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Neural variability, or lack thereof
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We do not claim that the brain is completely deterministic, and we agree that noise
may be beneficial in some cases. But we suggest that neuronal variability may be often
overestimated, due to uncontrolled internal variables, and/or the use of inappropriate
reference times. These ideas are not new, but should be re-examined in the light of
recent experimental findings: trial-to-trial variability is often correlated across neurons,
across trials, greater for higher-order neurons, and reduced by attention, suggesting
that “intrinsic” sources of noise can only account for a minimal part of it. While it is
obviously difficult to control for all internal variables, the problem of reference time can be
largely avoided by recording multiple neurons at the same time, and looking at statistical
structures in relative latencies. These relative latencies have another major advantage:
they are insensitive to the variability that is shared across neurons, which is often a
significant part of the total variability. Thus, we suggest that signal-to-noise ratios in the
brain may be much higher than usually thought, leading to reactive systems, economic in
terms of number of neurons, and energy efficient.
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INTRODUCTION

Randomness is only a measure of our “ignorance of the different
causes involved in the production of events” (Laplace, 1825).

High trial-to-trial variability in response to repeated presenta-
tion of a same stimulus has been reported in every modality. It
is often quantified in terms of reliability and precision (Box 1),
and both are usually poor in vivo (e.g., Fano factors ∼1 and
precision ∼tens of ms or above). The origin of this variability,
and its implication for information processing, has been much
debated (Stein et al., 2005; Ermentrout et al., 2008; Faisal et al.,
2008; Tiesinga et al., 2008; Rolls and Deco, 2010), yet a consen-
sus has not emerged. Here we argue that most of the observed
variability could come from uncontrolled variables, or the use of
inappropriate reference times, rather than from intrinsic sources
of noise (“intrinsic” meaning that they cannot be eliminated). We
focus on sensory systems, where signals are best identified, yet in
general not perfectly.

THE FUNCTIONAL APPROACH: NOISE, OR UNCONTROLLED
VARIABLES?
Noise is a relative concept. It measures the extent to which a
system diverges from its hypothesized, idealized, function. For
example neurons in early sensory areas are usually hypothesized
to encode stimulus features, and only stimulus features. Then
trial-to-trial variability in their activity, when controlling for the
stimulus, may be called “noise.” If this variability is lower than
the variability between different stimuli, then the hypothesis is
validated a posteriori. Similarly, neurons in primary motor areas
are hypothesized to encode motor responses (and only motor

responses), and the variability across trials with the same motor
response is “noise.”

Unfortunately, neurons’ functions are generally unknown, in
particular for “higher-order neurons” (that is, farther away from
sensory inputs and motor outputs), hence the term “noise”
should be used with caution, and the term “unexplained vari-
ability” should be preferred. Furthermore, a neuron’s function
may change over time. For example V1 neurons, when the eyes
are closed or in the dark, can be involved in mental imagery
(Kosslyn and Thompson, 2003). An experimenter unaware of this
will observe a huge unexplained variability in neural activity if
he/she fails to control for mental imagery—which is of course
difficult and will lead to some variability anyway.

In this paper, we argue that most of the unexplained vari-
ability in sensory systems might result from deterministic, but
uncontrolled, internal variables mediating attention, degree of
arousal, expectations, mental imagery, task-solving strategies, etc.
This variability is signal, even though it would look like noise to
an experimenter only controlling for the stimulus—all the more
so because we know from Shannon’s theory of information that
when optimal encoding is used to maximize information trans-
mission, neural signals will look random (Faisal et al., 2008). As
Barlow wrote about neural responses in 1972, “their apparently
erratic behavior was caused by our ignorance, not the neuron’s
incompetence” (Barlow, 1972).

An extreme case occurs when there are no external vari-
ables at all, only (uncontrolled) internal ones, that is when
recording spontaneous activity. It should not come as a sur-
prise that trial-to-trial variability is higher in this case than when
a same stimulus is repeated, as seen in a number of experi-
ments (Churchland et al., 2010). Indeed, why should activity be
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the same across trials in which nothing repeats? In some sense,
it would be “fairer” to compare spontaneous activity’s variabil-
ity to evoked activity’s without controlling for the stimulus that is
using varied stimuli. Yet of course this approach has flaws too: the
results would dependent on how varied the stimuli are.

Since it has a metabolic cost, the spontaneous activity probably
has a function. The observed variability might reflect more our
inability to grasp it, and to control for appropriate variables, than
neurons’ unreliability.

THE BIOLOGICAL APPROACH: INTRINSIC AND EXTRINSIC
SOURCES OF VARIABILITY
Coming back to evoked responses, what mechanisms may cause
the commonly observed high trial-to-trial variability? In vitro,
single neurons stimulated directly by injecting fluctuating cur-
rents, in the absence of synaptic input, give highly reliable and
(sub)millisecond precise responses (Bryant and Segundo, 1976;
Mainen and Sejnowski, 1995; Toups et al., 2012), that deter-
ministic neuronal models can accurately predict (Gerstner and
Naud, 2009), despite “channel noise” (Faisal et al., 2008). In
a sensory neuronal network, there are two additional intrinsic
sources of variability: sensors, which convert physical stimuli
into spikes, and synaptic transmission. In many cases, sensors
operate close to physical limits that introduce variability (Stein
et al., 2005), and therefore should contribute minimally to the
variability observed in vivo. Synaptic unreliability may have a
bigger impact (Movshon, 2000; Faisal et al., 2008). However,
high reliability and (sub)millisecond precision is seen in cor-
tex in some experiments (see Tiesinga et al., 2008; Haider et al.,
2010; Kayser et al., 2010; Panzeri et al., 2010; Herikstad et al.,
2011, and references therein), suggesting that it is possible for
the brain to overcome this source of variability (Mainen and
Sejnowski, 1995), most probably because it is largely inde-
pendent across synapses, and thus averaged out when a neu-
ron integrates from many of them (we will come back to
this point).

So why is trial-to-trial variability so high in other experi-
ments? It could be because: (a) neurons’ states when presenting
the stimulus differ; (b) neurons receive, in addition to controlled
bottom-up sensory signals, uncontrolled top-down extrasensory
signals. Both of these variability sources are called “extrinsic,”
because in principle they could be eliminated by proper con-
trol. We call (c) the intrinsic sources of variability reviewed above
(sensors, ion channels, and synapses). In the following sections,

Box 1 | Reliability and precision.

Trial-to-trial variability is often quantified in terms of reliability and
precision (Tiesinga et al., 2008). If the same number of spikes
is emitted from trial-to-trial, the neuron is said to be reliable. If
the timing of such spikes is roughly preserved across trials, the
neuron is said to be precise. Reliability is typically estimated using
the Fano factor of the spike count on a certain time window, which
requires a reference time, that is, its variance divided by its mean.
Precision is typically estimated using the spike time dispersion,
also called “jitter,” which also requires a reference time. In most
cases, the stimulus onset provides this reference time.

we try to rule in or out each possible source of variability in the
light of recent experimental findings.

INTER-NEURON CORRELATIONS
Trial-to-trial variability is typically correlated across neurons
(Averbeck et al., 2006), a phenomenon sometimes called “cor-
related noise.” In other words, a significant part of the total
variability is often shared across neurons (Churchland et al.,
2010). Variability caused by (c) is expected to be largely inde-
pendent across neuron. (c) is thus largely ruled out (Table 1,
first line).

Variability caused by (a) can be correlated across neurons if a
common signal determines the neurons’ states at stimulus onset.
There is much evidence for such signals, which are typically oscil-
lating, and the phase at which a stimulus is presented modulates
both evoked neural responses and behavioral performance, in the
visual (Vanrullen et al., 2011), auditory (Ng et al., 2012), and
somatosensory (Palva et al., 2005) modalities. Therefore (a) is
ruled in. Besides, it is worth mentioning that spikes may to lock to
these internal oscillations, not to the stimulus onset (Izhikevich,
2006; Tiesinga et al., 2008; Masquelier et al., 2009b; Panzeri et al.,
2010). Therefore, using the stimulus onset as a reference time
when computing Fano factors or spike time dispersion is inap-
propriate: it would lead to high values that do not reflect the real
reliability and precision (Figure 1).

Variability caused by (b) will be often correlated across neu-
rons as well: top-down signals will typically target multiple neu-
rons and influence similarly their activity. For example in the
visual system spatial attention will target all neurons whose recep-
tive fields are in the attended region. Feature-based attention
will target all neurons coding for a same feature. Top-down sig-
nal are also hypothesized to encore prior expectations, used in a
Bayesian inference process (see Chikkerur et al., 2010, and ref-
erences therein), which will also tend to be similar for neurons
coding for similar features. Mental imagery will typically activate
similarly all neurons representing the imagined thing. So (b) is
ruled in.

Finally, are these inter-neurons correlations beneficial, or
detrimental? They are often seen as detrimental, because only
independent noise can be efficiently averaged out in a population
coding framework, that is when a signal’s magnitude is estimated
by averaging responses across a pool of neurons with similar tun-
ing properties (Averbeck et al., 2006; Cohen and Kohn, 2011),
possibly thanks to stochastic resonance (Stein et al., 2005; Faisal

Table 1 | Ruling in and ruling out variability sources (a) different

states at stimulus onset, (b) top-down extrasensory signals,

(c) intrinsic (sensors, ion channels, and synapses).

Experimental finding Implications for main variability

sources

Inter-neuron correlations (a) (b) —(c)
Inter-trial correlations (a, but only for infraslow oscillations)

(b) —(c)
Greater variability for
higher-order neurons

(b) (-–c, at least for rapid, feedforward
processing)

Attention quenches variability (a) (b) —(c)
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FIGURE 1 | Phase vs. stimulus locking. Column (A) (resp. B) illustrates a
situation in which spikes lock to an ongoing oscillation (resp. to stimulus
onset). The first two rows correspond to two trials, and show both the
raster plots of three neurons (top), and the ongoing oscillation (bottom),
whose phase at stimulus onset is different from trial-to-trial. Post-stimulus
time histograms (PSTH), which use the stimulus onset as a reference time,
only reveal the temporal structure in the stimulus locked-case. Conversely,
spike phase histograms, which use the oscillation peak as a reference
time, only reveal the temporal structure in the phase locked-case.

(Continued)

FIGURE 1 | Continued

Spike time cross-correlograms between pairs of neurons reveal the
temporal structure in both cases. These are good news, because
downstream neurons only care about relative spike times—they
ignore both the stimulus onset time and the oscillation phase.

et al., 2008) (Box 2). However, we are notoriously imprecise at
“absolute” level estimations if stimuli are presented one at a time
(Miller, 1956). We are much better at comparing simultaneously
presented stimuli (Stewart et al., 2005). It is likely that we do
so by comparing different neurons’ activities. In this case, inter-
neurons correlations are not detrimental, and even preferable to
independent variability: from trial-to-trial, activities will tend to
be all shifted in the same direction, preserving the order, thus the
relative judgment.

More specifically, mean spike counts (or latencies), averaged
across neurons, could depend on neurons’ states at stimulus
onset [source (a)], and/or on top-down signals [source (b)],
and thus show trial-to-trial variability, while relative spike counts
(or latencies) could robustly encode stimulus features (Figure 2).
So once again, the observed variability might reflect a wrong
assumption of us scientists (stimuli are encoded in absolute spike
counts/latencies), more than neurons’ unreliability. In line with
this proposition, relative latencies have been found to encode
stimuli more robustly than absolute ones, in the visual (Desbordes
et al., 2008; Gollisch and Meister, 2008; Havenith et al., 2011;
Masquelier, 2012; Shriki et al., 2012), somatosensory (Johansson
and Flanagan, 2009; Panzeri and Diamond, 2010), auditory
(Chase and Young, 2007; Brasselet et al., 2012), and olfactory
(Junek et al., 2010; Schaefer and Margrie, 2012) systems.

INTER-TRIAL CORRELATIONS
Trial-to-trial variability is often correlated over extended
timescales, of tens of seconds or above, which typically involve
multiple trials (Monto et al., 2008; Marom, 2010; Marom and
Wallach, 2011). What does that tell us about the possible vari-
ability sources?

These inter-trial correlations could be caused again by an
ongoing oscillation, provided its period is longer than inter-
trial intervals (typically a few seconds). There is evidence for
such “infraslow” (0.01–0.1 Hz) ongoing EEG oscillations in the
somatosensory system, whose phase predicts detection perfor-
mance (Monto et al., 2008). Therefore (a) is ruled in, but only
for infraslow oscillations.

In addition, when an organism is not passively sensing but has
to solve a task, these long timescales could be the signature of
high-level meta-cognitive processes, in charge of implementing
different task-solving strategies, presumably thanks to top-down
signals, for example subject-object coupled dynamic exploration
(Marom and Wallach, 2011), and changes of these strategies,
for example shifting the speed-accuracy or aggressive-conservator
tradeoffs, or starting paying more attention to some diagnostic
features. Therefore (b) is ruled in.

The mechanisms causing intrinsic variability (sensors, ion
channels, and synapses) are commonly thought to have short
timescales (<< s). Even though subtle longer term memory
effects are sometimes seen (Marom, 2010), they could only
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Box 2 | Stochastic resonance.

In neuronal networks, subthreshold signals are not transmitted—only spikes are. This somehow binarizes signals, which can be either
subthreshold (no spike), or suprathreshold (spikes). In principle, the magnitude of a suprathreshold signal can be estimated by averaging
the firing rate across a long time window. But in practice, it is often not possible because a decision has to be taken rapidly. In any case,
it seems that in the brain, neurons’ inputs are subthreshold most of the time (Abeles, 1982; König et al., 1996; Brette, 2012). Hence being
able to transmit subthreshold signals would greatly enhance the bandwidth. With this goal in mind, it has been suggested that adding
noise to a subthreshold signal will cause occasional firings, and more often for near-threshold signals. Therefore, the original subthreshold
signal can be estimated by averaging firing rates across time, or across neurons receiving the same subthreshod signal (again, this second
option, referred to as “population coding,” is more realistic when reactivity is an issue). Importantly, to be efficiently averaged out, the
noise has to be independent across neurons. Besides, there is an optimal level of noise: if too weak, the threshold is not reached often
enough; if too strong, the response is dominated by the noise; hence the term “stochastic resonance.”
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FIGURE 2 | Shared variability is not detrimental to relative coding

schemes. Here we illustrate a hypothetical situation in which most of the
trial-to-trial variability is shared. (A) Raster plot of a trial with low spike
counts and/or long latencies (for example because the stimulus was
presented at a suboptimal phase [source (a)], or because the subject was
not attentive [source (b)]. (B) Trial with high spike counts and/or short
latencies (for the opposite reasons). If these two kinds of trials are
observed, Fano factors and spike time dispersion will be high. However,
relative spike counts and/or latencies could be more reproducible (because
both sources (a) and (b) could affect spike counts and/or latencies similarly
across neurons), and could robustly encode the stimulus. Of course,
detecting such cases of “relative coding” requires recording multiple
neurons at a time, and looking at stimulus-dependent statistical structure in
the cross-correlograms. Conversely, neither a PSTH nor a phase histogram
(Figure 1) would help.

account for a very small part of inter-trial correlations. Therefore
(c) is largely ruled out.

GREATER VARIABILITY FOR HIGHER-ORDER NEURONS
Variability is typically greater for higher-order neurons. For
example in the visual system, both reliability and precision tend
to decrease along the ventral pathway (Tiesinga et al., 2008;
Herikstad et al., 2011), while top-down effects are greater and
greater (Buffalo et al., 2010). Variability is minimal in the retina
(Kara et al., 2000; Movshon, 2000), which is out of reach of
top-down signals. This is consistent with the proposition that
top-down effects are responsible for most of the neural variabil-
ity. (b) is ruled in. Furthermore, it seems that it is essentially the
shared variability, not so much the private one, which increases
along the hierarchy: noise correlations are typically low in V1
(Ecker et al., 2010), and higher in extrastriate areas (Faisal et al.,
2008). This is again consistent with (b) being a major source of
(shared) variability.

To say the same thing in functional terms: higher-order neu-
rons may appear more variable because in general we know less
what they are signaling, which may not only be related to the
physical stimulus. When by chance we happen to know what a
higher-order neuron is signaling, for example a person’s iden-
tity in case of a so called “grand-mother cell,” or “concept cell,”
which selectively responds to photographs of the person as well
as his/her written name, then variability is in fact low enough so
that this identity can be robustly readout from this sole neuron in
a single trial (Quiroga et al., 2005).

How about source (c)? It is estimated that the equivalent of
about 50 synchronous excitatory postsynaptic potentials (EPSPs)
are required to elicit a postsynaptic spike (Sherwood, 2012). Note
that this does not imply redundancy: the 50 presynaptic neurons
may be signaling different features, and postsynaptic spikes sig-
nal the conjunction of them. But it does imply that independent
variability in EPSPs, such as the one caused by (c), will be largely
averaged out, and postsynaptic spikes will tend to be more reliable
and precise than presynaptic ones. Consequently, spike patterns
can be reliably transmitted in feedforward networks, without jit-
ter accumulation (Kumar et al., 2010). This is not consistent with
higher-order neurons being more variable, thus (c) is largely ruled
out, at least when processing is massively feedforward, that is
for rapid sensory processing. When reactivity is less of an issue,
the brain can accumulate evidence through recurrent processing
(Masquelier et al., 2011). Feedback connectivity makes networks
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chaotic (Izhikevich and Edelman, 2008; London et al., 2010), that
is highly sensitive to small perturbations such as the ones caused
by (c), which will end up impacting the whole network. It is thus
unclear if higher-order neurons should or should not be more
variable in that case, meaning that (c) is neither ruled in, nor
ruled out.

It is also unclear if variability caused by different neuronal
states at stimulus onset would be greater or lower for higher-order
neurons, therefore (a) is neither ruled in, nor ruled out.

ATTENTION QUENCHES VARIABILITY
Attention can reduce response (shared) variability (Mitchell et al.,
2007, 2009; Cohen and Maunsell, 2009). This rules out a big role
for intrinsic sources of noise (c), whereas both sources (a) and
(b) are ruled in. The decrease in response variability could be
due to some active mechanisms quenching pre-stimulus activ-
ity variability, especially when the time-point of the stimulus is
predictable (Ledberg et al., 2012), suggesting that (a) might be
the main source of variability. Importantly, these drops in vari-
ability of both spontaneous and evoked activity lead to improved
behavioral performance (Ledberg et al., 2012). Thus, it seems that
neural variability is globally detrimental to sensory processing,
and that the brain tries to limit it through active mechanisms (we
will come back to this point).

CONCLUSIONS
In some cases neural responses are both reliable precise, even
in cortex (see Tiesinga et al., 2008; Haider et al., 2010; Kayser
et al., 2010; Panzeri et al., 2010; Herikstad et al., 2011, and ref-
erences therein). This suggests that when it is not the case, it
might not be because of intrinsic sources of noise, but rather
because (1) We did not understand the neuron’s function, and
thus failed to control for appropriate variables and/or (2) We
used an inappropriate reference time, for example the stimulus
onset, while spikes locked to an internal ongoing oscillation, or
vice-versa (Figure 1). In accordance with these two suggestions,
the variability is typically correlated across neurons, across tri-
als, greater for higher-order neurons, and quenched by attention
(Table 1).

While it is obviously difficult to control for all extrasensory
variables, the problem of reference time can be largely avoided
by recording neurons simultaneously, and looking at relative
spike time statistical structure using cross-correlograms. Relative
latencies have another advantage: they are insensitive to the vari-
ability shared across neurons (Figure 2), and are thus often less

variable than absolute ones (Chase and Young, 2007; Desbordes
et al., 2008; Gollisch and Meister, 2008; Johansson and Flanagan,
2009; Junek et al., 2010; Panzeri and Diamond, 2010; Havenith
et al., 2011; Brasselet et al., 2012; Masquelier, 2012; Schaefer and
Margrie, 2012; Shriki et al., 2012). These are good news, because
downstream neurons only care about relative latencies, and the
required connectivity to decode them can spontaneously emerge
with spike timing-dependent plasticity (Masquelier et al., 2008,
2009a; Gilson et al., 2011; Brette, 2012).

Neurons may thus be more reliable and precise than usually
thought, allowing lower redundancy in the brain, that is fewer
neurons for a same level of robustness, which is obviously desir-
able, but also fewer spikes, and thus lower metabolic costs. In line
with this proposal, it has been shown that stimulating very few
cortical neurons, sometimes only one, and generating only a few
extra spikes, can impact behavior (Wolfe et al., 2010). Variability,
and thus redundancy, could be particularly low when dealing
with suprathreshold stimuli (Gur and Snodderly, 2006)—a more
natural situation—and with natural rather than artificial stimuli
(Haider et al., 2010; Hasson et al., 2010; Herikstad et al., 2011).

Of course, population coding with redundant noisy neurons
would have other theoretical advantages. We have already men-
tioned stochastic resonance (Box 2). In addition, neuron popu-
lations could encode probability distribution over the stimulus,
and not only most probable values, and combine them optimally,
provided the noise is Poisson-like (Ma et al., 2006). For long pro-
cessing times (say hundreds of milliseconds or above), noise, or,
more accurately, fluctuations, have other benefits: they allow not
getting stuck in deadlocks, in a local minima in a minimization
problem, or exploring various attractors in multistable percep-
tion (Martí et al., 2008; Rolls and Deco, 2010). Importantly,
these fluctuations could come from chaotic reverberating activity
(Izhikevich and Edelman, 2008; London et al., 2010), exacerbat-
ing potentially very weak intrinsic noise. Consistent with this idea,
the beginning of responses—which is mostly shaped by feedfor-
ward inputs—is typically less variable than the rest of it—shaped
by feedback as well (Amarasingham et al., 2006; Churchland et al.,
2010).

But despite these potential benefits, we feel that it is too early to
conclude that stochasticity is ubiquitous in the brain, and always
essential to its function. In a number of cases, it seems to be a nui-
sance, that can be reduced by attention (Ledberg et al., 2012) and
training (Qi and Constantinidis, 2012; Verstynen et al., 2012)—
both might in fact shift the neuron’s functions towards ones we
understand better, leading to the apparent variability reduction.
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