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Neurons often receive massive concurrent bombardment of synaptic inhibition and excita-
tion during functional network activity.This increases membrane conductance and causes
fluctuations in membrane potential (Vm) and spike timing.The conductance increase is com-
monly attributed to synaptic conductance, but also includes the intrinsic conductances
recruited during network activity. These two sources of conductance have contrasting
dynamic properties at sub-threshold membrane potentials. Synaptic transmitter gated con-
ductance changes abruptly and briefly with each presynaptic action potential. If the spikes
arrive at random times the changes in synaptic conductance are therefore stochastic and
rapid during intense network activity. In comparison, sub-threshold intrinsic conductances
vary smoothly in time. In the present study this discrepancy is investigated using two
conductance-based models: a (1) compartment model and a (2) compartment with realis-
tic slow intrinsic conductances.We examine the effects of varying the relative contributions
of non-fluctuating intrinsic conductance with fluctuating concurrent inhibitory and excita-
tory synaptic conductance. For given levels of correlation in the synaptic input we find that
the magnitude of the membrane fluctuations uniquely determines the relative contribu-
tion of synaptic and intrinsic conductance. We also quantify how Vm-fluctuations vary with
synaptic correlations for fixed ratios of synaptic and intrinsic conductance. Interestingly, the
levels of Vm -fluctuations and conductance observed experimentally during functional net-
work activity leave little room for intrinsic conductance to contribute. Even without intrinsic
conductances the variance in Vm -fluctuations can only be explained by a high degree of
correlated firing among presynaptic neurons.
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1. INTRODUCTION
Changes in membrane potential in active neurons are caused
by synaptic current generators activated by neurotransmitters
and by voltage-activated intrinsic current generators. The rel-
ative contribution of synaptic and intrinsic current generators
determines whether individual neurons during network activ-
ity, at one extreme, are weakly coupled autonomous oscillators
(Toledo-Rodriguez et al., 2005; Grillner, 2006; Smith and Perrier,
2006) or in the other extreme driven by strong synaptic input.
Since membrane currents are induced by conductance, their rela-
tive contribution to voltage changes scale with total membrane
conductance. Synaptic input therefore has a divisive effect on
the weight of intrinsic current generators to membrane potential.
Therefore, when the synaptic input increases several-fold during
network activity, the contribution of slow intrinsic conductance
decreases by several-fold.

Synaptic integration is cell specific, influenced by morphology,
input resistance, and active intrinsic response properties provided
by voltage gated ion channels in the cell body and dendrites (Bar-
ret, 1975; Johnston and Wu, 1995; Koch, 1999; Williams and Stuart,
2003). For isolated neurons, the intrinsic response properties have
a major role in controlling the activity patterns (Toledo-Rodriguez
et al., 2005; Grillner, 2006; Smith and Perrier, 2006). For neurons in

active networks however, the synaptic input can be so intense that
the mean synaptic conductance is comparable to or larger than the
input conductance of the neuron in absence of synaptic input. In
this condition, the synaptic input itself severely distorts the elec-
trotonic structure (Bernander et al., 1991; Korogod et al., 2000)
and reduces the integration time up to ten-fold (Rapp et al., 1992;
Koch et al., 1996; Berg et al., 2008). Furthermore, recent findings
show that this level of synaptic intensity dampens or entirely elim-
inates the role of intrinsic properties in spike timing (Paré et al.,
1998; Fellous, 2003; Kuhn et al., 2004; Berg et al., 2008;Fernandez
and White, 2008, 2009; Berg and Hounsgaard, 2009). Whereas the
intrinsic conductances may not always contribute detectably to
spike patterns during network activity (Berg et al., 2008) they will
certainly contribute to the total conductance and therefore affect
the synaptically induced Vm-fluctuations.

High-conductance states (Destexhe et al., 2003) occur not only
in the neocortex (Destexhe and Paré, 1999), but also in the spinal
cord during network activity (Alaburda et al., 2005; Berg et al.,
2007). Excessive spiking and change in Vm in these states are
avoided by mixed inhibition and excitation (Gerstein and Man-
delbrot, 1964; Shadlen and Newsome, 1994; van Vreeswijk and
Sompolinsky, 1996; Gerstner and Kistler, 2005; Burkitt, 2006).
Concurrent intensive and random inhibition and excitation causes
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the membrane potential (Vm) to fluctuate in a stochastic fashion
(Rudolph and Destexhe, 2005;Yarom and Hounsgaard, 2011). This
state provides interesting computational properties and provides
a unique cellular mechanism for gain control (Brunel et al., 2001;
Chance et al., 2002; Destexhe et al., 2003; Fellous, 2003; Prescott
and De Koninck, 2003; Burkitt, 2006). The amplitude of the fluc-
tuations depends on the synaptic intensity. It is enhanced by
correlated firing among presynaptic neurons (Stevens and Zador,
1998; Feng and Brown, 2000; Harsch and Robinson, 2000; Sali-
nas et al., 2000; Svirskis and Rinzel, 2000; Stroeve and Gielen,
2001; Kuhn et al., 2003; Rudolph and Destexhe, 2006; Moreno-
Bote et al., 2008) and curtailed by the input conductance (Rapp
et al., 1992; Destexhe and Paré, 1999; Kuhn et al., 2004; Berg et al.,
2008). The experimentally observed high-conductance state has
primarily been attributed to synaptic activity, but slowly changing
intrinsic conductances also contribute (Guillamon et al., 2006).
Nevertheless, these two sources of sub-threshold conductance
have distinct features. The dynamics of the macroscopic intrin-
sic conductance is slow and gradual compared with the abrupt
conductance changes with synaptic transmission (Jacobson et al.,
2005). The amplitude of the Vm-fluctuations caused by voltage
sensitive ion channels shifting between open and closed states
(Diba et al., 2004; Jacobson et al., 2005) is an order of magnitude
lower than Vm-fluctuations caused by discrete inhibitory and exci-
tatory events that involve opening and closing thousands of trans-
mitter gated channels (Rudolph and Destexhe, 2003). For these
reasons the relative contribution from non-fluctuating intrinsic
conductance and fluctuating synaptic conductance in the high-
conductance state can be determined if the cell is approximated as
a single compartment. The goal of the present study is to estimate
from the size of the synaptic fluctuations, what the relative roles
of the intrinsic and synaptic conductances are compared to that
of the mean synaptic conductance.

The intrinsic response properties of motoneurons are thought
to play a crucial role in the translation of synaptic input to fir-
ing patterns in motor axons (Delgado-Lezama and Hounsgaard,
1999; Russo and Hounsgaard, 1999; Rekling et al., 2000; Grillner,
2006). However, recent experimental findings shows that spinal
motoneurons, during functional network activity, can enter a
high-conductance state in which firing is determined by synap-
tically induced fluctuations in membrane potential rather than
intrinsic membrane properties (Alaburda et al., 2005;Berg et al.,
2007, 2008). For this reason we base our analysis of the effect
of intrinsic and synaptic conductance on fluctuations in mem-
brane potential on experimental data from spinal motoneurons.
However, our qualitative conclusions are valid for neurons in
general.

We have previously determined how average conductance and
Vm-fluctuations varies in spinal motoneurons during functional
network activity in the turtle (Berg et al., 2007, 2008; Jahn et al.,
2011). With these experimental boundary conditions we investi-
gate this regime and analyze how total conductance and the relative
contribution of intrinsic and synaptic conductance affect Vm-
fluctuations. We also explore the effect of synaptic correlations on
the Vm-fluctuations at different levels of intrinsic conductance and
compare with data from turtle motoneurons during functional
network activity.

2. MATERIALS AND METHODS
The analysis is primarily based on a 1-compartment (1C) generic
model with conductance-based inhibitory and excitatory synaptic
input arriving as two independent poisson processes with con-
stant rates (Burkitt, 2006). This analysis is subsequently extended
in a 2-compartment model which has previously been developed
with more realistic intrinsic conductances for turtle motoneurons
(Booth et al., 1997). For the 1C model, the membrane potential is
held at a constant mean of −55 mV by balancing inhibition and
excitation and the intrinsic conductance. The parameters of the
model are based on experimental data from hip-flexor motoneu-
rons in adult turtles (Berg et al., 2008). In the 1C model we assume
that intrinsic conductances are voltage insensitive in the range
covered by Vm-fluctuations around the mean. The steady-state
conductance near the resting membrane potential is constant in
turtle motoneurons (Delgado-Lezama et al., 1997). In addition,
none of the transient membrane conductances have sufficiently
steep voltage sensitivity and fast kinetics to contribute significantly
to sub-threshold Vm-fluctuations. This is supported by the finding
that the change in average conductance during network activity is
independent of voltage (supplement in Berg et al., 2007).

2.1. CONDUCTANCE IN THE MODEL
In order to analyze the relative roles of synaptic and intrinsic con-
ductance, we will consider four generic types of conductance:
synaptic and non-synaptic depolarizing conductances [equation
(1)] with reversal potentials far depolarized from the resting mem-
brane potential and synaptic and non-synaptic hyperpolarizing
conductances [equation (2)] with reversal potentials hyperpolar-
ized from the resting membrane potential. Secondly, on the time
scale considered here the synaptic conductances are rapidly fluc-
tuating while the intrinsic conductances are constant. In this way
intrinsic conductances are treated as simple additions to the leak
conductance. This can be expressed explicitly as

GD = GSyn,D + GInt ,D (1)

GH = GSyn,H + GInt ,H (2)

where GD is the total depolarizing conductance consisting of a
synaptic part, GSyn,D, and an intrinsic part GInt,D. Similarly, GH

is the total hyperpolarizing conductance, composed of a synaptic
part, GSyn,H and an intrinsic part GInt,H. For simplicity we assume
the synaptic and intrinsic currents have same reversal potential, EH

and ED, for the hyperpolarizing and depolarizing conductances,
respectively. In all simulations the average membrane potential is
held constant and it does not exceed the two reversal potentials.
Under these conditions the qualitative behavior of the model is not
affected by choosing the same reversal for synaptic and intrinsic
currents. In this simple model we can keep the total conductance
constant, and the mean membrane potential fixed while changing
the relative contribution of synaptic versus intrinsic conductances.
It is useful to define a parameter, γ, which takes values between
0 and 1, where γ = 0 represents 100% intrinsic conductance and
γ = 1 represents 100% synaptic conductance:

γ = GSyn

GSyn + GInt
(3)
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where

GSyn = GSyn,D + GSyn,H (4)

and

GInt = GInt ,D + GInt ,H (5)

We further assume the synaptic fraction also applies for the
hyperpolarizing and depolarizing conductances individually, i.e.,
Gsyn,D = γGD and Gsyn,H = γGH, which is equivalent to enforcing
GSyn,D/GD = GSyn,H /GH .

2.2. MEMBRANE EQUATION FOR 1C MODEL
In a 1C model of a single neuron the membrane potential is
described by the current flow across the membrane via Ohms
and Kirchoffs laws:

C
dVm

dt
= GL (EL − Vm) + GD (ED − Vm) + GH (EH − Vm) (6)

where the three conductances are the leak, GL, with reversal poten-
tial EL, GH, and GD, as defined above. In order to avoid spiking, we
keep the membrane potential in a balanced state of excitation and
inhibition and do not include spiking mechanism in the model.
The membrane equation can then be rewritten approximately as
(see Kuhn et al., 2004):

〈
τeff

〉 dVm

dt
≈ 〈Vm〉 − Vm (7)

where

〈
τeff

〉 = C

Gtot
(8)

Gtot = GL + 〈GD〉 + 〈GH 〉 (9)

〈Vm〉 = GLEL + 〈GD〉 ED + 〈GH 〉 EH

Gtot
(10)

and 〈. . .〉 denotes time-averaged values. 〈Vm〉 denotes the steady-
state mean membrane potential in the balanced state. Note that
equations (7) and (8) are only approximately valid since C/〈Gtot〉
is the first order approximation of 〈τeff〉 (Kuhn et al., 2004). If GL

is kept constant then there is a direct relation between GH and GD,
which comes from the balanced condition [equation (10)]. This
relation is explicitly written as

〈GH 〉 = GL (EL − 〈Vm〉) + 〈GD〉 (ED − 〈Vm〉)
〈Vm〉 − EH

(11)

Hence, the total conductance in the model is varied by changing
〈GD〉 and calculating what the 〈GH〉 should be in the balanced
condition (Vm = −55 mV). These values of are independent on
the choice of γ, since γ determines the fraction of synaptic input
and therefore the rate of input (see Section 5). Then lastly, 〈Gtot〉
is calculated according to equation (9).

2.3. PARAMETERS OF 1C MODEL
For comparison with the fluctuations recorded experimentally,
parameters from the adult turtle spinal cord were used in all
simulations. A capacitance of 806 pF and leak conductance of
64 nS was used for the passive membrane. This was the average
measured in 32 motoneurons (see Results). For the reversal poten-
tials EL = −75 mV, EH = −80 mV, and ED = 0 mV were used. The
parameters for synaptic input were chosen based on voltage-clamp
data. The median time constant and maximum conductance of
multiple events was selected for the simulations. For excitation
the α-synapse was specified by τE = 2.4 ms and gmax,E = 0.43 nS.
For inhibition the α-synapse was specified by τI = 5.5 ms and
gmax,I = 1.3 nS. The experimentally verified parameters for turtle
motoneurons (see Results) are significantly lower than what was
used in the study by Kuhn et al. (2004).

2.4. BALANCED VS. CONCURRENT INHIBITION AND EXCITATION
In the present paper we reserve the term balanced inhibition and
excitation for the situation in which changes in synaptic intensity
is performed so that 〈Vm〉 is kept constant, i.e., by adjusting the
ratio of inhibition and excitation appropriately. We use the term
concurrent inhibition and excitation for the state in which the ratio
between inhibition and excitation is kept constant while vary-
ing the synaptic intensity. Nonetheless, these two situations are
concerning synaptic input, but in most of our analyses, intrinsic
conductances are also present. This inclusion of intrinsic conduc-
tance compels redefinition of balanced and concurrent input to
include the intrinsic depolarizing and hyperpolarizing conduc-
tances. Thus, if we define the ratio β of depolarizing and hyperpo-
larizing conductance β = GD/GH we can rewrite the equation (10)
in terms of β as:

〈Vm〉 = (βED + EH ) 〈GH 〉 + GLEL

Gtot
(12)

The balanced and concurrent conditions are approximately equiv-
alent for certain circumstances, as illustrated in the following. If
Gtot = GL ⇒ 〈Vm〉 = EL. As Gtot becomes larger (Gtot → ∞), the
leak conductance is diluted and 〈Vm〉 approaches a constant value:
〈Vm〉 = βED + EH/β + 1. In the situations where the membrane
potential is kept constant (〈Vm〉 = −55 mV), β will approach an
asymptotic value of β = 0.45 as the conductance increases. Here,
the hyperpolarizing and depolarizing input are both balanced and
concurrent. However, in most cases an increase in intensity at con-
stant β will result in an increase of the membrane potential if
β > (80/75) − 1, i.e., β > 0.067 or if the resting potential is below
EL during a negative current injection. Qualitatively this means
that under most circumstances (where β > 0.067) any increase in
intensity with GD/GH constant will also result in an increase in
membrane potential (see below and Figure 2).

2.5. EXPECTED FLUCTUATIONS IN 1C MODEL
Now we consider the second moment of the membrane potential,
i.e., the variance and the standard deviation (σ). The opening of
a single synapse is modeled as a conductance change following an
α-function:

gsyn (t ) = t

τ
gmax exp

(
1 − t

τ

)
(13)
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where gmax is the maximal conductance from a single post-synaptic
input, τ is the characteristic time constant of the synaptic input.
These constants are determined experimentally. Inserting this into
the general formulation of the membrane equation gives (Kuhn
et al., 2004):

〈
τeff

〉 dVm

dt
= 〈Vm〉 − Vm + t gmax e1− t

τ
(
Esyn − Vm

)
τGtot

(14)

where Esyn is the reversal potential for the synaptic input, which
is either excitatory or inhibitory (ED or EH). The membrane
potential change from opening a single α-synapse can be approxi-
mated by the following expression if the change in voltage is small
compared with the reversal potentials:

Vm,PSP (t ) ≈ 〈Vm〉 + [
Esyn − 〈Vm〉] gmax e

Cτ⎡
⎢⎣ −t e− t

τ

1
τ

− 1〈
τeff

〉 + e
− t〈

τeff

〉
− e− t

τ(
1
τ

− 1
τeff

)2

⎤
⎥⎦ (15)

Note in equation (15) that when τeff decreases because of an
increase in the total conductance, the amplitude of the PSP also
decreases. Excitatory and inhibitory synaptic input is generated by
two independent Poisson processes with rates λE and λI, which
is also referred to as a shot-noise stochastic process (Rudolph
and Destexhe, 2006). In this situation the variance of the mem-
brane potential can be estimated from the single excitatory and
inhibitory post-synaptic potential waveforms (EPSP and IPSP)
using Campbells Theorem (Mathieson, 1977; Kuhn et al., 2004;
Rudolph and Destexhe, 2006):

σ2 = λE

∫ ∞

0
(EPS P − 〈Vm〉)2dt + λI

∫ ∞

0
(IPS P − 〈Vm〉)2dt

(16)

where 〈Vm〉 is subtracted to get the integration over full the shape
of PSPs. This relationship [equation (16)] predicts the behavior
of the computational model. First, the variance initially increases
with synaptic intensity since the input rates (λe and λi) increase.
Secondly, since the evoked PSPs decrease with larger conduc-
tance [equation (15)] (see Kuhn et al., 2004; Moreno-Bote and
Parga, 2005) the integrals in [equation (16)] will get smaller with
increasing conductance. Therefore we expect the variance to first
increase and then decrease at some point as a function of con-
ductance. Now, in order to take the intrinsic conductance into
account we first look at the mean synaptic conductance. The mean
conductance from α-synaptic inputs arriving with rate λj is,

〈
Gsyn,j

〉 = λjτj egmax ,j (17)

where e is the exponential number (Kuhn et al., 2004) and
the index j represents either excitation (depolarizing) or inhibi-
tion (hyperpolarizing). Since γ indicates the fraction of synap-
tic conductance (Gsyn,D = γGD and Gsyn,H = γGH), the synap-
tic input rates can be expressed in terms of γ and the mean

conductances:

λE = γ 〈GD〉
τE egmax ,E

(18)

λI = γ 〈GH 〉
τI egmax ,I

(19)

Since the fraction γ only affects the synaptic input rates and not
the post-synaptic-potential (PSP) waveform in Campbells theo-
rem, we therefore see that the variance of the membrane potential
is proportional to γ:

σ2 ∝ γ (20)

The largest fluctuations in the membrane fluctuations occur when
γ = 1, which is where the overall conductance consists of 100%
synaptic conductance and 0% intrinsic conductance. The spe-
cial case where Gsyn > 0 is kept constant the fluctuations would
decrease asymptotically in size with zero as the limit when increas-
ing Gtot. If Gsyn = 0 there would be no fluctuations for any value
of Gtot.

Since there is a linear relationship between the input rates, λE

and λI, σ2 and the membrane conductance [equations (16), (18),
and (19)], with γ as one of the multiplicative factors, we expect
the same but scaled-down shape of curve in a graph between Gtot

and the fluctuation size for decreasing values of γ.

2.6. SYNAPTIC COINCIDENCE, κ, IN 1C MODEL
The prevailing irregularity of presynaptic spiking and the correla-
tion among synaptic input are critical factors for the amplitude of
fluctuations in Vm (Stevens and Zador, 1998; Harsch and Robin-
son, 2000; Salinas et al., 2000; Svirskis and Rinzel, 2000; Stroeve
and Gielen, 2001; Moreno et al., 2002; Rudolph and Destexhe,
2006; Moreno-Bote et al., 2008; El Boustani et al., 2009). For con-
venience, we introduce correlations in the timing of synaptic input
in our model of uncorrelated Poisson-type synaptic input by let-
ting multiple synaptic inputs arrive in perfect synchrony. In general
terms, the degree of overall correlation is given by the parameter
κ, which is a metric of how many synapses are active at the same
time. The Greek letter κ is chosen to implicate that it is a parameter
for coincidence input. For instance at κ = 2, a single synapse will
never be active alone, but always in concert with another synapse
and the input rate is half of what it would be at κ = 1. With α-
synapses, a correlation of κ is equivalent to stronger synapses with
gmax ′ = κgmax arriving at a slower rate of λ′ = λ/κ. The unitary
conductance gmax is the conductance for the synaptic connection
from one synaptic event in one neuron. Replacing (λ, gmax) with
(λ′, gmax ′) in Campbells theorem for the variance of the mem-
brane potential [equations (16–19)] we see that fluctuations are
proportional to the coincidence factor κ

σ2 ∝ κ (21)

which has previously been described using a multichannel shot-
noise approach (Rudolph and Destexhe, 2006). We therefore
expect the standard deviation to be proportional with the square
root of the coincidence factor. The full analytical expression for
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σ2 as a function of κ can be derived by inserting above in equa-
tion (16). Futhermore, we expect the graph of σ versus Gtot to
have the same but scaled-up shape when increasing κ, because of
equation (21).

2.7. COINCIDENCE FACTOR VS. CORRELATION
Using the coincidence factor (κ) has the advantage that no assump-
tions about the number of presynaptic neurons and the quantal
release are necessary. However, to compare with other studies (see,
e.g., Destexhe and Paré, 1999; Salinas et al., 2000; Rudolph and
Destexhe, 2006; Moreno-Bote et al., 2008) our coincidence factor
should be related to the correlation measure, referred to as ρ. ρ

is the probability of Neuron A firing at time point ti given that
Neuron B fires at time point ti. We can express ρ as the number of
pair-wise correlated inputs (C) divided by the maximum number
of pair-wise correlated inputs (Cmax). In a presynaptic network
of N cells, firing is fully correlated if all N neurons fire simul-
taneously. In this situation Neuron A fires simultaneously with
the N − 1 remaining neurons. Neuron B also fires simultaneously
with N − 1 neurons, but to avoid double counting the maximum
number of pair-wise correlated input is expressed as:

Cmax =
N∑

n=1

n − 1 = (N − 1) N

2
(22)

In our model κ expresses how many neurons are firing at once.
At κ = 2, the N neurons are firing as N /2 pairs. At κ = 3, the N
neurons are firing as N /3 assemblies of 3 neurons. The number of
pair-wise correlated inputs can be expressed from κ:

C = N

κ

κ∑
i=1

i − 1 = (κ − 1) N

2
(23)

We can now approximate the degree of correlation (ρ) from the
coincidence factor (κ) and the number of presynaptic neurons
(N):

ρ = C

Cmax
= κ − 1

N − 1
(24)

The input rate to the motoneuron is given by the number of presy-
naptic neurons times their average firing rate, λ = N 〈λpresynaptic〉.
We assume that the presynaptic population fires at an average rate
of 〈λpresynaptic〉 = 10 Hz. So, if each motoneuron receives 1 kHz
input we assume N = 100 neurons. In all simulations we introduce
the same level of correlation within the excitatory and inhibitory
presynaptic populations. Inhibition and excitation is considered
to be uncorrelated.

2.8. BOOTH–RINZEL–KIEHN 2C MODEL
In order to verify our findings from the 1C model in a more bio-
physically realistic model, we used the established Booth–Rinzel–
Kiehn (BRK) model (Booth et al., 1997). The BRK model is a
2-compartment (2C) model with intrinsic conductances repre-
senting the dynamics of turtle motoneurons (Figure 7A), and
therefore appropriate for our investigation. The original pub-
lished model parameters were also used in our study. The neuron

was amended with time-varying inhibitory and excitatory con-
ductances in the soma and dendritic compartment. The conduc-
tance time series were generated by adding Poisson-distributed
α-synapses in the same way as described for the 1C model (see
above). Reversal potentials and time constants were set at the same
levels as for the 1C model. The maximum synaptic conductances
were adjusted to give IPSPs and EPSPs at rest with same mag-
nitude as in the 1C model. In the comparison to the 1C model,
synaptic input was distributed according to the size of the com-
partments in the BRK model (90% on dendrite, 10% on soma), to
get the same input rate per membrane area. The added intrinsic
conductance was applied by proportionally increasing the intrin-
sic conductances of the BRK model (GL, GCa–N, GCa–L, GK(Ca),
GK–dr, GNa). To test for the impact of input distribution between
the compartments, a fixed input rate was chosen (λE = 3.2 Hz,
λI = 1.9 Hz; same as the rates at peak on Figure 7B) and then dis-
tributed in various proportions between soma and dendrite. To
prevent spiking, a hyperpolarizing current (Iapp) was added in the
soma compartment to keep the average membrane potential at
−60 mV.

2.9. SIMULATIONS OF 1C MODEL
The membrane potential was simulated using a conductance
based, leaky integrate and fire model in Matlab (version 7.3, Math-
works). The membrane equation was numerically integrated using
the 4th-order Runge–Kutta method (Koch, 1999). No spiking
mechanism was used, since the sole purpose of the model was
to investigate sub-threshold fluctuations. Simulations were per-
formed for time periods of 1 s using time steps of 0.05 ms. Standard
deviation and integrated power was estimated and averaged over
25 simulations.

2.10. POWER SPECTRAL ESTIMATION
The integrated power spectrum was estimated using the multi-
taper method by Thomson (Thomson, 1982; Percival and Walden,
1998). The error bars on the power spectral estimation were
assessed using a jackknife method. For the experimental data,
200 ms traces were selected from the on-cycles and off-cycles
by a custom made procedure in Matlab (version 7.3, Math-
works). For the model and simulations 25 traces of 1 s each
tapered with the first 5 Slepian functions (Percival and Walden,
1998; Berg et al., 2006). The power spectrum values were inte-
grated in the frequency range from 25 to 80 Hz. We chose this
region because this is the gamma frequency, which is often asso-
ciated with network processing and gating (see, e.g., Cardin et al.,
2009) and since previous work on motoneurons shows that Vm-
fluctuations are subject to intense increase in this spectral range
during motor behavior (Berg et al., 2007). Furthermore, this range
evades potential intrinsic resonant activity, which is almost entirely
present at lower frequencies below 15 Hz (Jacobson et al., 2005)
and instrument noise at higher frequencies. Our spectral estima-
tion procedure has been uploaded to the Mathworks file-sharing
database (http://www.mathworks.com/matlabcentral/) under the
name Power spectral estimation with error bars.

2.11. EXPERIMENTS
Experiments were performed for the purpose of extracting real val-
ues of synaptic time constant, conductance, and Vm-fluctuations
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during different networks activity, to use as parameters in the
model simulation and for general comparison.

2.11.1. Integrated preparation
Red-eared turtles (Trachemys scripta elegans) were immerged in
crushed ice for 2 h to ensure hypothermic anesthesia. Animals were
killed by decapitation and blood substituted by perfusion with a
Ringer solution containing (mM): 120 NaCl; 5 KCl; 15 NaHCO3;
2 MgCl2; 3 CaCl2; and 20 glucose, saturated with 98% O2 and
2% CO2 to obtain pH 7.6. The carapace containing the D4–D10
spinal cord segments was isolated by transverse cuts and removed
from the animals, similar to studies published elsewhere (Keifer
and Stein, 1983; Alaburda and Hounsgaard, 2003). The surgical
procedures complied with Danish legislation and were approved
by the controlling body under the Ministry of Justice.

2.11.2. Recordings
Intracellular recordings in current-clamp mode were performed
with an Axoclamp-2A amplifier (Axon Instruments, Union City,
CA). Glass pipettes (part no. 30-0066, Havard Apparatus, UK)
were pulled with an electrode puller (model P-87, Sutter instru-
ment co., USA) and filled with a mixture of 0.9 M potassium
acetate and 0.1 M KCl. Intracellular recordings were obtained from
neurons in segment D10. Recordings were accepted if neurons had
a stable membrane potential more negative than −50 mV. Data
were sampled at 20 kHz with a 12-bit analog-to-digital converter
(Digidata 1200, Axon Instruments, Union City, CA), displayed by
means of Axoscope and Clampex software (Axon Instruments,
Union City, CA), and stored on a hard disk for later analysis.
Hip-flexor nerve activity was recorded with a differential ampli-
fier Iso-DAM8 (WPI) using a suction pipette. The bandwidth was
100 Hz–1 kHz.

2.11.3. Activation of network
Mechanical stimulation was performed with the fire polished tip of
a bent glass rod mounted to the membrane of a loudspeaker in the
cutaneous region known to elicit pocket scratch (Robertson and
Stein, 1988). The duration, frequency, and amplitude of the stimu-
lus were controlled with a function generator. This tactile stimulus
induced the scratch-like network activity, which was monitored by
the suction electrode nerve recordings from the Hip-flexor nerve.

2.11.4. Slice preparation
Experiments were performed in vitro on transverse slices (0.3–
3 mm thick) from the spinal cord lumbar enlargement (D8–S2)
from the adult turtle (Chrysemys scripta elegans). The turtles were
anesthetized by intravenous injection of propofol (0.1 mg/100 g)
and killed by decapitation. The surgical procedures complied with
Danish legislation and were approved by the controlling body
under The Ministry of Justice. Experiments were performed at
room temperature (20–22˚C) in same Ringer solution as in the
integrated preparation. Whole cell patch-clamp recordings of ven-
tral horn interneurons were performed with borosilicate pipettes
filled with Mg-gluconate (1.53 mM), MgCl2 (3.7 mM), CgCl2 (300
nM), HEPES (5 mM), Na-HEPES (5 mM), Na2ATP (2 mM), K-
CH3SO4 (127 mM), and biocytin (10 mM). The pipette resistance
was typically 5–10 MΩ when measured in the bath. Voltage-clamp

recordings were performed with a Multiclamp 700B amplifier
(Molecular Devices, Sunnyvale, CA). Data were collected by means
of pCLAMP software (Molecular Devices), sampled at 1020 kHz
with a 16-bit A/D converter (Digidata 1200 or Digidata 1322A;
Molecular Devices), and stored on a hard disk for later analysis.
Membrane potential values were not corrected for liquid junction
potential. Drugs. Fast synaptic inputs were eliminated by a mixture
of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 25 μM; Tocris),
d-2-amino-5-phosphonopentanoic acid (d-AP5, 50 μM; Tocris),
gabazine (100 μM; Tocris), and strychnine (10 μM) added to the
extracellular medium. Interneurons were used as a surrogate for
MNs, since we were unable to obtain whole cell patch recording
on MNs.

3. RESULTS
The membrane potential in neurons fluctuates during network
activity. In the present study we used measurements from a
population of spinal motoneurons (MNs) in adult turtles for
comparison with our computer model.

3.1. EXPERIMENTAL DATA
The parameters used in the model (input resistance, capacitance,
and synaptic conductance) were based on a population of MNs
(data not shown). The passive membrane conductance during
quiescence was 64 ± 5 nS (mean ± standard error, n = 32 MNs).
The capacitance was 806 ± 38 pF (mean ± standard error, n = 32
MNs). The synaptic parameters were measured with whole cell
patch-clamp recordings of spinal interneurons. For excitatory
synaptic input the synaptic time constant was 2.4 ms (median) and
3.8 ± 0.8 ms (mean ± standard error, n = 487 from one neuron).
The peak conductance was 0.43 nS (median) and 0.50 ± 0.01 nS
(mean ± standard error, n = 487 events, one neuron). For inhi-
bition, the synaptic time constant was 5.5 ms (median) and
6.2 ± 0.2 ms (mean ± standard error, n = 180 measurements in
one cell). The maximum conductance was 1.3 nS (median) and
1.3 ± 0.6 nS (mean ± SD, n = 180 measurements in one cell, data
not shown).

The experimental data for conductance and Vm-fluctuations
during network activity was recorded from MNs during scratch-
ing (Alaburda and Hounsgaard, 2003; Stein, 2007). Scratching is
a spinal network activity activated in the turtle by gentle touch
within the appropriate receptive field on the carapace (Stein et al.,
2005). The induced behavior consists of rhythmic contractions
of the hindlimb muscles controlled by rhythmic bursting of their
corresponding MNs. In our experimental preparation, the limbs
and muscle were removed to secure stable intracellular recording
of the MNs (Alaburda et al., 2005). Recordings from MNs dur-
ing scratching revealed rhythmic synaptic input and phase related
fluctuations of Vm (see Figure 1).

The on-cycle refers to the phase of the rhythm where the
MN would spike under normal conditions. We injected a nega-
tive constant current (of 2.5 nA) to prevent action potentials and
measured the standard deviation as well as the spectral content in
the gamma-band (25–80 Hz) for a 200 ms second window during
the cyclic depolarizations. Similarly, we measured the membrane
potential in the phase half-way between the rhythmic contrac-
tions, i.e., the off-cycle. In the off-cycle the membrane potential
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FIGURE 1 | Experimentally observed fluctuations in Vm of turtle spinal

motoneurons. (A) Sample traces from a hip-flexor motoneuron during 3
states, on-cycle (left), off-cycle (middle), and quiescence (right) during
application of a constant hyperpolarizing current of −2.5 nA to avoid
spiking. (B) The distribution of Vm for the traces in (A). Histograms of

standard deviations (C) and the spectral power in the 25–80 Hz band (D)

for the same cells as in (A,B). The spectral power of the quiescent state is
not shown in (D) since it is insignificant. (E) Histogram of on-cycle average
standard deviation and spectral power across the population of
motoneurons.

was more hyperpolarized and the fluctuations were always smaller
(Figures 1A–C). For comparison, the membrane potential was
recorded in the quiescence state before or several minutes after
the scratch motor pattern. In this quiescent state Vm-fluctuations
were greatly reduced (Figures 1A–C). In addition, the spectral
content in the gamma-band was orders of magnitude smaller
than during on- and off-cycle (Figures 1A,D). The Vm aver-
aged standard deviation for the on-cycle for the population of
MN ranged between 1 and 5 mV (mean = 2.13 mV, Figure 1E).
The gamma-band spectral power was between 0.5 and 5 mV2

(mean = 1.44 mV2, Figure 1E).

3.2. 〈VM〉 DURING CONCURRENT INHIBITION AND EXCITATION
A constant ratio (β) between excitatory and inhibitory conduc-
tance does not imply that the mean membrane potential is con-
stant. In fact, it would be possible to get rhythmic depolarizations
in the membrane as observed in, e.g., motor behavior and locomo-
tion not only as traditionally assumed by reciprocal inhibition and
excitation, but also by rhythmic increase in concurrent inhibition
and excitation (Berg et al., 2007). In order to illustrate this counter-
intuitive fact and compare with the experimental result of Figure 1,
we performed a heuristic testing of the behavior in the model
with concurrent and Poisson-distributed inhibition and excita-
tion. The average membrane potential for the on-cycle, off-cycle,
and quiescence states could be recreated in the model (sample
traces, Figure 2A) using the same current injection (−2.5 nA)
that was applied in the experiments (Figure 1A). For simplic-
ity we keep both Gint,H = Gint,D in order to focus on the excitatory
(GD = GSyn,D) and the inhibitory conductance (GH = GSyn,H) rela-
tion with 〈Vm〉. The on-cycle data could be recreated with high
input intensity (GD = 60 nS and GH = 20 nS, β = 3) resulting in a
membrane potential with mean −63 mV and standard deviation

1.3 mV (Figure 2A). The off-cycle data was recreated with a
lower input intensity (GD = 9 nS and GH = 3 nS, β = 3) resulting
in a 〈Vm〉 = −100 mV and σ = 1.2 mV (Figure 2B). Finally, the
quiescence state could be recreated with close to zero intensity
(GD = 0.72 nS and GH = 0.24 nS, β = 3) resulting in a membrane
potential with mean −113 mV and standard deviation 0.4 mV
(Figure 2C).

As expected (see Section 4), varying the ratio between inhibi-
tion and excitation results in different levels of 〈Vm〉 for different
intensities. When β was kept constant and the input intensified,
an increase in 〈Vm〉 was observed. This is expected as the relative
weight of the leak conductance declines, when the conductance
from synaptic input increases (solid lines, Figure 2D). Values of
〈Vm〉 in agreement with experimental data (cf. Figures 1 and
2) were obtained with an excitatory synaptic conductance three
times larger than the inhibitory conductance (β = 3). This heuris-
tic approach illustrates that for choices of parameters (β, inhibitory
and excitatory conductances) with the constraint of constant ratio
of inhibition and excitation (β) we are able to recreate mean and
variance of Vm that resembles those observed in experiments (cf.
Figures 1 and 2).

3.3. FLUCTUATION IN VM FROM SYNAPTIC CONDUCTANCE AND NO
INTRINSIC CONDUCTANCE

Next, the relation between synaptic input intensity and fluc-
tuations was tested in the model with balanced and Poisson-
distributed inhibition and excitation, in the absence of intrinsic
conductance, i.e., γ = 1. The magnitude of fluctuations in Vm

depended on the frequency of synaptic input (Figure 3A). The
standard deviation of Vm peaked at moderate input rates (21 kHz
total synaptic input frequency with λe = 18 kHz and λi = 3 kHz).
As observed previously (Kuhn et al., 2004) the relation between
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FIGURE 2 | Mean Vm depolarizes during increase in concurrent

inhibition and excitation. Sample traces of membrane potential with
synaptic input coming at a poisson stochastic rate (β = 1, i.e., GD = GH and
Gint = 0). The total synaptic conductances are 80 nS (A), 12 nS (B), and 1 nS
(C) corresponding to the on-cycle, off-cycle, and quiescence states

(Figure 1). (D). Average membrane potential as a function of mean
depolarizing and hyperpolarizing conductance. The solid lines show where
the ratio of these is fixed (β = constant, indicated), but intensity varies along
the line. The circled values along the β = 1 line denote the locations of the
sample traces in above.

standard deviation and synaptic conductance had a reverse ∪-
shaped curve (Figure 3B). With the parameters from turtle MNs
the highest standard deviation possible with Poisson-distributed
inputs was 1.3 mV (see triangle, Figure 3B), significantly lower
than the 2–5 mV observed experimentally (Figure 1E). Neverthe-
less, there was good agreement between the expected magnitude of
fluctuations as determined by numerical integration of equations
(15) and (16) and the simulated Vm (cf. the continuous line and
points in Figure 3B). The integrated spectral power (25–80 Hz)
had a similar dependence on input frequency (Figure 3C), though
the peak was shifted toward larger conductance (i.e., triangle in

Figure 3C is right-shifted). The peak value of the spectral power
was 0.42 mV2, which was lower than the experimental value (cf.
Figure 1).

3.4. FLUCTUATIONS FOR A BLEND OF SYNAPTIC AND INTRINSIC
CONDUCTANCE

We tested how varying levels of intrinsic conductance affects Vm-
fluctuations at the same level of overall conductance. Fluctuations
were largest for pure synaptic conductance (γ = 1). The fluctua-
tions were progressively shunted as fluctuating conductance was
replaced by non-fluctuating intrinsic conductance (Figure 4A).
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FIGURE 3 | Synaptic fluctuations in the model (γ = 1). (A) The membrane
potential for three different intensities of excitatory and inhibitory synaptic
input coming at a Poisson stochastic rate. The synaptic conductance is 0.3 nS
(I), 108 nS (II), and 576 nS (III). The corresponding input rates are λE = 0.1 kHz,
λI = 0 kHz (I), λE = 18 kHz, λI = 3 kHz (II), and λE = 70 kHz, λI = 20 kHz (III).
Note that (I) is not balanced because the conductance is not large enough to

depolarize Vm to −55 mV, whereas (II) and (II) has reached balanced state, i.e.,
〈Vm〉 = −55 mV. (B) Standard deviation of Vm as a function of total
conductance, which is proportional to synaptic conductance. The roman
numerals I, II, III denote the locations of the sample traces from (A). Solid
traces show theoretical values, and circles simulation results. (C) The spectral
content in the gamma-band (25–80 Hz) as a function of total conductance.

The standard deviation of Vm and gamma followed the relation-
ship (Figure 4B) described earlier [see equation (16)], dampened
by

√
γ [see equation (20) and inset Figure 4B]. Similarly, the

spectral power as a function of increasing conductance had quali-
tatively the same shape as the standard deviation, but the peak was
shifted to higher conductance (Figure 4C). The integrated power
was linearly correlated with γ (see inset).

3.5. THE IMPACT OF INCREASING SYNAPTIC COINCIDENCE
The magnitude of synaptic fluctuations, i.e., σ and the spectral
power, had a reverse ∪-shaped curve as a function of input conduc-
tance and therefore as a function of synaptic input rate. However,
the maxima of σ = 1.3 mV and power = 0.42 mV2 in the model
(Figure 3) were substantially smaller than the values observed
experimentally (Figure 1). As expected, the addition of intrinsic
conductance (Figure 4) resulted in shunting, making it even more
difficult to explain the large values of σ observed in experiments.
For this reason we tested how coincident synaptic input affected
fluctuations in the model (Figure 5A). We found that synchronized
inputs resulted in both higher standard deviation (Figure 5B) and
more spectral power (Figure 5C) than for purely uncorrelated
Poisson input (cf. Figure 3). The relationship between input con-
ductance and the fluctuations had qualitatively the same reversed
∪-shaped curve. With a coincidence factor of κ = 6 the standard
deviation peaked at 3.2 mV, which is comparable to the experi-
mental results. Using the approximated relation between κ and ρ,
κ = 6 corresponds to a correlation at the peak of ρ = 0.003 (1770
presynaptic neurons) for excitation and to ρ = 0.017 (299 presy-
naptic neurons) for inhibition, all assuming an average firing rate

of 10 Hz per presynaptic neuron. The standard deviation of Vm

in the computational model (open circles, Figure 5B) followed
the shape expected from equation (16) both as a function of κ

[equation (21)] and as a function of conductance (solid curves
Figure 5B).

3.6. INVERSE RELATION BETWEEN γ AND CORRELATION
We investigated the opposing effects of intrinsic conductance and
coincident synaptic inputs. At a fixed level of intrinsic and synaptic
conductance (γ = constant ), we estimated numerically the degree
of coinciding input required to obtain a certain standard devi-
ation and vice versa. The value of coincidence factor, κ, for a
given value of standard deviation, was estimated as we changed
the value of γ. The resulting relation was hyperbolic in shape with
a cascade of curves for the increasing values of standard devia-
tion (Figure 6A). The spectral power in the 25–80 Hz band was
also integrated for different values of κ and γ. The curves for con-
stant power (Figure 6B) had qualitatively similar shapes as the
standard deviation. To compare to other studies we also show the
curves based on an approximated input correlation measure (ρ;
Figures 6C,D). Qualitatively, the curves follow the same hyper-
bolic shape as shown in Figures 6A,B. With moderate degrees
of coincident input (κ < 7.5, ρ < 0.025) the conductance must be
predominantly synaptic, i.e., γ > 0.5, to obtain standard devia-
tions above 3 mV as observed experimentally (see broken line,
Figure 6A). As for the standard deviation, the conductance must
be predominantly synaptic (γ > 0.5) at moderate levels of coin-
ciding input in order to obtain the power values of up to 4 mV2

observed experimentally (see broken line, Figure 6B). We note
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FIGURE 4 | Effects of inclusion of intrinsic conductance on

Vm-fluctuations, i.e., γ < 1. (A) Sample traces of Vm for different degrees of
synaptic input, expressed in different values of γ (from top trace, γ = 1.0, 0.4,
0.1, 0.01). Total synaptic input rates (λE + λI) were 0.2 kHz (γ4), 2.5 kHz (γ3),
9.4 kHz (γ2), and 21 kHz (γ1). Gtot was, for all traces, kept at the constant value
(172 nS), which gave the largest variance in Figure 3. Vm was kept balanced,
i.e., 〈Vm〉 = −55 mV. (B) The standard deviation of Vm as a function of

conductance, expressed as Gtot, for different values of γ. The locations of the
sample traces in (A) are indicated. Solid traces show theoretical values, and
circles simulation results. Inset: The standard deviation at a fixed conductance
(at the broken line, 172 nS) for different values of γ. (C) The spectral content in
the gamma-band (25–80 Hz) as a function of conductance. The sample traces
from (A) are indicated. Inset: Integrated power for at a fixed value of
conductance (at the broken line, 172 nS) as a function of γ.

that the input must be correlated to obtain standard deviations
above 2 mV, regardless of the degree of intrinsic conductance.
This strongly suggests that synaptic input to MNs during network
activity has to be correlated to obtain the values for the standard
deviation observed experimentally.

3.7. BRK MODEL
The results from the simple 1C model were confirmed with the
established Booth–Rinzel–Kiehn two-compartment model of tur-
tle MNs (Figure 7A). Similar to the result for the 1C model
(Figure 4B), the maximum fluctuations occur at γ = 1 where
the conductance increase is entirely synaptic (Figure 7B). At
increasing conductance the magnitude of fluctuations reaches a
maximum and starts to decline. We also tested the impact of how
the synaptic input was distributed between the soma and dendrite
compartment (Figures 7C,D). In agreement with the general func-
tional properties of dendrites, the maximum fluctuations in the
soma compartment are reached when all synaptic input is applied
directly in the soma compartment (Johnston and Wu, 1995).

4. DISCUSSION
During network activity the voltage dynamics of individual neu-
rons is determined by their synaptic interactions and their intrin-
sic response properties. In MNs the relative weight of synaptic

and intrinsic conductances during functional network activity is
unknown. One can imagine two extremes: Neurons may have
strong intrinsic dynamics making them largely autonomous enti-
ties coupled weakly through synaptic interactions (Grillner, 2006).
Or the neurons receive massive synaptic input, which effectively
overwhelms the intrinsic generated currents in controlling the
membrane potential (Paré et al., 1998). Fortunately, these two
mechanisms have contrasting effects on membrane potential fluc-
tuations. While synaptic input induces Vm-fluctuations, especially
if correlated, slowly changing intrinsic conductances modulate
mainly the mean value of Vm. In the present study we use this
discrepancy to estimate the relative contribution of intrinsic prop-
erties versus synaptic conductance. We model the Vm using a
conductance-based one-compartment model constrained by data
from turtle MNs at rest and during network activity (Figure 1). We
balance the potential at Vm = −55 mV in order to minimize the
number of parameters that would otherwise be necessary in our
model to account for additional voltage dependent conductances.
We verify the results in a two-compartment model with realis-
tic intrinsic conductances (Figure 7). During scratching, MNs
receive intense and concurrent inhibitory and excitatory synap-
tic input (Berg et al., 2007) which cause large Vm-fluctuations
and high input conductance (Berg et al., 2008). Both intrinsic
and synaptic conductances contribute to high-conductance states
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FIGURE 5 | Effect of correlated inputs with the synaptic conductance

parameter fixed at γ = 1. (A) Sample traces for membrane potentials for
3 levels of synaptic correlations. The total membrane conductance was
kept at the conductance (172 nS) giving the largest fluctuations with
synaptic input intensity at 21 kHz. Vm was kept balanced, i.e.,
〈Vm〉 = −55 mV. (B) The standard deviation of Vm as a function of synaptic
conductance (expressed as total conductance) at different degrees of

input coincidence (defined in κ). Solid traces show theoretical values, and
circles simulation results. Inset: The standard deviation at a fixed
conductance (172 nS) for different values of κ. (C) The spectral content in
the gamma-band (25–80 Hz) as a function of synaptic conductance at
different degrees of input correlation. The broken vertical lines in (B,C) are
fiducials showing the locations of the traces in (A). Inset: Integrated power
for at a fixed value of conductance (172 nS) as a function of κ.

(Stern et al., 1997; Steriade, 2001; Shu et al., 2003). However, statis-
tical analyses of spike generation in turtle MNs during scratching
did not detect a contribution of sub-threshold intrinsic response
properties to spike patterns (Berg et al., 2008). In addition, the
Vm-fluctuations and high-conductance during scratching is volt-
age insensitive (Berg et al., 2007; Supplement). A reduced role of
intrinsic properties in spike patterns during intense synaptic activ-
ity is well documented in other parts of the nervous system (Paré
et al., 1998; Steriade, 2001; Fernandez and White, 2008, 2009; Riley
et al., 2008). The fact that sub-threshold intrinsic properties have
little or no role during network activity in the high-conductance
state (Destexhe et al., 2003; Alaburda et al., 2005;Berg et al., 2007,
2008) suggests that spike generation is entirely dependent on the
Vm-fluctuations and the factors that influence the fluctuations. For
this reason it is important to establish how Vm-fluctuations depend
on membrane properties, synaptic intensity, and level of correla-
tion in the synaptic input. In our model the reverse ∪-shaped
relation between the intensity of Vm-fluctuations (Figure 3B)
and synaptic intensity is shifted toward higher synaptic frequen-
cies than originally observed by Kuhn et al. (Kuhn et al., 2004;
Moreno-Bote and Parga, 2005). This is primarily due to higher
resting conductance and lower unitary synaptic conductance in
MNs than used in previous models. It is not known if variance

and power of Vm-fluctuations in motoneurons display inverted
∪-shaped curves with synaptic intensity during scratching. Quali-
tatively, however, average conductance, Vm, variance and power of
Vm covary during scratching (Berg et al., 2007). This is compatible
with a positive correlation between synaptic frequency and fluctu-
ation, i.e., the left leg of the inverse ∪-shaped curves (Figure 3B).
In functional terms it follows that spiking at membrane potentials
near threshold scale with synaptic intensity (Arsiero et al., 2007).
A similar positive correlation between synaptic frequency and
Vm-fluctuations was previously observed in neocortical neurons
(Destexhe and Paré, 1999) and the shunting effect from synaptic
input has been discussed elsewhere (Barret, 1975; Bernander et al.,
1991; Borg-Graham et al., 1998; Chance et al., 2002; Berg et al.,
2008).

Our results from modeling show that even in the absence of
intrinsic conductance, uncorrelated synaptic activity cannot pro-
duce Vm-fluctuations of the magnitude observed experimentally,
i.e., σ ≈ 2–4 mV (cf. Figures 1 and 3). This leaves little room
for intrinsic conductance to contribute significantly to the high-
conductance state unless we allow large values for the synaptic
correlation (κ > 7.5, ρ > 0.025, Figures 4–6). In a balanced net-
work consisting of N neurons, the average pair-wise correlations
scales as 1/N and are therefore generically small (Hertz, 2010).

Frontiers in Computational Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 40 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kolind et al. Intrinsic conductance, synaptic correlations, and Vm-fluctuations

A

B

5

1.0

0.8

0.6

0.4

0.2

0.0
10

Coincidence factor, κ

Sy
n

ap
ti

c 
fr

ac
ti

o
n

,  
γ

Sy
n

ap
ti

c 
fr

ac
ti

o
n

,  
γ

1.0

0.8

0.6

0.4

0.2

0.0

15 20 25

1

2

3

Power =
     4 mV2

1

2

3

Power = 4 mV2

1
2

3

σ =
     4 mV

C

D

0.05 0.06 0.070

1.0

0.8

0.6

0.4

0.2

0.0
0.030.020.01

Correlation

1.0

0.8

0.6

0.4

0.2

0.0

0.04

1

2

3

σ =  4  mV

FIGURE 6 |The relation between synaptic coincidence factor (κ) and the

synaptic to intrinsic conductance ratio (γ) for constant value of standard

deviation (A) and amounts of power (B). Values on each curve are
combinations of level of intrinsic conductance (γ) and coinciding input (κ)
which give same standard deviation or power. (C,D) are the same as (A,B)

except the abscissa is the correlation coefficient ρ (assuming average firing of
10 Hz in the presynaptic neurons) instead of the coincidence factor. The
broken lines in (A,C) indicate the required coincidence/correlation for 50%
synaptic conductance at 3 mV fluctuations. Equations (9), (11), (13), (18), (19),
(23), and (24) were used to generate the data in this figure.

This taken together is indirect evidence for either relatively strong
presynaptic correlation or a high intensity of synaptic input to
MNs. In our models we have ignored burst firing as a source
of correlated synaptic input. Although this is not entirely justi-
fied, burst firing in spinal interneurons during scratching have not
been described (Berkowitz and Stein, 1994; Alaburda et al., 2005;
Berkowitz, 2008).

The irregular firing of MNs during scratching (Berg et al.,
2007, 2008) is in accord with previous assertions that highly vari-
able spike timing in the high-conductance state is inconsistent
with unbalanced random excitatory input (Softky and Koch, 1993;
Shadlen and Newsome, 1998) and uncorrelated balanced synap-
tic input (Stevens and Zador, 1998; Harsch and Robinson, 2000;
Salinas et al., 2000; Svirskis and Rinzel, 2000; Stroeve and Gielen,
2001). Thus our findings strongly support the view that irregular
firing is indicative of a synaptic rather than an intrinsic generator
of action potentials (Softky and Koch, 1993; Mainen et al., 1995;
Shadlen and Newsome, 1998).

4.1. SYNAPTIC STRENGTH
In the absence of experimental data and for simplicity we have
chosen not to consider the effect of a broad distribution of synap-
tic strength on Vm-fluctuations. Introducing a distribution of the
synaptic strength will cause a distribution in the post-synaptic-

potentials (PSPs). However, the effect is diminished for higher
intensity input, due to summation of the PSPs. The variance of
Vm would be most affected at low intensity input, and converge
toward the values of one mean synaptic strength for larger intensity
input.

We were unable to obtain whole-call patch recordings from
motoneurons in slices. For this reason we used the values for
synaptic strength based on data from an interneuron in a slice
experiment. The synaptic strengths in MNs could be larger than
the estimates used in the present study. However, the impact of
stronger synaptic connections on the model is similar to correla-
tion among presynaptic neurons with lower synaptic strength. For
instance, if the synaptic strength of a pre-motoneuron is doubled,
this would be equivalent to having two pre-motoneurons firing
in synchrony. Thus, since our results suggest that a κ > 7.5 is nec-
essary in order to achieve the variance observed (Figures 4–6),
our conclusion that the intrinsic conductance serves a minor role,
remains valid even if the average synaptic strength was sevenfold
larger.

A potential alternative explanation for the large synaptic fluc-
tuations, observed in experiments, could be amplification of den-
dritic PSPs via voltage-activated intrinsic conductances. It is there-
fore important to consider computational effects of morphology
of multi-compartments and their active propagation.
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Effects of inclusion of intrinsic conductance on Vm-fluctuations similar to

Figure 3A. (C) Sample traces showing the effect of the distribution of synaptic
input between soma and dendrite. Vm was kept balanced, i.e., 〈Vm〉 = −55 mV.
(D) Standard deviation of soma and dendrite membrane potential at various
distributions of synaptic input between the two compartments.

4.2. ONE- VS. MULTI-COMPARTMENTAL MODEL
The one-compartment model is an incomplete representation of
neuron morphology (see, e.g., Williams, 2004) but it captures
many basic features including passive time constant and input
conductance. The spatial distribution of synaptic activity in MNs
and the related dynamics of cable structure during network activ-
ity is unknown. For this reason we have mainly used a 1C model
to analyze the effects of synaptic conductance and synaptic cor-
relations on the variance of Vm. In the two-compartment BRK
model the results were qualitatively similar, but the size of fluctu-
ations was lower than in the 1C model. This is consistent with the
passive properties of dendritic arborization largely acting as a low-
pass filter that dampens the somatic fluctuations in membrane
potential caused by distal synapses (Williams and Stuart, 2003).
One-compartment neuron models have no electrotonic attenua-
tion of synaptic potentials and therefore sets an upper bound on
synaptic fluctuations when ignoring the effects of mutual shunt-
ing. Nevertheless, when the mutual shunting from a synaptic
conductance is included, it makes a difference where the synaptic
contacts are located and therefore there is a qualitative differ-
ence between one-compartment and multi-compartment models.

Electrotonically close synaptic inputs have sub-linear summation
whereas synaptic potentials on different dendritic arbors will sum-
mate more linearly at the soma due to the shielding resistance of
the arbor (Spruston et al., 1999). Such an electrical shield between
dendrites and soma combined with a strong active dendritic prop-
agation, will also result in a current-based process rather than
a conductance-based. Computationally, this would implicate an
additive rather than a divisive interaction between synaptic and
intrinsic currents, which would debilitate our model paradigm.
Nonetheless, this situation is unlikely in our MNs because we
found that the synaptic potentials are influenced by the imposed
membrane potential (data not shown), i.e., the IPSPs are easily
reversed and the EPSPs increase when injecting hyperpolarizing
current, which reveal a conductance-based paradigm.

These opposing situations of either a near-linear and atten-
uated dendritic synaptic input or a sub-linear and un-attenuated
synaptic input make it difficult to determine if our model is appro-
priate. Nevertheless, turtle MNs are relatively compact with most
dendritic branches terminating at one length constant and the
longest branches at two length constants (Svirskis et al., 2001). For
this reason the one-compartment model with conductance-based
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synaptic input is likely to be a reasonable approximation. In this
case, there is little room for intrinsic non-fluctuating conductance
to contribute to the total conductance and Vm-fluctuations of the
magnitude observed experimentally must therefore rely on some
degree of correlated synaptic input.

NETWORK ARCHITECTURE
In our experimental preparation, the motor network does not
receive sensory feedback or extrinsic synaptic commands that
could enforce synchrony. Synaptic correlation must therefore be an
emergent property of the recurrent interactions between interneu-
rons obtained by self-organizing principles within the network
itself (Kuramoto, 1984; Takahashi et al., 2009). This organization
could be both local and long-range. The spinal motor network for
scratching has both local segmental connectivity and long-range
inter-segmental connections. There are approximately 5 project-
ing interneurons for every MN (Nissen et al., 2008) and at most
25000 neurons in the scratch network (Walløe et al., 2011). If
the excitatory long-range connections have feed-forward synapses
on MNs and local inhibitory neurons then concurrent inhibition
and excitation is a natural consequence during intense activity. A
higher level of long-range drive will result in both more excitatory
input to MNs as well as more local feed-forward inhibitory input.
The intense synaptic input observed during motor network activ-
ity is characterized by concurrent inhibition and excitation such
that the ratio of synaptic excitation and inhibitory conductance
(κ) is approximately constant. A constant κ would give rhythmic
depolarizations as synaptic intensity increases (Figure 2) in agree-
ment with experiment (Figure 1). The functional benefit of this

concurrent activity could be that firing and firing range is stabi-
lized over a wide span of synaptic intensity (Chance et al., 2002;
Berg and Hounsgaard, 2009). The balance between inhibitory and
excitatory synapses observed morphologically in cat MN (Ornung
et al., 1998; Kernell, 2006) may emerge from self-organizing princi-
ples within the network. Multi-unit recordings in this preparation
may offer a unique opportunity to explore the spatial and tempo-
ral distribution of correlations among inhibitory and excitatory
interneurons in a functional network and the mechanisms that
govern correlations and concurrent inhibition and excitation.

SPIKE GENERATION DURING NETWORK ACTIVITY
The high-conductance state during network activity compromises
spike generation in motoneurons (Alaburda et al., 2005; Berg et al.,
2008). At the same time the membrane time constant can decrease
by an order of magnitude (Berg et al., 2008). Together this favors
temporal coding and spike generation in response to fast depolar-
izing transients (Azouz and Gray, 2000). In agreement, we found
that spikes in MNs during network activity are preceded by brief
depolarizing transients (Berg et al., 2007, 2008). The results of
the present study show that even for a constant depolarization
and conductance the output spike pattern of motoneurons can
be regulated over a wide range, purely by changing the precise
timing of synaptic input and correlation patterns among pre-
MNs. The short response time in a balanced network in the
high-conductance state allows synaptic correlations to shift very
rapidly (van Vreeswijk and Sompolinsky, 1996). Whether fir-
ing patterns are regulated by this mechanism during functional
network activity can now be tested experimentally.
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