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Experimental studies of neuronal cultures have revealed a wide variety of spiking network
activity ranging from sparse, asynchronous firing to distinct, network-wide synchronous
bursting. However, the functional mechanisms driving these observed firing patterns are
not well understood. In this work, we develop an in silico network of cortical neurons
based on known features of similar in vitro networks. The activity from these simulations
is found to closely mimic experimental data. Furthermore, the strength or degree of
network bursting is found to depend on a few parameters: the density of the culture,
the type of synaptic connections, and the ratio of excitatory to inhibitory connections.
Network bursting gradually becomes more prominent as either the density, the fraction
of long range connections, or the fraction of excitatory neurons is increased. Interestingly,
biologically prevalent values of parameters result in networks that are at the transition
between strong bursting and sparse firing. Using principal components analysis, we show
that a large fraction of the variance in firing rates is captured by the first component for
bursting networks. These results have implications for understanding how information
is encoded at the population level as well as for why certain network parameters are
ubiquitous in cortical tissue.
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1. INTRODUCTION
Networks of cultured neurons have proven to be a valuable tool
in the study of the mechanisms of learning, plasticity, informa-
tion processing, and bursting (Shahaf and Marom, 2001; Eytan
et al., 2003). With the advent of multielectrode arrays (MEAs),
it is possible to monitor network activity by recording extra-
cellularly from large numbers of neurons in vitro (Potter and
DeMarse, 2001; Segev et al., 2001) or to influence network behav-
ior through direct stimulation (Wagenaar et al., 2004). A wide
variety of spatiotemporal firing patterns has been observed in cul-
tured neuronal recordings, including: sporadic or asynchronous
firing, synchronized network bursting, and neuronal avalanches
(Maeda et al., 1995; van Pelt et al., 2004; Chen et al., 2006; Eytan
and Marom, 2006; Eckmann et al., 2008; Petermann et al., 2009).
Functionally, the mechanisms driving this activity are not well
understood. There is experimental evidence that qualitatively sug-
gests the plating density and the culture’s age play significant
roles in determining the amount of synchronization in the net-
work (Wagenaar et al., 2006b). Recent studies have quantified
this dependence of bursting strength on culture denisties (Ito
et al., 2010). In addition, Shew et al. used information theoretic
measures to show that cultured neuronal networks maximized
information at a particular ratio of excitation to inhibition (Shew
et al., 2011).

Because of experimental limitations, it has been difficult to
determine which network parameters have the greatest impact on
observed bursting activity. One approach is to study the effect of

the parameters using a computer model that captures many of
the key features of in vitro networks. Previous modeling efforts
have shown that synchronous activity is a common phenomenon
in simulated neuronal networks and have studied how individual
neuronal and synaptic dynamics affect synchronization (Börgers
and Kopell, 2003; Kudela et al., 2003; Kube et al., 2004; Belykh
et al., 2005; Nesse et al., 2008). Recent work has also focused
on studying the importance of network level parameters such as
axonal delays, ratio of excitatory/inhibitory neurons (E/I ratio),
and the maximum number of connections (Gritsun et al., 2010,
2011) through simulation of networks with pacemaker neurons
and random connections. Here, we extend this work by study-
ing the emergence of synchronized bursting in networks without
inherent pacemaker neurons, and with variable densities and
small-world connections.

In order to further understand the effect of network properties
on observed behavior of in vitro networks, an in silico model of
a typical neuronal culture was developed, allowing parameters of
interest to be varied systematically. The model of a 2D medium of
spiking neurons includes key network features such as variable
axonal delays, dynamic synapses, and small-world connectivity
(Watts and Strogatz, 1998). To enable the comparison of simu-
lated data and experimental data, an MEA is also modeled. In
contrast to previous studies, the model is not built with inherently
bursting neurons. The nature of emergent bursting, character-
ized by burst rate and periodicity, is explored across parameter
space. Results show that bursting is an emergent phenomenon as
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FIGURE 1 | Interactions between three neurons. Neuron a (top trace)
and b (middle trace) are presynaptic neurons that terminate onto c (bottom
trace). Voltage traces (lines) and spikes (circles) for neurons a, b, and c
during 0.5 s of simulation is shown. Note that coincidental spikes from

a and b will cause c to fire, and only occasionally will a spike
from one presynaptic neuron but not the other causes c to fire. Neuron
c is shown with reduced noise to show the presence of EPSPs in the
trace.

the density, long-range connections, and the fraction of excita-
tory neurons are increased. The model also shows that bursting
develops at the parameter values typically observed in cultures,
suggesting that these networks are operating near criticality.

2. MATERIALS AND METHODS
2.1. SPIKING NEURON MODEL
The framework of the model consists of a set of N interconnected
spiking neurons, similar to the one developed in Gritsun et al.,
2010. To accurately capture the varied behavior present in neu-
ronal populations while maintaining computational efficiency,
the Izhikevich model was used to simulate the spiking dynamics
of each neuron (Izhikevich, 2003). The Izhikevich model con-
sists of a fast acting variable describing the membrane voltage (v)
and a slowly decaying membrane reset variable (u) defined by the
following equations:

dv

dt
= 0.04v2 + 5v + 140− u+ I (1)

du

dt
= a(bv− u) (2)

With the after-spike reset conditions:

if v ≥ +30 mV, then

{
v← c
u← u+ d

The parameters a, b, c, and d are dimensionless variables that are
chosen to give the neurons various spiking dynamics, and the cur-
rent I consists of synaptic input due to neurotransmitter release
from presynaptic neurons plus Gaussian white noise. Varying the
dimensionless parameters a through d allows for tuning of the
spiking behavior of the neurons, and were chosen to give exci-
tatory neurons regular spiking dynamics and inhibitory neurons
fast spiking dynamics. Exact values are given in Izhikevich, 2003.

2.1.1. Synaptic release
Neurons form connections at synapses which are modeled by
a simple exponentially decaying neurotransmitter (n) release,
defined by the following:

dn

dt
= − n

τn
(3)
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FIGURE 2 | Small-world network connections. (A) Neurons (dots) are
placed in random locations of a 2D medium, along with the embedded
electrodes (circles). (B) Excitatory (circles) and inhibitory (squares)
neurons shown with connections (dashed lines) drawn for seven randomly
chosen neurons. Note that some connections are long range but the
majority lie within a given radius threshold. (C) Characteristic path length

(circles) and clustering coefficient (squares) in networks as a function of the
probability of rewiring, p. A p value of 0.03 was chosen for a large clustering
coefficient and small path length, characteristic of small-world networks.
(D) Histogram of the log of the distance of synaptic connections. Most
connections are short (10−2mm or less) though some are long range
(around 1mm).

Table 1 | Neural network and simulation parameters.

Parameter Description Value

dn Neuron density 250 neurons
mm2

p Small-world rewiring probability 0.03

Ne: Ni Ratio of excitatory/inhibitory connections 4:1

σ2
noise Noise variance 1.5

erad MEA electrode radius 25 μm

esep MEA electrode separation distance 200 μm

dt Simulation time step 0.5 ms

dmax Maximum axonal conduction delay 20 ms

τsyn Synaptic time constant 2 ms

This model is efficient in capturing the decay in neurotrans-
mitter at the synapse after a spike. Axonal delays, which have been
found to have a wide range of distinct values in cortical neurons,
are also incorporated into the model as values proportional to

the distance between neurons, with a maximum delay of 20 ms
(Crook et al., 1997). Specific timings of presynaptic spikes are
required to force a postsynaptic spike, otherwise they potenti-
ate the postsynaptic neuron. In the model, neurons are treated
as points embedded in a two-dimensional medium, which serves
as the surface of the MEA. Figure 1 shows voltage traces of three
simulated Izhikevich neurons at a synapse, with two excitatory
neurons synapsing onto the third.

2.1.2. Network connections
The density of neurons in the network vas varied from 100 to 400
neurons/mm2. Recent work has found that bursting in cultured
networks increases as a function of density, and starts at a density
of around 250 neurons/mm2 (Ito et al., 2010). Thus, we set the
parameter range of interest for density to be centered around 250
neurons/mm2. Connections between neurons are chosen accord-
ing to the small-world paradigm (Watts and Strogatz, 1998). A
network is considered “small-world” if it has a short mean path
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FIGURE 3 | Example of metrics used to characterize degree of

bursting. Metrics shown for a low-density network (left, 200
neurons/mm2) and a high-density network (right, 400 neurons/mm2 ).
Top: Rasters of the spiking activity of all neurons in the network for 5 s
of simulation. Inhibitory neurons are located at the top, and fire more

rapidly. Middle: Global firing rate (GFR) signal along with bursts
detected through peak detection using the GFR signal. Bottom:

Fourier transform of the GFR shown, normalized by the DC component.
The higher density network has a larger maximum AC component of
the GFR.

length (average number of links between two nodes) and large
clustering coefficient (a measure of the degree to which nodes are
clustered). To achieve small-world structure, neurons are initially
connected to every other neuron within some radius threshold,
and then randomly reconnected to other neurons across the net-
work with probability p. Note that for small values of p, the
network is ordered but highly localized (it has a large clustering
coefficient and a large mean path length), while for large values
of p the network is largely randomized (and has a small clustering
coefficient and short mean path length). Figure 2 shows the effect
of this probability on the network. A value of p = 0.03 was chosen
to obtain a short mean path length and high clustering coefficient.
This process yields sparse synaptic weight distributions which are
then initialized to randomly chosen weights, drawn from nor-
mal distributions. Typically, 80% of the synapses are chosen to be
excitatory and 20% are chosen to be inhibitory (Markram et al.,
2004).

2.2. SIMULATIONS AND MEAs
A new trial generates a newly randomized network with a unique
set of weights, connections, and neuronal parameters. The net-
work is then simulated using random synaptic noise as the only
input. In addition to recording the spike times of all of the indi-
vidual neurons, the electrode interface of the MEAs is modeled
as well. MEAs are modeled with a 7× 8 grid of electrodes spaced
200 μm apart. Each electrode records spikes from neurons within
a 20 μm radius of the center of the electrode, and in total they
capture a small subset of the spiking activity of the whole net-
work. Sorting of the contributing neurons is not performed, so
there may be multiple neurons contributing to the spikes recorded
from a given electrode.

The model was developed in Matlab (The MathWorks Inc.,
Natick, MA) using C++ mex files as the core. This allows for
simulation of around 500–800 neurons in real time on a 2 GHz
computer using a clock-driven algorithm (Brette et al., 2007).
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FIGURE 4 | Network activity and electrode recordings from simulation.

Rasters of both the spiking activity of all neurons (A) and that recorded by the
simulated MEA (B) across 5 s of simulation. Three different networks are
shown, one of a low density (top), medium density (middle), and high density

(low). The high firing rates for the upper neuron indices correspond to the fast
spiking inhibitory neurons, which have different dynamics than the excitatory
neurons. Network bursting gradually becomes more pronounced as density
is increased.

That is, the model equations are updated at each time step rather
than at each firing event. Table 1 shows a list of parameters
used and their values. Simulations of larger networks (hold-
ing other factors constant) did not change qualitative network
behavior. The data from these simulations, as with data from mul-
tielectrode recordings, provides a significant analysis challenges
(Brown et al., 2004). Below, we describe our analysis methods.

2.3. DATA ANALYSIS
2.3.1. Bursting metrics
In order to measure the degree or amount of network synchro-
nization or bursting present in a given simulation, two different
metrics were used: the maximum AC component (MAC) and
the bursts per minute count (BPM). In order to compute these
estimates across N different spike trains for a network with N
neurons, all of the spikes are binned using discrete time windows

to obtain a time-varying signal corresponding to the average fir-
ing rate of the entire network at a given point in time. This signal
is then normalized by the number of neurons in the network and
smoothed by convolving with a Gaussian kernel. The filtered sig-
nal is defined as the global firing rate, or GFR. The GFR is a time
varying signal that represents the firing rate of the network over
time.

For networks that display prominent synchronized bursting,
this signal has sharp peaks during the bursts as many neurons in
the network are firing in a short time window. To quantify the
rate of bursting independent of whether it is synchronous or not,
the GFR signal is used. A peak detection algorithm is run on the
GFR and the number of peaks found per minute is computed and
defined as the BPM count. The more prominent a network burst
is, the sharper the peak will be in the GFR signal, and the more
likely it is to be registered in the BPM count. To compute the MAC
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FIGURE 6 | Analysis of bursting metrics across parameters. The
maximum AC parameter (left) and the bursts per minute count (right) are
shown for different values of density (top), small-world parameter (middle),
and fraction of excitatory synapses (bottom). For all three parameters, both

the maximum AC component of the GFR and the number of bursts per
minute are found to increase along with the parameter, indicative of an
emergence in the strength and synchrony of network bursting. Gray bars
indicate typical values of the parameters from networks in culture.
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FIGURE 7 | Phase space of bursting activity measured using the (A) bursts per minute and (B) maximum AC component metrics. Bursting was
measured across networks of varying density and E/I ratio (left images) and small-world rewiring parameter (p) and E/I ratio (right images).

parameter, frequency analysis is used. The Fourier spectrum of
the GFR signal is analyzed by computing the Fast Fourier trans-
form (FFT). The FFT is then normalized by a factor of 1

f0
where

f 0 is the DC (zero frequency) component. The amplitude of the
maximum AC (non-zero frequency) component of this signal is
defined as the maximum AC (MAC) parameter. A high value for
the MAC parameter corresponds to a high degree of synchrony
in the network, as there is a sharp peak in the normalized FFT.
The frequency at which the maximum value occurs indicates the
fundamental frequency of network bursting. The MAC serves as
a measure of the periodicity of network bursting. Figure 3 shows
these metrics applied to example sets of spike trains.

2.3.2. Neural trajectories
Previous work (Churchland et al., 2007) has used dimen-
sionalilty reduction techniques to translate firing rates onto

low-dimensional projections that allow for easier visualization of
neural trajectories. Here, the term “neural trajectory” refers to
a lower dimensional projection of the high-dimensional vector
of network firing rates. The general idea is that redundancy is
encoded in the firing rates of neurons, so using methods such as
principal components analysis to transform the firing rates onto
a basis that better captures the variance in the data allows us to
ignore the redundant variables. To extract neural trajectories, the
firing rates for individual neurons were first determined by bin-
ning spike counts into 10 ms time windows. The square root of
the rates was taken (to compress the range) and the resulting sig-
nals were smoothed with a Gaussian kernel. PCA was run on these
smoothed firing rate trajectories, and the top three components
were extracted to serve as the low-dimensional projection of the
neural state (defined as the N-dimensional vector describing the
firing rate of all N neurons in the network).
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FIGURE 8 | Neural trajectories across time. First (red), second (blue), and third (green) principal components of the firings rates are shown across time for
different values of density (left column), small-world rewiring parameter p (middle column), and fraction of excitatory synapses (right column).

3. RESULTS
3.1. QUALITATIVE BEHAVIOR
Figure 4 shows examples of activity from the simulations: the
behavior of all neurons (left) and those that are recorded at
the simulated electrodes (right). Note the large variability in
activity (here shown across different network densities), indi-
cating that the transition from sparse asynchronous activity to
network bursting is gradual. Spatial sub-sampling of MEA elec-
trodes seems to capture the qualitative behavior but fails to
capture a large amount of the activity in the network. Notably,
there exist significant qualitative differences between the two
rasters. Activity patterns are robust with respect to the ran-
dom initialization of the network, that is, the observed burst-
ing occurs independently of the initial connections, weights,
and neuronal properties of the network. In addition, it is
important to note that the emergent bursting is a connection-
dependent phenomenon. That is, an uncoupled network will
show no signs of synchrony. Different from previous work on
coupled oscillators, is the fact that none of these elements
are intrinsically bursting or oscillate without input from their
neighbors.

3.2. VARIATION ACROSS PARAMETER SPACE

The effect of three different parameters (density, connection type,
and ratio of excitatory/inhibitory connections) on network activ-
ity was studied. For each parameter, a range of different values
was tested (densities from 100 to 500 neurons/mm2, p values log-
arithmically spaced from 0.001 to 1, and the fraction of excitatory
neurons from 0.5 to 1). Each parameter affects the network struc-
ture differently: increasing the density corresponds to an increase
in the number of connections each neuron makes, as there are
more neurons within the local threshold to form synapses with.
Increasing the value of p only affects how the connections are
organized: either local and structured (small p) or long-range
and disorganized (large p). Finally, increasing the fraction of exci-
tatory neurons affects the amounts of inhibitory and excitatory
neurotransmitter release in the network. Each range was tested by
generating a new randomized network for each parameter value
and simulating with gaussian white noise for 5 s.

Figure 5 shows the Fourier transform of the global firing rate
(GFR) signal across parameters. Note that as each parameter is
increased, highly periodic structure emerges centered around a
fundamental frequency of just over 5Hz.
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FIGURE 9 | Trajectories through state space. Neural trajectories (black lines) projected onto the first three principal components shown for different densities
(top), small-world probabilities p (middle), and fraction of excitatory synapses (bottom). Initial states are marked with a red dot.

This frequency corresponds to the bursting rate of around five
times per second, which is consistent with observed bursting fre-
quency in cultures. The MAC and number of bursts were also
computed across the range of parameters. These results are sum-
marized in Figures 6 and 7. The vertical gray bar in Figure 6
indicates the biologically prevalent range of the parameter of
interest (Table 1). The general trend appears to be that as the net-
work gets denser (more connected) and as those connections are
more likely to reach out across the network, there is an increase
in synchronous network activity. Perhaps surprisingly, the ranges
of interest (gray bars) with respect to all three parameters tend to
be centered at the middle of the transition between sparse firing
and synchronous bursting. Figure 7 shows how the bursting met-
rics vary by scanning a 2D grid of parameter space. Here, we see
bursting increase as pairs of parameters are increased.

3.3. PRINCIPAL COMPONENTS ANALYSIS
Principal components of firing rates were computed to better
visualize the neural state. Example neural trajectories are shown

in Figure 8 for different values of density and of p. Note that as
the degree of synchrony in the network increases (for increasing
values of p and density) the trajectory projected onto the first
principal component becomes increasingly periodic. It is much
easier to characterize the synchrony in the system by looking at
the projection of the first principal component rather than of the
global activity. The motivation behind applying dimensionality
reduction techniques to neural data is to eliminate the redun-
dancy inherent to the neural code and to extract out interesting
variables.

Plots of the projection of neural state onto the top three
principal components are shown in Figure 9. Here, each point
in the space can be thought of as a distinct neural state. The
trajectory through the space across time represents the evo-
lution of that neural state. For asynchronous networks (top),
the trajectories appear random or chaotic. The neural state is
unpredictable using just a three dimensional projection of the
original data space. However, for networks that burst (bot-
tom), the trajectories follow a cyclic trajectory as they evolve
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FIGURE 10 | Fraction of the variance captured by the first principal
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through the space. The evolution of the attractor is again grad-
ual across different values of density or p, but once it develops it
remains the same across newly initialized networks with similar
properties.

These results also make sense when we look at how much
variance is captured by the first principal component across the
parameter space, shown in Figure 10. For large values of p or high
densities, there is a large amount of redundancy in the system,
and the neural state can be approximated with just a few vari-
ables. This seems rather inefficient, as a large number of neurons
are encoding the same information.

4. DISCUSSION
These results help to uncover the nature of network bursting
observed in in vitro cultures. Bursting appears to be an emer-
gent property of networks with both excitatory and inhibitory
connections. Simulations qualitatively match data obtained from

cultures grown on microelectrode arrays, and are able to mimic
the wide repertoire of activity seen experimentally. The model
was developed using a bottom-up approach, replicating both the
connectivity and intrinsic properties observed in neuronal cul-
tures. Random synaptic noise is a sufficient input for driving these
cultures towards self-synchronization. The dynamics of network
bursting are explored across the parameter space, against both
the density of the network and the type of connections (real-
ized by the small-world rewiring probability p). The strength and
periodicity of bursting is found to become more prominent as
the density increases or as the network becomes more random
and disorganized. This gradation in strength of bursting agrees
quantitatively with recent experimental evidence (Wagenaar et al.,
2006b; Ito et al., 2010; Shew et al., 2011). Ito et al. found bursting
to start occurring at densities of 250 neurons/mm2, and increase
as a function of density, which agrees remarkably with our results
shown in Figures 6 and 7.

One natural concern that arises from this work is how robust
the findings are with respect to the model parameters. Due
to the large parameter space, searching the entire space is not
feasable. The chosen parameters fall into three groups: one is a
set of parameters that are chosen based on previous studies (E/I
ratio, neuron dynamics), another set is randomized (individual
connections, weights, and locations), and the last set makes up
the parameter space that was searched (density, small-worldness,
E/I ratio). Furthermore, network details such as individual con-
nections, synaptic weights, neuron locations, and type are all
randomized at the start of each simulation. Therefore, they do
not play a critical role in determining how strongly the network
will burst over multiple trials. Our findings show that net-
work bursting is heavily dependent on network level parameters,
such as the gross connection paradigm, network density, and
E/I ratio.

Projecting network firing rates onto an optimal subspace
using principal components analysis yields more insight into the
dynamics of network bursting. As density is increased, or as
the network connections becomes more long-range, the amount
of variance captured by the first principal component increases
markedly from as little as 10% to as much as 95%. This implies
that networks with a strong degree of bursting are highly redun-
dant such that the behavior of all of the neurons can be captured
with only a few. Trajectories of the neural state through the phase
space of the top three components show that the dynamics are
chaotic and unpredictable for sparse or ordered cultures, yet for
dense or random cultures, distinct cyclic trajectories arise. These
cycles are robust with respect to random initialization of differ-
ent networks, indicating that their dynamics are capturing the
essential activity of the network. Persistent dynamical attractors
have already been observed in experimental cultures (Wagenaar
et al., 2006a). Interestingly, the trajectories for dense networks are
different from those of highly disorganized networks, which could
serve as a potential marker for identifying experimental network
states.

From an information theoretic point of view, one might expect
biological neural networks to operate between the twin extremes
of asynchronous (chaotic) and synchronous (redundant) spik-
ing. This would allow networks to take advantage of robustness
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in the system while still utilizing the information capacity
efficiently. Simulations of networks with densities of around
200–250 neurons/mm2, characteristically small-world connec-
tions (corresponding to a p value of around 0.03), and excita-
tory/inhibitory ratios of 4:1 all share critical properties regarding
spiking patterns. For these values, the MAC parameter, bursts
per minute count, and amount of variance captured through the

first principal component all center at the transition to bursting
behavior. The model suggests that the network may be operating
at or near criticality (Bak et al., 1988; Chialvo, 2010).
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