so that this mode could be unattainable at the specific
parameter values used. In the context of the fitted HHS model this
violation indeed occurs and also f 2

c is much higher than any phys-
iological stimulation rate. However, if other parameters were used
(e.g., larger γ M) then such a mode could be attainable at relevant
frequencies.

If f 1
c < fin < f 2

c , then s−∞ > θ > s+∞, so the steady state is
always “on the other side” of the threshold. Therefore, s(t ) will
always return to θ – whether above or below. Thus, in this case,
the threshold has become effectively the new steady state of s(t )
(Figure 7, middle). In this regime, small changes in s dominate
the behavior of the neuron: the neuron alternates between an
“on” state, in which s(t ) > θ , where it generates an AP after each
stimulation, and an “off” state in which s(t ) ≤ θ , where it does
not generate any AP. This steady state is reached when s hits the
threshold θ , or, equivalently, when the latency reaches a critical
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FIGURE 9 | Firing patterns and excitability dynamics in the

intermittent mode, for different models: (A) Fitted HHS. (B) HHSAP.

(C) HHSIP. (D) Stochastic HHS (N = 106). Blue circles – APs (1 – AP
generated, 0 – AP failure), red – excitability function E (s) (s in HHS),
green line – excitability threshold E (s) = 0 (θ in HHS). Notice that in
deterministic models (A–C) APs occur if and only if E (s) > 0, and that the
resulting firing patterns are regular, periodic, and depend very simply on
q (calculated from model parameters). Specifically, in (A,B), when q ≥ 1
each AP must be followed by either �q� or �q� + 1 periods in which no

AP occurred, and when q < 1 each AP failure must be followed by either
�q−1� or �q−1� + 1 APs. These rather specific patterns are generated by
the “up and down” motion of s around the threshold (as in
Figure 6A–C), due to negative feedback. In contrast, the HHSIP model
can generate m:n “burst”-like patterns, due to the positive feedback of
potassium inactivation. Notice that as before, q still well approximates
the ratio of (AP:No AP) response sequences lengths in the HHSIP. In
contrast to deterministic models, the stochastic HHS allows a large
variety of irregular patterns. I0 = 7.7 μA

latency ≈L(θ). Due to the back-and-forth motion of s around
θ at this steady state, and the high sensitivity of L(s) near s = θ

(Figure 9A), we get much larger fluctuations in the latency than
in the stable mode (Figure 8D). Together, these properties render
this type of steady state qualitatively similar to the experimentally
measured intermittent mode in Gal et al. (2010).

3.1.3. Intermittent mode – firing rate
In the intermittent mode, solving equation (2.24) together with
(2.23) and (2.18) gives the an approximate expression for the mean
firing rate

f̄ out

(
fin
) = f 1

c − a
(
fin − f 1

c

)
. (3.3)
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where we defined a � (γM − γL) / (γH − γM ) ≥ 0, and the
mean firing rate as f̄ out

(
fin
)

� pfin where p is the time-averaged
probability of generating an AP (defined in section 2.4). This lin-
ear equation approximates well the firing rate of the full HHS
model as long as the timescale separation assumption [equation
(2.9)] holds true. In the fitted HHS model, this approximation fits
well with numerical results up to fin = 40 Hz (Figure 8C). Notice
also that in that case we have a a � 1, and f̄ out

(
fin
) ≈ f 1

c , since
γ M � γ H. If the sub-threshold inactivation γ M is larger, then a is
also larger, as can be seen, for example, in the original HHS model
(Figure A2A), where γ M is not negligible in comparison with γ H.
In any case equation (3.3) gives a decreasing linear I/O relation,
which, combined with the simple f̄ out

(
fin
) = fin relation in stable

mode, gives a non-monotonic response function. This response
function is similar to the experimental results (Gal et al., 2010;
Figure 4C).

3.1.4. Intermittent mode – firing patterns
So far, the HHS model seems to give a satisfactory explanation
for many of the experimental results observed in Gal et al. (2010).
However, there is an important caveat. If the stimulus frequency
obeys the timescale separation assumption [equation (2.9)], the
HHS model can produce only very simple patterns during inter-
mittent mode (Figure 9A). As explained in section 2.4, in the
intermittent mode, s changes in approximately constant incre-
ments, s±, close to the threshold θ , defined in equation (2.24):
inactivation step s+ < 0 if s > θ and recovery step s− > 0 if
s ≤ θ . Defining q �

∣∣s+∣∣ /
∣∣s−∣∣ as the ratio between step

sizes, and assuming that q ≥ 1, we get that in any firing pattern
each AP must be followed by either �q� or �q� + 1 periods in
which no AP occurred (“no-AP-response sequence”; Figure 6A).
If instead q < 1, then each AP failure (a period in which no AP
occurred) must be followed by either �q−1� or �q−1� + 1 periods
with APs (“AP-response sequence”; Figure 6B). We note also the
q is related to the mean firing rate by q = p−1 − 1, and that in
the fitted HHS model the step sizes around the threshold are very
small s± = T

(
δi± (1 − θ) − γ i±θ

) ∼ 10−4, which is an impor-
tant fact we will use later (in section 3.3). In any case, as explained
intuitively above, it can be formally proven that the firing patterns
in the intermittent steady state are always regular, periodic, and
globally stable – as also seen numerically in Figure 9A. Such firing
patterns are not at all similar to the highly irregular firing patterns
observed experimentally (e.g., Gal et al., 2010; Figure 8). Also, we
clearly see in some of the experimental figures m:n “burst” pat-
terns in which m > 1 APs are followed by n > 1 AP failures (e.g.,
Gal et al., 2010; Figures 8D,E) – which cannot be produced by the
HHS model. Therefore, in the next section, we revise the model,
in an effort to account for these discrepancies.

3.2. THE ADDITION OF KINETIC VARIABLES
As we saw in previous section, the fitted HHS model can reproduce
many experimental results. However, it has one major flaw – in the
relevant stimulation range it can produce only very simple, reg-
ular, and periodic firing patterns in the intermittent mode – in
contrast with the irregular firing patterns of Gal et al. (2010). How
should the model be extended in order to reproduce this? Sup-
pose we use a more general model for a point neuron [equations
(2.5–2.7)]. This general model may include an arbitrary number of

slow variables, each corresponding to some slowly changing factor
that affects excitability – such as the availability of different types
of channels or ionic concentrations. Can such a general model
generate more complicated firing patterns? It seems trivial that a
system that includes a wide variety of processes, at a large range
of timescales, should be able to exhibit arbitrarily complex pat-
terns, and even chaos. However, as explained in section 2.4, if this
stimulus and the model adhere to our assumptions [namely, the
timescale separation (equation (2.9)) and the step-like behavior
of the average kinetic rates (equation (2.12)], this is not the case,
chaos cannot occur, and again we conclude that only regular, peri-
odic, and stable firing patterns are possible, except perhaps in a very
narrow range of stimulus and model parameters (a“zero measure”
set). This perhaps surprising result remains true for any arbitrarily
complex conductance-based model (with arbitrarily large num-
ber of slow variables, and arbitrary slow timescales) as long as our
assumptions remain valid.

What specific type of firing patterns are possible then, under
these assumptions? If, for example, only “negative feedback” type
slow variables exist (those which reduce excitability after an AP),
such as potassium activation and sodium inactivation in the
HHSAP model, then we get 1: n or n: 1 (AP: No AP) firing patterns
as in the HHS model (Figures 6C and 9B). However, if sufficient
“positive feedback” also exists (some slow variables contribute to a
increased excitability after an AP), as potassium inactivation in the
HHSIP model we can get a more general “burst” firing patterns of
m:n (AP: No AP). However, these firing patterns are also expected
to be very regular and periodic (Figures 6D and 9C). Such firing
patterns were also observed experimentally (e.g., Gal et al., 2010;
Figures 10B,C). The condition that separates both types of firing
patterns’ dynamics depends on both parameters and stimulation.
Therefore a neuron that has both positive and negative feedback
can have “bursts” firing patterns in the intermittent mode, for a
certain range of fin and I 0. We note that the mechanism behind
this burst firing pattern is similar in principle to the mechanism
behind “slow wave” bursts, that can occur in the standard current
step stimulation of neurons (Izhikevich, 2007).

And so, under our assumptions, the addition of more slow vari-
ables to the HHS model can only help to reproduce one additional
response feature observed in the intermittent mode – namely,
the “burst” firing patterns. The simplest extension that achieves
this is the HHSIP model. Note also that in the HHSIP model
we took the additional potassium current to be relatively weak
(ḡ M = 0.01 ḡ K ). Though this weak current can have a large impact
in the intermittent mode (e.g., Figure 9C), it has a relatively small
effect on the neural dynamics in the transient mode (Figure A3A).
In most cases, this is desirable since the HHS model already fits
nicely with experimental results in the transient mode, e.g., the
existence of a critical latency and the simple linear timescale rela-
tion [equation (3.1)]. However, we should be careful not to destroy
the fit of the HHS model during the transient phase if we extend
it by adding additional slow kinetic variables. For example, by
increasing ḡ M we can generate an inflection point in the latency
transients (Figure A3B), making them more similar to some exper-
imental figures (e.g., Gal et al., 2010; Figure 2A) but less to others
figures, which do not have an inflection point (e.g., Gal et al.,
2010; Figure 4A). We may also want to increase the magnitude
of the latency in the fitted HHS model, which is significantly
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FIGURE 10 | Stochastic HHS model –response dependency on f in. Similar
graphs to Figure 8. Note that due to the added noise the latency variance
gradually increases during transients and is amplified during the intermittent
mode (A,D), similarly to Figure 4A of Gal et al. (2010). In (C), the added noise

makes the analytic approximation of the deterministic CBNM [equation (3.3)]
no longer accurate, especially near f 1

c . An analytic result derived for the
stochastic HHS model in our companion paper (not shown here), gives a
better fit. N = 107 in (A,B) and N = 106 in (C,D).

smaller than that in Gal et al. (2010). As explained in section
4, this should be done by extending the model to include several
neuronal compartments, through which the AP propagates and
the latency accumulates. Such an extension is beyond the scope of
this article.

3.3. ION CHANNEL NOISE
Since deterministic CBNMs cannot reproduce the observed irreg-
ularity, we now examine the possibility that it could be produced by
stochastic effects. Since synaptic activity was blocked in the experi-
ment of Gal et al. (2010), the only other major source of noise is the
stochastic ion channel dynamics (White et al., 2000; Hille, 2001;
Faisal et al., 2008). The gating variables used in the conductance-
based models to account for channel activation or inactivation
(such as s in the HHS model) actually represent averages of a large
number of discrete channels. Since the population of ion chan-
nels in the neuron is finite, the stochasticity in their dynamics is
never completely averaged out, and can affect neuronal dynamics
(Schneidman et al., 1998; White et al., 1998; Steinmetz et al., 2000;
Carelli et al., 2005; Dorval and White, 2005), and, even more so,
thin axons (Faisal and Laughlin, 2007) and dendrites (Diba et al.,
2004; Cannon et al., 2010).

Consider the HHS model with channel noise added to it. A
naive, yet common way to approximate this noise (Fox and Lu,
1994; Chow and White, 1996; Faisal, 2009, but see Goldwyn et al.,
2011, Linaro et al., 2011) is to add a noise term to each of the gating
variables representing the channels’ state. For example, equation

(2.8) in the HHS model becomes a one-dimensional Langevin
equation (Fox and Lu, 1994; Faisal, 2009)

ṡ = δ (1 − s) − γ s + σ (s) ξ , (3.4)

where σ (s) = √
(δ (1 − s) + γ s) /N , N is the number of chan-

nels, and ξ is a Gaussian “white noise” process with zero mean and
covariance cov [ξ(t ), ξ(t ′)] = δ(t − t ′). Determining N, the phys-
iologically relevant number of ion channels in the spike initiation
area, still remains an open issue (e.g., Kole et al., 2008 vs. Flei-
dervish et al., 2010). Current crude estimates give N = 104 − 106

(Rowat, 2007). To demonstrate that stochasticity remains signifi-
cant even at high channel numbers, we will use here N ≥ 106. And
indeed, a simulation of the stochastic HHS model (independent-
subunit method, as described in Goldwyn et al. (2011) with
N = 106 yielded an irregular response in the intermittent mode,
as observed in the experiment (Figure 9D). Moreover, the pres-
ence of noise (N = 107) added latency fluctuations (Figure 10A)
in the transient and intermittent modes rendering the model
response more similar to the experimental results (Gal et al.,
2010; Figure 4A), than in the deterministic case (Figure 8A) –
specifically, notice the broadening of the latency variance during
the transients. It is impossible to generate such latency fluctua-
tions in the deterministic CBNMs (under our assumptions) since
the transients in s are monotonic [and exponential, see equa-
tion (2.21)] – unless the latency function L(s) is non-monotonic
and highly irregular (in contrast to the ones we found here – see
Figure 3).

Frontiers in Computational Neuroscience www.frontiersin.org February 2012 | Volume 6 | Article 4 | 16

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Soudry and Meir Slow dynamics of excitability

The reasons that noise becomes very important in the HHS
model are twofold. First, in the intermittent mode, the firing pat-
terns of the neuron are dominated by small changes in the value of
s near the threshold θ – and this near-threshold behavior, renders
the noise term σ (s)ξ highly significant. Second, notice that since
σ ∝ √

γ + δ the noise term in equation (3.4) becomes large in
comparison with the deterministic part of the equation, when the
kinetic rates γ ,δ are small. Therefore, since the rates of slow inacti-
vation in the HHS model are about 104-fold slower than the kinetic
rates of the HH model, the noise term for s may become much
more significant than that of the m, n, h variables. Specifically, in
the fitted HHS model, we already found that in the intermittent
mode s±

∼ 10−4. Therefore, if for example there are N ≤ 104

gating particles, then a conformation change in just few gating
particles can potentially determine whether or not an AP will be
generated.

In summary,

• Deterministic CBNMs (under our assumptions) can only gen-
erate regular firing patterns and non-variable latency transients,
in contrast to the experimental results.

• The firing patterns during the intermittent mode in determinis-
tic CBNMs are highly sensitive to perturbations, such as channel
noise.

• When channel noise is added to the fitted HHS model, it gen-
erates highly irregular firing patterns (Figure 9D) and provides
a better fit to the experimental latency fluctuations during the
transient mode (Figure 10A).

Combining these observations we conclude that extending the
deterministic CBNMs to stochastic CBNMs is a very plausible next
step. However, keeping in mind our aim at mathematical tractabil-
ity, we need analytic tools which are different from those used to
analyze the deterministic model. Due to length considerations, we
shall present these tools and the remaining results in a companion
paper. Specifically, we will show how to calculate the mean and
spectrum of the firing rate – and use these results to reproduce
and explain the remaining experimental results.

4. DISCUSSION
In this work we have developed a mathematical framework to ana-
lytically characterize the dynamics of deterministic conductance-
based neuronal models of excitability under conditions of
timescale separation and pulse-like inputs. A special simple case of
the model studied, based on a single slow kinetic variable, allowed
us to reproduce many of the qualitative and quantitative observa-
tions of Gal et al. (2010) in the stable, transient, and intermittent
phases and to generate predictions, as summarized in more detail
in the next paragraph. An extension to multiple channel types led
to novel experimentally observed burst-like behavior. Attempting
to extend the basic model in order to reproduce the specific details
of the observed complex, irregular and “non-stationary” patterns
that were observed experimentally, we argued for the necessity
of incorporating ion channel stochasticity into the model. The
analysis of such a model, requiring very different tools from those
developed in the present paper, will be presented in a companion
paper.

4.1. THE HHS MODEL
In agreement with the conclusions of De Col et al. (2008), we
showed that slow sodium inactivation alone (HHS model, section
2.2.1) can reproduce the different modes observed in Gal et al.
(2010) – transient, stable, and intermittent, along with the critical
frequency f 1

c and the critical latency Lc. Using our simplifica-
tion method (section 2.3), we were able to find exact expressions,
directly linked to stimulation and biophysical parameters, that
describe the neuronal response in all modes. Specifically, we found
expressions describing the transient response of the neuron [equa-
tion (2.21)]; a simple piecewise linear and non-monotonic input-
output relation f̄ out

(
fin
)

for the mean firing rate as a function of
stimulation frequency [equation (3.3) and Figure 8C] and also a
simple description of the exact firing patterns in the intermittent
mode directly linked to the firing rate (Figures 6A,B and 9A). The
HHS model explains many of the phenomena observed in Gal et al.
(2010): the dependence of the mean and variance of the latency on
fin (Figure 8D) and more specifically, the lack of dependence of Lc

on fin (Figure 8A); the linear increase of the transient rate of the
latency mode with fin [equation (3.1) and Figure 8A, inset ] and
the moderately decreasing response function in the intermittent
mode [equation (3.3) and Figure 8C]. Using this result, we pre-
dicted that the slope of the response function, a, increases with the
level of sub-threshold inactivation caused by the stimulation spike
(γ M) and argued for the possible existence of a second critical fre-
quency f 2

c

(
> f 1

c

)
, above which the neuron does not generate APs

(an unresponsive mode, which was observed for a similar setting in
Kaplan et al. (1996), in cases where a is sufficiently high. Addition-
ally, based on f̄ out (I0) (see Figure A1), we predict that both f 1

c and

f̄ out increase quadratically with I 0, that the latency decreases with
I 0 (including Lc) and that the duration of the latency transients
decreases with I 0.

We have not found other modeling work that deals with a
similar setting to ours, namely excitable non-oscillatory neurons
with slow kinetics under pulse stimulation. In most previous work
either a constant current stimulation is used, neurons are oscilla-
tory or slow kinetics are ignored. Therefore, it is somewhat difficult
to compare this specific model with previous literature. However,
we found that the non-monotonicity of the input/output relation,
f̄ out

(
fin
)

, displays a similarity to that of a synapse with short term

depression (de la Rocha and Parga, 2005), and that f̄ out (I0) indeed
becomes linear near I c

1 , similarly to the prediction of Ermentrout
(1998), for CBNMs with a single slow adaptive variable.

4.2. DETERMINISTIC CONDUCTANCE-BASED NEURON MODELS
However, despite its merits, the HHS model fails to describe the
firing patterns in the intermittent mode. This model can only pro-
duce very simple and stable periodic firing patterns (Figures 6A,B
and 9A), in contrast with the irregular firing patterns of Gal et al.
(2010). We attempted to circumvent this problem,by extending the
HHS model with additional kinetic variables, representing chan-
nel activation/inactivation or concentration changes. Under the
assumption of timescale separation [equation (2.9)] and the step-
like behavior of the average kinetic rates [equation (2.12)], using
our simplification methods (section 2.3), these models [equations
(2.5–2.7)] remain amenable to analysis even when an arbitrary
number of such kinetic variables is used. This allowed us again to
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find the different steady state modes (section 2.4) and closed-form
expressions for the transient response [equation (2.21)], the fir-
ing rate [equation (2.24)] and the firing patterns [using equation
(2.25)]. Using these methods we found, under the same assump-
tions, that the resulting firing patterns always remain periodic and
stable (Figures 6C,D and 9B,C): in many cases identical to the
simple firing patterns seen in the HHS model and in some cases
(Figure 9A),when a certain analytical condition is fulfilled (section
2.4), additional “slow wave”-like “bursting” (Izhikevich, 2007) fir-
ing patterns appear (Figures 6D and 9C), as in some seen in Gal
et al. (2010).

And so, even in the very general framework of deterministic
CBNMs, it is impossible to reproduce the experimental obser-
vations regarding the fluctuations in latency transients or the
irregular firing patterns in intermittent modes, given our assump-
tions. This necessarily entails that some of our assumptions must
break down. What happens then? Can more complicated dynam-
ics, or even chaos, be produced? It is generally known that chaotic
dynamics are possible even in the basic HH model (Guckenheimer
and Oliva, 2002) and in other models (Wang, 1993; Innocenti et al.,
2007), in response to a constant current stimulation. Chaos was
also shown to occur in the more relevant case of pulse stimulation
in the Fitzhugh-Nagumo model (Kaplan et al., 1996) – although at
rather high frequencies. In fact, if the timescale separation assump-
tion [equation (2.9)] breaks down, we found that the original HHS
model can produce chaos. Specifically, this occurs for I 0 = 7.7 μA,
fin = 35 Hz, when the assumption τ r � T no longer holds, and the
fast HH variables V, m, n, h do not relax sufficiently quickly to a
steady state between stimulation pulses. However, to our knowl-
edge, in all these cases, chaos seems to be restricted to a limited
(usually narrow) range of stimulus and model parameters. And so,
it seems unlikely that irregular behavior will occur across a large
variety of neurons, and for the entire range of stimulation parame-
ters (I 0, fin) that produce the intermittent mode. In fact, whenever
fin is sufficiently low so that τ r � min [T, τ s], the slow variables
will again be uncoupled from the fast variables. It can be shown
that this condition alone suffices to prevent chaotic dynamics (see
section C). Therefore, if the observed irregularity occurs due to
the breakdown of the timescale separation assumption [equation
(2.9)], then this irregularity will not be robust to stimulus changes
and will eventually disappear if fin is low enough (note that I 0

might needed to be adjusted, so that the intermittent mode can be
reached at this low value of fin).

However, if the model kinetic timescales are not well separated
and continuously span the full range of relevant stimulation peri-
ods, then the timescale separation condition cannot hold, even in
its relaxed form. In this case, we cannot rule out the possibility that
robust irregular dynamics may still emerge. This can also happen
if any of the other assumptions are no longer valid. First, it might
occur if the assumption related to the step-like behavior of the
average kinetic rates [equation (2.12)] breaks down. Second, it is
possible that we were too restrictive in assuming that the dynamics
of s [equation (2.6)] are not directly coupled [as in equation (2.7),
where ṡ i is determined only by si, r, and not s, r]. Third, it might
be that the conductance-based framework itself [equations (2.5
and 2.6)] is not general enough and must be extended to include
other phenomena. We chose the latter option and extended the
conductance-based framework by taking into account ion channel

noise. In this way we maintained our ability to analytically study
the model, thereby extending many of the results that were derived
so far.

4.3. ION CHANNEL NOISE
Since the observed irregularity in Gal et al. (2010) cannot be repro-
duced by adding any number of kinetic variables to the HHS
model (under our assumptions), we argued that it is the result
of the intrinsically stochastic nature of ion channels. Simulating
this randomness, by adding channel noise to the HHS model, we
found that it indeed reproduces the observed irregularity at short
timescales (Figure 9D) and the variance increase in the latency
fluctuations during the transient mode. Moreover, we found that
channel noise has a strong impact on neuronal response, even
when channel numbers (N ) are much higher than previously
considered. Specifically, in previous works (e.g., Fox and Lu, 1994;
Rubinstein, 1995; Schneidman et al., 1998; White et al., 2000; Gold-
wyn et al., 2011) noise was demonstrated to be significant up to
N ∼ 104 or lower (except Rowat, 2007 with N ∼ 105), while we
showed it is highly significant even for channel numbers much
larger than biophysically plausible (e.g., N ∼ 107, Figure 10A).
Such a high sensitivity to noise is the result of the slow kinetics
and the near-threshold dynamics involved, as seen clearly from
the simplified HHS model (section 3.3). A significant impact of
the interaction between noise and slow kinetic variables was also
reported recently by Schwalger et al. (2010).

Stochastic AP failures are not exclusive to the neuron, since
synapses with low transmission probability are quite common
(Thomson, 2000). Such a ubiquitous stochastic response may
explain part of the puzzling irregular firing patterns of corti-
cal cells (Softky and Koch, 1993). In a somewhat related matter,
we note that the neuronal response discussed here is diametri-
cally opposed to the popular notion of “large current fluctuations
implies reliable response and vice versa” (Mainen and Sejnowski,
1995; Schneidman et al., 1998). If this notion was generally true
then, given the short and strong pulse stimulation used in Gal et al.
(2010), we should also expect a very reliable response. Yet, as we
saw here, this is not the case in the intermittent mode – which
is highly unreliable. Moreover, if a stochastic HHS model neuron
is subjected to a constant current clamp, it would generate very
regular and periodic firing patterns for N ∼ 106 (not shown).

4.4. NEURONAL MORPHOLOGY
In this work we assumed that the neuron is a point element. How-
ever, cortical cells can have a complex spatial structure (Kriegstein
and Dichter, 1983; Kandel et al., 2000) – which can be accounted
for in the context of a CBNMs [equations (2.5–2.7)]. The spa-
tial structure of the neuron is commonly modeled by dividing the
neuron into several compartments representing different parts of
the dendrites, soma, and axon. If a strong enough stimulation
pulse arrives at one of the compartments (“initial compartment”)
a signal propagates through the compartments until an AP is
measured in the vicinity of another compartment (“final compart-
ment”). Any such propagation event can change the excitability of
each of the compartments it passes through (e.g., through slow
sodium inactivation). When excitability reaches its threshold in
one of the compartments, a conduction failure occurs. As we saw
in this work, the excitability threshold depends on the internal
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FIGURE 11 | AP propagation through neuronal compartments. After a
stimulation is received in the initial compartment (1), it propagates through
the neuronal compartments, until an AP is measured at the final
compartment (4). This propagation could fail if the excitability of any of the
compartments (e.g., 2) becomes low enough. This critical compartment
(the “weakest link” in the propagation chain) will then determine the AP
firing patterns. In contrast, the latency of AP propagating through the
neuron is a sum of the latencies in all compartments on the path [equation
(4.1)], and therefore depends on the excitability of all compartments.

variables of the compartments, and on the stimulation current
entering the compartment (Figure 11). Conduction failure in
a single compartment on the propagation path would result in
no AP being measured in the final compartment. Such “critical
compartments,” in which conduction failures occur, were already
shown to appear in areas of impedance mismatch, such as axon
branches (Grossman et al., 1979b; Debanne, 2004; Debanne et al.,
2011). If this is the case here, and these branches are far from
the initial compartment, then the observed AP failure rate should
have a low sensitivity to I 0, and all our I 0-related results will not
hold. However, if the AP failure rates change with I 0 as was pre-
dicted here (e.g., Figure A1C), then at least one of the critical
compartments should be close to the stimulation area. The results
of Wallach et al. (2011) indicate that this may be true at least in
some cases. If the initial compartment is the only critical com-
partment (in which conduction failures occur), then all the results
we’ve discussed here regarding AP firing patterns (and rate) hold
in full.

In contrast to AP failures, which can depend only on the
excitability of single critical compartment, the latency of an AP
depends on the excitability of all compartments along the propa-
gation path. And so, if AP latency is to be modeled in quantitatively
correct manner, the spatial structure of the neuron must be con-
sidered. Specifically, the AP latency (measured from the beginning
of a stimulation pulse to the time the AP peak is reached at the
measuring electrode), is the sum of the propagation latencies along
the propagation path,

L =
M∑

m=1

Lm (sm) , (4.1)

where each of these latencies is a direct function of that com-
partment’s excitability, as we saw in this work. This can be seen
directly in the experimental results, as also pointed by Gal et al.
(2010). For example, in Gal et al. (2010) Figure 2A, we clearly see
that the AP waveform was measured only several millisecond after
stimulation. This stands in contrasts with the AP waveform seen
in a single compartment model which begins its rise immediately
after the stimulation pulse (e.g., Figure 2 here or Figure 3A in
Gal et al., 2010). Therefore this initial “pause” before AP measure-
ment must result from the propagation time between the final and

initial compartments. Taking equation (4.1) into account seems
to explain why in our simulations (e.g., Figure 8A) the AP latency
is significantly shorter than what was measured (e.g., Figure 4A
in Gal et al., 2010). Also, assuming that the stochastic fluctuations
in the latency response of each compartment are uncoupled, then
according to equation (4.1), we get (Var (L) / 〈L〉) ∝ 1/

√
M , so

the relative latency fluctuations will decrease with the number of
compartments. This way, we would not have to use an unrealis-
tic number of channels (N ∼ 107) to get small magnitude latency
fluctuations as in the experiment (Figure 10A). Finally, we com-
ment that the AP amplitude and overall shape depends on the
excitability of the final compartment. Its excitability is not neces-
sarily coupled with the excitability of the critical compartments,
due to the regenerative nature of the AP. Therefore, any long term
changes in excitability or stimulation of the critical compartment
might have little effect on the AP shape and amplitude. And so
they should change very little during the experiment (Gal et al.,
2010; Figure 5C).

4.5 WHAT IS THE RELEVANT PHYSIOLOGICAL INPUT FOR NEURONAL
MODELS?
We concluded that the spatial structure of the neuron also affects
our results. It may become even more important for in vivo neu-
rons. To see why, recall that all our results were derived for the case
of pulse stimulation at the physiological AP firing rate of corti-
cal cells, as in Gal et al. (2010). For axonal compartments such a
stimulation regime indeed resembles the physiologically relevant
stimulation – an AP generated in the previous compartment. How-
ever, is sparse pulse stimulation also the physiologically relevant
input regime of the soma and dendrites? The answer depends on
the exact details of the spatial integration of synaptic inputs, and
their temporal activation patterns. At first, a sparse input regime
may seem unlikely given that neurons receive simultaneous inputs
from about 104 synapses. However, such a regime may seem more
plausible if we recall that the mean firing rates of cortical neurons is
low (less than 1 Hz according to Lee et al., 2006; see also Olshausen
and Field, 2004 and references therein), and that in many cases
incoming synaptic inputs do not reach the soma directly, but are
integrated sequentially and non-linearly at several levels of den-
dritic compartments (Polsky et al., 2004; Larkum et al., 2009; Silver,
2010), so that each level may maintain a sparse input to the next
level.

4.6 FUNCTIONALITY
Assuming that neuronal compartments indeed receive sparse
input patterns, what could be the functional significance of the
AP patterns observed in the intermittent mode? We end this paper
by offering some speculations on this issue. As suggested here,
these patterns are caused by the interaction between APs and
the slow kinetic variables in the neurons (such as slow inacti-
vation). In the sparse input regime characterizing the cortex, these
slow kinetics allows two temporally separated inputs to inter-
act with each other, thereby extending the timescale over which
a computation could be performed beyond the several millisec-
ond time window of the AP generation mechanism (Galán et al.,
2008). Additionally, such a computation, performed through these
slow kinetics, will be more robust to millisecond fluctuations (as
seen in Gal et al., 2010; Figures 4D–F) in the input timing, than
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computations performed solely through fast kinetics. However, as
we mentioned previously, such slow kinetics are more strongly
affected by ion channel noise. This is not necessarily a disad-
vantage. For example, noise can increase signal to noise ratio via
stochastic resonance (Van den Broeck et al., 1994; Gammaitoni
et al., 1998; Mcdonnell and Ward, 2011), reduce the network sensi-
tivity to perturbations (Molgedey et al., 1992), enable escape from
local minima in optimization (Kirkpatrick et al., 1983), improve
fault tolerance, learning speed, and generalization ability in neural

networks (Murray and Edwards, 1993, 1994; Jim et al., 1996; Fiete
and Seung, 2006) and serve other beneficial purposes in many
cases (Motwani and Raghavan, 1996).
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APPENDIX
A. STABILITY AND UNIQUENESS OF THE INTERMITTENT

STEADY STATE
For completeness, we explain in this section some of the proper-
ties of the limit cycle in s during the intermittent mode, in the
context of our simplified model. Assume that the model parame-
ters are chosen so that eventually the intermittent steady state is
reached. In this case, according to equation (2.14), the discrete
vector-valued map

s(n+1) � g
(

s(n)

) (
s(n) � s (nT )

)

is given by

gi (s) = si + T

{
δi+ (1 − si) − γ i+si , if E (s) > 0
δi− (1 − si) − γ i−si , if E (s) ≤ 0

. (A.1)

Expressed in vector notation, we have

g (s) =
{

G+s + b+, if E (s) > 0
G−s + b−, if E (s) ≤ 0

. (A.2)

where G± are diagonal matrices with eigenvalues inside the
unit circle (the latter property follows from the assumption that
T
(
γ i± + δi±

) = O (εT ) < 1).
First, note that this map has no fixed point (a point s∗ for

which s∗ = g (s∗)), otherwise the system would be in the stable, bi-
stable, or unresponsive mode, rather than the intermittent mode.
In order to consider cycles, we define the iterated map recur-
sively for all n ≥ 0, gn(s) = g(gn−1(s)), where g0(s) = s. Assume
there exists a finite limit cycle, i.e., there exists a p > 1 so that

gp
(

s∗
(1)

)
= s∗

(1) for some s∗
(1). This means that a p-long peri-

odic limit cycle P =
{

s∗
(1), s∗

(2), ..., s∗
(p)

}
exists for this map (i.e.,

g
(

s∗
(1)

)
= s∗

(2), g
(

s∗
(2)

)
= s∗

(3), ..., g
(

s∗
(p)

)
= s∗

1). We also assume

that � ∩ P = ∅, since the complementary event occurs only for a
measure zero set of parameters. The finiteness of the limit cycle in
this case (contracting maps) was proved by Keener (1980) for the
1D case, for all but a measure zero choice of parameters. We are
not aware of a generalization of this result to higher-dimensional
systems, but simulations seem to confirm that this remains true.

A.1. LOCAL STABILITY OF P
Assume the system is 1D. A generalization of the following result
to higher dimensions is straightforward.

The limit cycle P is locally stable if and only if∣∣dg p (s) /ds
∣∣
s=s∗

(1)
< 1 (Strogatz, 1994). By the chain rule, this

is true if and only if

p∏

n=1

∣∣∣∣
dg (s)

ds

∣∣∣∣
s=s∗

(n)

< 1 (A.3)

Since

dg (s)

ds
= 1 − T ×

{
γ+ + δ+, if s > θ

γ− + δ−, if s ≤ θ

and T (γ ± + δ±) < 1, it follows that for all s, |dg (s)/ds| < 1. This
implies that condition A.3 is fulfilled, and so P is stable. Note that
since we assumed that θ /∈ P, we can always choose a neighborhood
of all the points in P that does not contain θ , and thus the condi-
tion

∣∣dg n (s) /ds
∣∣
s=s∗1

< 1 indeed implies stability (we do not have

to worry about the discontinuity at s = θ).

A.2. UNIQUENESS AND GLOBAL STABILITY OF P
Assume the system is 1D. We now prove the uniqueness of P in
the intermittent mode, implying that there is no other attractor
A so that P ∩ A �= P. We are not aware of a generalization of the
following result to higher dimensions.

Assume by contradiction that there are two different attrac-
tors A1 and A2. For each attractor Ai, by its definition (Wig-
gins, 2003, Chapter 8.2) there exists an open set Ui (a “trapping
region”) so that ∀n ≥ 0: gn (Ui) ⊂ Ui and ∩n ≥ 0 gn(Ui) = Ai, where
g n (Ui) �

{
x ∈ R|∃u ∈ Ui : g n (u) = x

}
. The basin of attrac-

tion of Ai is defined as Bi � ∪n≥0g −n (Ui) where g −n (Ui) �{
x ∈ R|g n (x) ∈ Ui

}
. As implied by the definition, B1 ∩ B2 = ∅.

Assume that θ /∈ B1. This implies that ∀n ≥ 0: θ /∈ g −n (U 1). There-
fore, using the fact that U 1 is an open set and g (s) is a continuous
function anywhere except in θ , by the topological definition of a
continuous function (which states that the inverse image of any
open set must be an open set), we arrive to the conclusion that
∀n ≥ 0: g −n (U 1) is also open. This means that Bi �∪n≥0g −n(U i)
is also open, as the union of open sets. Since B1 ∈ [0,1] then as an
open set it must be the union of disjoint open intervals of the
form (a, b) and perhaps also half-open intervals of the form [0,b)
or (a,1].

Assume that B1 contains at least one open interval of the
form (a, b). We choose some c ∈ (a, b). Since θ /∈ B1 then ∀n ≥ 0:
θ /∈ gn[c, b) and so gn(s) is continuous, differentiable, and monot-
onically increasing in [c, b), as the composition of such functions.
Since g (s) is left-continuous everywhere and gn(s) is monotoni-
cally increasing in [c, b), then gn(s) is also continuous on [c, b].
Therefore, we can now use the mean value theorem, and state that
there exists some d ∈ (c, b) so that

∣∣g n (b) − g n (c)
∣∣ = |b − c | ·

∣∣∣∣
dg n (s)

ds

∣∣∣∣
s=d

.

Using the chain rule again we get

∣∣∣∣
dg n (s)

ds

∣∣∣∣
s=d

=
n−1∏

k=0

∣∣∣∣
dg (s)

ds

∣∣∣∣
s=g k (d)

<

(
1 − T

(
min± (γ± + δ±)

))n

→ 0

as n → ∞ This implies that
∣∣g n (b) − g n (c)

∣∣ n→∞−−−→ 0. But since

c ∈ B1, then c
n→∞−−−→ A1, and so b

n→∞−−−→ A1- which contradicts
our assumption that b /∈ B1. Therefore B1 does not contain any
interval of the form (a, b). Using identical reasoning, any interval
of the form [0,b) is also disqualified from being in B1. The only
remaining possibility is that B1 is of the form (a,1] where a > θ . But
this is also impossible if we are in the intermittent mode (where the
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dynamics always cross the threshold eventually) – since then there
exists an e so that g (a + ε) < a and so g (a + ε) /∈ B1 even though
a + ε ∈ B1, which means that B1 cannot be a basin of attraction (if
instead we are in the bi-stable mode then we can have two basins
of attraction – [0, θ] and [θ , 1]). Therefore, there cannot be any
basin of attraction that does not contain θ . This means there is
only a single basin of attraction, and that it must contain θ .

Therefore P is the only attractor, and so it is globally attracting.

B. MODEL ASSUMPTIONS
In this section we examine more closely the two main assumptions
we used to generate and analyze our simplified model. For simplic-
ity and numerical concreteness, we consider only the fitted HHS
model, in which s = s, a scalar variable, δ̄ (s) = δ and E(s) = θ .
Generalization to other models should be straightforward.

B.1. STEP FUNCTION APPROXIMATION FOR THE KINETIC RATES
In this section we examine closely the step approximation we used
for the average kinetic rate [used in equations (2.12 and 2.20)].
Namely, we want to quantify more accurately the limits of this
approximation.

How does equation (2.12) affect the AP firing patterns? With-
out this approximation the discrete mapping g (s) [equation (A.2)]
becomes

g (s) = (−γ̄ (s) s + δ (1 − s)) T + s (B.1)

The difference between the map in the approximated and non-
approximated case can be seen in Figure A4B. In the non-
approximated map g (s) changes gradually over a “threshold inter-
val” of width e that contains a single fixed point (in which
sn = sn+1), while the approximated map has no fixed points. Also,
away from the threshold, the slopes of the non-approximated map
are somewhat smaller than in the approximated map, since γ̄ (s)
is monotonically increasing.

First we explore the stability of the fixed point. This depends
on the value of

dg (s)

ds
= 1 − (γ̄ (s) + δ) T − Ts

d γ̄ (s)

ds
.

Notice that T (γ̄ (s) + δ) < 1 since s is “slow” (with small
kinetic rates), while Tsd γ̄ (s) /ds can be large only in the thresh-
old interval (Figure A4A). As long as |dg (s)/ds|s=θ > 1 the fixed
point is unstable (Strogatz, 1994). However, if the kinetic rates γ ,
δ are very small we might get |dg (s)/ds|s=θ < 1. In this case, the
system will have a stable fixed point and a low-amplitude (“weak
AP-response”) AP will be produced in each period. If this is not the
case, and if the fixed point is unstable, then the step approximation
for g (s) will give similar results to the non-approximated version
in the stability analysis (section A.1), given two more conditions.
First, the width of the threshold interval, η (Figure A4A), is small
enough so no point in the limit cycles falls directly into it. Second,
Tsd γ̄ (s) /ds � 1 so the map remains contracting and the limit
cycle remains stable.

Another result that used the step-like behavior of the kinetic
rates is the continuous-time differential equation which we used
to derive the behavior of s in the transient phase in equation

(2.20). This seems like an adequate approximation in the cases we
checked (Figure 7 (middle)). To increase accuracy, we can avoid
the approximation, and just use

ṡ = −γ̄ (s) s + δ̄ (1 − s)

instead. However, in this case we cannot derive the analytic solu-
tion [equation (2.21)] and the resulting linear scaling of transients
[equation (3.1)].

Finally, one might ask why the step-like shape arises at all in the
context of the average kinetic rates. There are three properties of
HHS which, given together, enhance this:

1. The sigmoidal form of γ (V ),δ(V ) which reduces the sensitivity
to changes in the amplitude of the AP or the resting potential.

2. The shape of the AP is relatively insensitive to s.
3. The resting voltage is relatively insensitive to s.

Whenever a conductance-based model has these properties, we
expect the step approximation to remain valid.

B.2. TIMESCALE SEPARATION ASSUMPTION
In the main text, in order to develop the simplified model, we used
the timescale separation assumption [equation (2.9)], which is
actually based on two different assumptions, namely τ s � T and
τ r � T. The condition τ s � T is straightforward to understand
and was applied using standard perturbation theory [in equation
(2.10)] and similarly the use of the condition τ r � T in the context
of section 2.3. However, our use of the condition τ r � T in the
definition of E(s) needs be further clarified. In order to simplify
the HHS model we assumed that an AP will be produced after a
stimulation pulse if and only if s > θ . However, if T < τ r, θ may
change if an AP was generated by the previous stimulation pulse
through the HH variables r � (V , m, n, h)�, therefore θ = θ(r).
We denote the HH (resting) steady state by r0 � (V0, m0, n0, h0)

�
(note that in general r0 may depend on s, but this is not relevant
here). Our model assumption T > τ r implies that when a stimula-
tion pulse is given θ � |θ (r) − θ (r0)| is small. However, small
in comparison to what? If, for example, we want our model to give
accurate results regarding the firing patterns in the intermittent
mode (when s is near θ), then we need to demand

θ < min
[∣∣s−∣∣ ,

∣∣s+∣∣] , (B.2)

where s± are given by equation (2.25) for the HHS case

s± � T (δ± (1 − θ) − γ±θ) .

Assume that a stimulation was given at time t = 0 and an AP was
produced. For which values of T is the requirement B.2 fulfilled?
As can be seen in Figure 2, the AP has a stereotypical timescale
of τAP (≈10 ms) in which r are far from the steady state r0. After
that, r relax to r0 with the difference r = r − r0 remaining small.
Since r is small, we can linearize the HH equations near �a0 and
obtain

d

dt
r = Ar ,
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where A is a constant 4 × 4 matrix. Solving this equation we obtain

r (T ) =
4∑

i=1

viexp (−λi (T − τAP )) ,

where λi are the eigenvalues of A and vi are some vectors, depend-
ing on the initial conditions. For our fitted HH model, we can
calculate λ1 = 5.44 kHz, λ2,3 = 0.36 ± 0.86i kHz, λ4 = 0.24 kHz.
For T > τAP, r is small, so we can approximate to first order
θ ≈ w�r where w is some constant vector. Denoting ci = w�vi,
we obtain the condition

4∑

i=1

ci exp (−λi (T − τAP)) < min
[∣∣s−∣∣ ,

∣∣s+∣∣]

We can further approximate if λ4(T − τAP) � 1, since then
θ ≈ c4 exp (− λ4(T − τAP)), where c4 is some constant in the
range [0, min (θ , 1 − θ)]. Using this approximation we obtain

T > τAP + logc4

λ4
− 1

λ4
log

(
min

[∣∣s−∣∣ ,
∣∣s+∣∣])

For example, using a higher bound by setting c4 = min (θ ,
1 − θ), and solving for parameter values of the fitted HHS model
obtained for I 0 = 10 μA (Figure 4), we obtain T > 47.8 ms (or
fin < 21.4 Hz). Above this bound, the approximation τ r � T is
guaranteed to be correct. However, it gives relatively large safety
margins, since our numerical results show that our simplified fit-
ted HHS model seemed to hold up well for fin < 30 Hz as can bee
seen in Figures 8A,C and 9A (also, fin < 30 Hz for the original HHS
model as can bee seen in Figure A2A).

C. RELAXATION OF ASSUMPTIONS
In this section we relax the timescale separation assumption [equa-
tion (2.9)] to τ r � min[T, τ s], and instead of requiring that hi(r,
si) is linear [equation (2.7)], we only require that hi(r, si) is a
monotonic function of si.

We show that even under these milder assumptions the model
remains non-chaotic and can produce only stable firing patterns
(except perhaps in a parameter set of measure zero), by prov-
ing that the simplified discrete mapping g(s) [equation (A.2)]
remains diagonal and contracting (namely, |dgi(s)/dsi| < 1, and
|dgi(s)/dsj| = 0 for all i �=j) whenever s is not on �.

We denote ai � si(t ), bi � si(t + τ r), ci � si(t + T ). The system
dynamics generate mappings b = f(a), c = e(b). We aim to prove
that all the eigenvalues of g(a) = e(f(a)) are inside the unit circle.

Using equations (2.6 and 2.7) we write

si (t + τr) = si (t ) + ε

∫ t+τr

t
hi (r (u) , si (u)) du

= si (t ) + ετr h̃i (t ) + O
(
(ετr)

2) ,

(C.1)

where

h̃i (t ) = 1

τr

∫ t+τr

t
hi (r (u) , si (t )) du (C.2)

≈
{

hi+ (si (t )), if E (s (t )) > 0
hi− (si (t )), if E (s (t )) ≤ 0

, (C.3)

where in the last line we made the assumption on the step-like
behavior of the dynamics: 1

τr

∫ t+τr
t hi (r (u) , si (t )) du is insensi-

tive to changes in {r (u)}t+τr
t caused by changes in s(t ), except

near the threshold E(s) = 0, while {hi(r (u) , si(u))}t+T
t+τr

is com-

pletely insensitive to changes in {r(u)}t+τr
t caused by changes in

s(t ). Therefore, we can write ĥi(si) � hi(r, si) for all u ∈ [t + τ r,
t + T ] and get

ṡ i (u) = ĥi (si (u))

T − τr =
∫ t+T

t+τr

ṡ i (u) du

ĥi (si (u))

T − τr =
∫ ci

bi

dv

ĥi (v)
,

Differentiating with respect to bi we get

0 = dci

dbi

1

ĥi (ci)
− 1

ĥi (bi)

dci

dbi
= ĥi (ci)

ĥi (bi)

now since hi(r, si) are monotonic, and since s is bounded, ĥi(si)

must be monotonically decreasing (if it were increasing then the
system will be unstable and s will diverge). In any case, the sys-

tem dynamics evolve so ĥi(si) → 0. Therefore, if ĥi (bi) > 0, then

ĥi (bi) > ĥi (ci) > 0, and if ĥi (bi) < 0, then ĥi (bi) < ĥi (ci) < 0.
And so,

0 <
dci

dbi
< 1

In summary, if ai /∈ �

dci

dai
= dci

dbi

dbi

dai
= dci

dbi

(
1 + ετr

dhi± (ai)

dai

)
∈ (0, 1)

since ετ r � 1. Also

∀i �= j :
dci

daj
= 0

therefore g(a) is diagonal and contracting, and so any finite limit
cycle (which does not touch the threshold) is stable. Note that we
demand ai /∈ � (ai ∈ � in a parameter set of measure zero), since if
ai ∈ �, then hi±(ai) is discontinuous so dhi±(ai)/dai is ill-defined.
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FIGURE A1 | Dependency on stimulation amplitude, I 0, in the fitted

HHS model – (A) Spike latency as a function of time from stimulation
onset (each color designates a different stimulation rate): stimulation at
f in = 25 Hz and I0 = 7, 7.5, 8, 8.5, 8.75, 9, 9.25, 9.5, 9.75, 10 μA (red,
orange...,); The transient slows down when I0 is increased, and both initial
and critical latencies change. Inset: the rate indeed decreases with I0, and
there exist two critical currents: I1

c , which is the minimal current to
generate an AP (here I1

c ≈ 6.9 μA) and I2
c which is the maximal current for

which intermittent mode is reached (here I2
c ≈ 9.25 μA). For I0 > I2

c the
steady state is the stable mode. These results can be explained by (B) the
sodium availability trace s(t ) (using same color code as in A), where we
see that when I0 is increased then θ is decreased, while the transient rate

of s is hardly affected. (C) Steady state firing rate f̄ out is 0 for
I0 < I1

c ≈ 6.9 μA for all f in. It then increases quadratically in I0 during the
intermittent mode, until f̄ out saturates when the stable mode is
reached – at I2

c , which depends on f in. (D) Steady state latency
dependence on I0. For f in = 25 Hz, the mean latency at steady state always
decreases as a function of I0. This mainly occurs since the latency function
decreases with I0 (Figure 3). However, during the intermittent mode,
L ≈ L(θ ), while θ decreases with current. Since L(s) is decreasing, this
makes the decline of L in the intermittent mode less steep than in the
stable mode, where L ≈ L(s+

∞) and s+
∞ does not change with I0. Here we

also see that the latency fluctuations in the intermittent mode are much
larger than in the stable mode.
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FIGURE A2 | Dependency of f̄out on fin, for different models. (A) Original HHS model (t 0 = 1 ms). Notice that f̄ out ≈ f 1
c − a(fin − f 1

c ) with a > 0 for fin ≥ f 1
c

(intermittent mode). (B) HHSAP. (C) HHSIP.
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FIGURE A3 |Transient mode in the HHSIP model. Similar graphs as in
Figure 8A. (A) With a low M-current conductance (ḡM = 0.01 ḡK ) the
transient response is almost indistinguishable from that of the fitted HHS
model (Figure 8A), retaining the linear scaling of the transient rate with f in.
Recall though, that the intermittent mode behavior is different here than in
the HHS, with burst-like patterns (Figure 9C, which has the same HHSIP
parameters). (B) With a high M-current conductance (ḡM = 0.05 ḡK ) this

model can reproduce the inflection point in the latency transient observed
in some cases (e.g., Gal et al., 2010; Figures 8B,C,F). The linear scaling of
transient rate observed in the HHS model is retained, however the
different latency transients intersect, unlike (Gal et al., 2010) Figure 4A,
which did not have an inflection point). Note also that the burst-like
patterns appearing at the intermittent mode increase their duration
considerably. I0 = 7.9 μA.

FIGURE A4 | Effects of approximating the kinetic rate by a step function

in the HHS model. (A) solid line – the original γ̄ (s), dashed line – the
approximated step function (as in 4). (B) The map sn+1 = g(sn) near the
threshold, in the intermittent mode: solid line – the original map [equation
(B.1)], dashed line – the map using the approximated step function for γ̄ (s),

dotted line – the identity map sn = sn+1. Notice that in the original map g(s)
changes gradually over the threshold in an area (rectangle of width η) that
contain a single fixed point (in which sn = sn+1) while the approximated map
has no fixed points. Also, the slopes of the original map are always smaller in
magnitude than in the approximated map.
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