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The response of a population of cortical neurons to an external stimulus depends not only
on the receptive field properties of the neurons, but also the level of arousal and atten-
tion or goal-oriented cognitive biases that guide information processing. These top-down
effects on cortical neurons bias the output of the neurons and affect behavioral outcomes
such as stimulus detection, discrimination, and response time. In any physiological study,
neural dynamics are observed in a specific brain state; the background state partly deter-
mines neuronal excitability. Experimental studies in humans and animal models have also
demonstrated that slow oscillations (typically in the alpha or theta bands) modulate the
fast oscillations (gamma band) associated with local networks of neurons. Cross-frequency
interaction is of interest as a mechanism for top-down or bottom up interactions between
systems at different spatial scales. We develop a generic model of top-down influences
on local networks appropriate for comparison with EEG. EEG provides excellent temporal
resolution to investigate neuronal oscillations but is space-averaged on the cm scale.Thus,
appropriate EEG models are developed in terms of population synaptic activity.We used the
Wilson–Cowan population model to investigate fast (gamma band) oscillations generated
by a local network of excitatory and inhibitory neurons. We modified the Wilson–Cowan
equations to make them more physiologically realistic by explicitly incorporating background
state variables into the model.We found that the population response is strongly influenced
by the background state. We apply the model to reproduce the modulation of gamma
rhythms by theta rhythms as has been observed in animal models and human ECoG and
EEG studies.The concept of a dynamic background state presented here using theWilson–
Cowan model can be readily applied to incorporate top-down modulation in more detailed
models of specific cortical systems.
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INTRODUCTION
A fundamental question in any neurophysiological study is
whether observed modulations of neural responses in cortex
by cognitive processes are the result of the action of a local
network or due to the interactions between this local network
and the rest of the brain in global networks. This conceptual
framework of local and global networks interacting in cognitive
processes is salient to the interpretation of physiological sig-
nals obtained from the brain with any technique – EEG, MEG,
fMRI, LFPs, or unit activity and to models of the underly-
ing cognitive processes. That is, even when signals are recorded
from a small number of neurons (or even just one neuron)
the observed dynamics result both from the intrinsic properties
of the local network and from the influence of other neurons
located in nearby or even distant cortex (Mountcastle, 1997).
This simple distinction can be understood in terms of behav-
ior – the response of neurons to inputs depends not only on the
receptive field of the neurons but also on the level of arousal,
typically by the action of neuromodulators, and attention or

goal-oriented cognitive biases that guide information processing.
The latter are sometimes called top-down effects (Engel et al.,
2001), which bias the output of the neurons and affect behavioral
outcomes such as stimulus detection, short term memory, and
reaction time.

The objective of this paper is to develop a model of local net-
works with which we can investigate the effect background brain
state or top-down signaling on the local network. In order to
develop this model, we have to make choices of spatial scale and
physiological detail to incorporate into the model. Very detailed
models have the potential to provide more information about
specific neural systems, e.g., details models of the visual sys-
tem (Lumer et al., 1997). However, detailed model parameters
are not available in humans, where the competition/interaction
between global and local dynamics is expected to be the most
robust (Nunez, 1995, 2000; Nunez and Srinivasan, 2006). In addi-
tion, detailed models may not lead to generalized principles that
can potentially guide experimental studies in a variety of behav-
ioral contexts; detailed cellular models are not easily compared
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to electrocorticogram (ECoG) and electroencephalogram (EEG)
data obtained in humans.

Electroencephalogram is uniquely positioned to differenti-
ate local and global processes and to examine their interactions
in human subjects. EEG provides excellent temporal resolution
allowing us to separate processes at different time scales at elec-
trodes over cortex while allowing for sufficient spatial cover-
age to investigate interactions of sensory neurons with neural
processes in other areas of the brain. The main limitation of
EEG is spatial resolution; EEG signals are space-averaged on the
cm scale (Nunez, 1981; Nunez and Srinivasan, 2006) by vol-
ume conduction through the tissues of the head. An active area
of research is to improve our understanding of the structure
of cortical sources and connectivity from EEG data (Pinotsis
et al., 2012). ECoG in humans combines the temporal dynam-
ics of EEG with the greater spatial detail and (depending on
the patient) partial coverage of the cortex (Schalk and Leuthardt,
2011). Although ECoG is only available in limited cases in patients
with intractable epilepsy, these data are a useful source of infor-
mation on the nature of dynamics of localized population of
neurons.

EEG signals span a frequency range of 1–50 Hz while ECoG sig-
nals span a broader frequency range of 1–150 Hz (Canolty et al.,
2010; Schalk and Leuthardt, 2011). The lower portion of this spec-
trum (below 20 Hz) has strongly global properties with spatial
distribution across the brain that depends strongly on the fre-
quency (von Stein and Sarnthein, 2000; Nunez et al., 2001; Nunez
and Srinivasan, 2006). For example human alpha rhythms, which
are quite robust in alert subjects, may be recorded over nearly all of
the upper scalp or cortex with a visible peak in the power spectrum
near 10 Hz. Alpha rhythm power and phase synchronization (usu-
ally measured as coherence) are modulated in specific large-scale
cortical networks by a wide variety of different cognitive processes
including attention (Thut et al., 2006; Thorpe et al., 2012) and
working memory (Sarnthein et al., 1998; Sauseng et al., 2005).
Consistent with this “global” picture of low frequency EEG sig-
nals are studies using periodic visual input to elicit steady-state
visual evoked potentials (SSVEPs). SSVEPs are responses to visual
flicker at the flicker frequency (and harmonics). Low frequency
(<20 Hz) SSVEPs elicit “resonant” responses in large-scale net-
works whose spatial distribution depends strongly on the input
temporal frequency (Ding et al., 2006; Srinivasan et al., 2006).
These large-scale networks have both distinct characteristic fre-
quencies and functional properties (Ding et al., 2006; Bridwell
and Srinivasan, 2012).

At higher frequencies (>30 Hz) the spatial distribution of EEG
and ECoG signals is (apparently) localized at the cm scale. EEG
studies have shown task dependent modulations of gamma net-
works in networks localized in sensory and motor cortex. These
studies were inspired by single-unit and LFP studies in animal
models, most notably by Singer and colleagues (Engel and Singer,
2001; Fries et al., 2007) that demonstrate localized networks syn-
chronizing at gamma band frequencies. This local view of the
origin of gamma rhythms is supported by ECoG studies that
show relatively low coherence between electrodes at gamma band
frequencies (Menon et al., 1996). SSVEP data at gamma band
frequencies are consistent with this localized picture of fast EEG

rhythms – γ-SSVEPs appear to be local processes in the visual
cortex (Thorpe et al., 2011).

The distinct spatial and dynamical property of EEG oscillations
in low (<20 Hz) and high (>20 Hz) frequency bands suggests the
need for different types of models to explain these phenomena.
Given any unknown physical or biological system that produces
oscillations at some preferred (or resonant) frequency f=ω/2π, a
reasonable starting point for developing a model is the origin of
the implied underlying time delay τ roughly estimated as

τ ∼ ω−1 (1)

The implied physiological time scale for the (8–13 Hz) alpha
rhythm is τ= 12–20 ms. More generally, the most robust human
EEG rhythms recorded from the scalp (1–20 Hz) correspond to
time delays τ= 8–160 ms. How does this delay range compare
with mammalian physiology? Whereas early studies of membrane
time constants in mammalian cortex were very short, typically
less than 10 ms, more modern studies with improved recording
methods report a wider range up to 100 ms (Koch et al., 1996).
While synaptic delays (PSP rise and decay times) lie in a general
range (within a factor of perhaps 5 or 10) that might account for
dominant EEG frequencies, claims of close agreement between
the details of observed EEG spectra and dynamic theories based
on membrane time constants are not by themselves a critical val-
idation of a model. Model parameters can always be chosen to
“match” EEG data, which, in any case, varies widely between brain
states.

Local network theories refers to models of cortical or thalamo-
cortical interactions in which signal propagation delays in axons
are neglected. For example, coupled non-linear oscillators inter-
act without any transmission delay in a local theory. In contrast,
models that incorporate the spatial extent of the cortex and the
transmission delays between neural populations are global the-
ories. Global theories predict spatially coherent oscillations over
the surface of the cortex with wave-like properties that depend
primarily on the transmission delays between cortical populations
and the size (surface area) of the cortex (Nunez, 1981, 1995, 2000).
The dominant modes of these spatially distributed oscillations
are predicted to lie below 15 Hz in the theta and alpha bands.
While both global and local network theories have been devel-
oped independently, their interaction across spatial and temporal
scales is less well understood. Previous studies have focused on
how local networks influence global networks (Jirsa and Haken,
1996; Nunez, 2000), and a recent study investigates the interaction
between local connectivity and long-range interactions (Pinot-
sis et al., 2013). In this paper we consider how global network
dynamics may influence local networks.

The underlying time scales in local network theories are typ-
ically postsynaptic potential rise and decay times due to mem-
brane capacitive-resistive properties (Wilson and Cowan, 1972,
1973). Local theories typically predict EEG signals with frequen-
cies above 20 Hz. These results are consistent with more detailed
studies of spiking neuron models (Izhikevich, 2006; Izhikevich
and Edelman, 2008) that predict fast frequency oscillations in
cortical populations unless coupled with delays as in a global net-
work. Physiologically realistic compartment models incorporating
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the interactions between excitatory and inhibitory populations
in cortex give rise to fast oscillations at gamma band frequen-
cies (Bush and Sejnowski, 1996; Traub et al., 1997; Whittington
et al., 2000). In these types of model, the dynamics are determined
primarily by the synaptic rise and decay times and the strength
of excitatory and inhibitory synaptic connections. More specific
local models in sensory systems incorporate the essential spiking
dynamics and connectivity of thalamocortical networks (Lumer
et al., 1997) also giving rise to gamma band oscillations. While
the physiological detailed models are useful to compare to data
in animal models, comparisons to EEG and ECoG require model
development in macroscopic variables that describe synaptic mass
action.

The Wilson–Cowan model is one of the earliest and most often
cited dynamic models based on local (PSP rise and decay) delays
(Wilson and Cowan, 1972, 1973). The Wilson–Cowan model
produces either sustained (limit cycle) or damped oscillations
over a broad range of physiologically realistic parameter space in
response to a step function input to the excitatory population.
The oscillations in all parts of the network are highly corre-
lated, as there is no independent noise in each population. The
rate of damping of the oscillations is largely determined by the
ratio of excitatory to inhibitory weights with higher inhibition
leading to damped oscillations. The frequency of the oscillation
is determined primarily by the membrane time constants and
connectivity strength.

In this paper, we will make use of the Wilson–Cowan model
to investigate how properties of high frequency (gamma band)
oscillations generated by a local network in response to input is
influenced by modulation of the background state by top-down
influences. Our objective here is to formalize the general principles
by which local networks in cortex are influenced by modulatory
signals. For this purpose, we have modified the Wilson–Cowan
equations to make more physiologically realistic by incorporating
background state parameters into the model. In any physiologi-
cal study neural dynamics are observed in a specific brain state
(e.g., asleep, awake, alert, attentive, etc.) determined partly by neu-
romodulatory action at much longer time scales. As brain state
changes, the background state partly determines the excitability
of the network (Fellous and Linster, 1998; Romei et al., 2008).
Experimental studies in humans and animal models have also
demonstrated that top-down influences in cognitive processes
involve the action of slower oscillations typically in the alpha or
theta bands which appear to reflect the coherent behavior of global
networks distributed across the cortex. We believe that the mostly
likely underlying time scale for such global oscillations is trans-
mission delays in corticocortical axons, and we have proposed
a specific global model that predicts global standing waves with
frequencies in the general range at the slower end of the EEG
spectrum (Nunez, 1995, 2000; Nunez and Srinivasan, 2006). Our
analysis here depends only on the existence of such global, low
frequency oscillations as has been commonly observed for almost
100 years with scalp EEG and not any specific global field theory of
EEG. Using the modified Wilson–Cowan model, we identify cross-
frequency coupling as an EEG or ECoG signature of the effects of
background state changes by top-down signals on local network
dynamics.

MATERIALS AND METHODS
THE MODIFIED WILSON–COWAN MODEL
Wilson and Cowan (1972) derived a model neural population
containing both excitatory and inhibitory neurons with dynamics
described by a set of coupled, non-linear differential equations,
herein labeled WC. The solution of these equations gives the pro-
portion of cells in each subpopulation (excitatory/inhibitory) that
become active per unit time. The cells comprising the population
are assumed to be in close spatial proximity, with interconnections
dense enough so that any two cells within it are path-connected.
Furthermore, the model assumes that local interactions between
neurons within the population are largely random, but that this
local randomness gives rise to structure at larger spatial scales.
The situation is analogous to an example taken from thermody-
namics, in which a fluid with a macroscopically structured flow
can be observed to be undergoing stochastic Brownian motion
at the molecular level. The same framework set forth by Wilson
and Cowan has been extended in a number of straightforward
ways to models with more general connectivity, and an arbitrary
number of spatially distinct neural populations (Campbell and
Wang, 1996; Borisyuk et al., 2000). Extensions of the WC frame-
work have been developed to model interacting thalamic (reticular
formation) and cortical structures involved in the generation of
spindle oscillations (7–14 Hz) in early sleep stages (Yousif and
Denham, 2005). Jirsa and Haken (1997), used a WC model inter-
acting with a global model to interpret MEG data in a syncopated
tapping audio-motor task. Other model developments related to
the WC model have incorporated spatially extended models with
axonal delays and more detailed physiological parameters (Jirsa
and Haken, 1996, 1997; Robinson et al., 1997; Liley et al., 1999).

Here we adopt a modified version of WC to make it more
physiologically realistic as outlined in the Appendix. The basic
dependent variables are the fractions of excitatory and inhibitory
active cells (action potential densities) E(t ), I (t ), which can evi-
dently exhibit high frequency jitter not treated in this analysis.
Rather, the WC equations are expressed in terms of coarse grained
excitatory 〈E(t )〉 and inhibitory 〈I (t )〉 action potential densities.
The basic model is illustrated in Figure 1. We introduce the new
dependent variables XE(t ), XI(t ), which provide perturbations
about the critical (equilibrium) point (E0, I 0), which we have
interpreted as the background brain state which is controlled by
various neuromodulators or top-down signaling. Thus, we express

〈E(t )〉 = E0 + XE (t )

〈I (t )〉 = I0 + XI (t ) (2)

Since the excitatory action potential densities are defined as
fractions of the total cell populations, we require

0 ≤ E0 + XE (t ) ≤ 1

0 ≤ I0 + XI (t ) ≤ 1 (3)

The basic WC equations then become

dXE

dt
= −E0 − XE + (1− E0 − XE ) SE (XE , XI , P)

A
dXI

dt
= −I0 − XI + (1− I0 − XI ) SI (XE , XI ) (4)
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FIGURE 1 | Schematic of the modified Wilson–Cowan model. The
localized population consists of excitatory and inhibitory neurons that
interact with each other with negligible transmission delays. The population
receives afferent input P (t ). Simultaneously, the population is subject to
influences from both nearby and distant cortex. This top-down modulation
of the neural population is the result of feedback from large-scale networks
and/or global synaptic fields spanning the cortex. The model consists of an
Excitatory (E ) and Inhibitory (I) subpopulations with membrane time
constants τE and τI , which interact with each other via the connection
weights wEI and wIE. The neurons within each subpopulation also interact
with each other, reflected in the self-excitation wEE and self-inhibition wII

weights. The influence of other cortical areas on the population is reflected
in the background state of the excitatory E 0 and inhibitory I0 subpopulation.
The Wilson–Cowan model was modified to incorporate the background
state variables (see Appendix).

Here A = τI
τE

is the ratio of inhibitory to excitatory time con-
stants, and P(t ) is an excitatory external (driving) input from
another cortical population or potentially input to the population
from the thalamus. The set of parameters (wEE, wIE, wEI, wII) are
gain parameters that give the strength of connections between the
excitatory and inhibitory populations as indicated in Figure 1. As
shown in the Appendix for the special case P(t )= 0, the sigmoid
functions SE, SI in Eq. 4 then take the forms

SE =
1

1+
(

1
E0
− 2

)
exp (−wEE XE + wIE XI − P)

E0 <
1

2
(5)

SI =
1

1+
(

1
I0
− 2

)
exp (−wEI XE + wII XI )

I0 <
1

2
(6)

PARAMETER CHOICES
For our simulations the main parameters of interest are the back-
ground state variables E0 and I 0, which we will vary as described
in the following sections. The free parameters in our analysis are
the set of connection weights (wEE, wEI, wIE, wII) which are deter-
mined by the following physiological considerations: (1) In the
cortex, excitatory connections are estimated to be 4–5 times more
common than inhibitory connections (Bush and Sejnowski, 1996)
and (2) Inhibitory connections are more typically found on the
cell body possibly increasing their effectiveness in comparison to

excitatory connections on dendritic trees (Mountcastle, 1997).
Taking these two points into consideration we first fixed the
two parameters wEI= 50 and wIE= 15. We set the self-inhibition
wII= 0, as we found little practical effect for the small values of
this parameter, other than to increase damping in the system, and
shift the critical point for transition from a damped oscillation to
a limit cycle regime.

Equation 4 produce stable limit cycle solutions about the criti-
cal point (E0, I 0) for a wide range of the parameters. For example,
setting A= 1 and E0= I 0 the necessary condition for oscillatory
solutions about E0, I 0 is

wEE < 2
√

wIE wEI (7)

This oscillatory solution is unstable (e.g., an unstable spiral
allowing for a stable limit cycle) if

wEE >
2

E0 (1− 2E0)
(8)

From Eq. 8 we were always able to find the critical value of wEE

below which the system produced damped oscillations in response
to a step function input,while above this value the system produced
limit cycle oscillations.

TOP-DOWN (GLOBAL) INFLUENCES ON A LOCAL WC NETWORK
We explicitly consider two types of top-down influences on the
local WC network developed in section “The Modified Wilson–
Cowan Model”: (1) the effect of neuromodulators setting the
background state (E0, I 0) of the population. For the purpose of
the analysis here we consider this effect on the background state to
be static as it takes place at very long time scales as compared to the
frequency of the oscillations and (2) the effect of dynamic modu-
lation of the background state of the local network (top-down) by
oscillations in larger scale networks that incorporate the cells that
constitute the local network. For simplicity of analysis we presume
that the larger scale networks (or global synaptic fields) generate
oscillations at frequency ωα that modulate the background state
of the WC oscillator; that is

E0 → E0 + αE cos (ωαt )

I0 → I0 + αI cos (ωαt + φα) (9)

Here the amplitudes (αE, αI) of the background modulations
are constrained to be less than the constant background (E0, I 0).
We introduce a phase offset φα to allow for differences in local pro-
cessing of the modulatory input by the excitatory and inhibitory
subpopulations, as might occur if they have different membrane
time constants.

SIMULATIONS AND DATA ANALYSIS
All of the simulations carried out here were performed using the
built in ode solver in MATLAB (Natick, MA, USA), ode23. We
considered several types of inputs P(t ) – step function, impulse,
sinusoidal, and random noise and found the essential characteris-
tics of the system response were represented by the step function
input. The spectrum of the model output was analyzed using a
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FIGURE 2 | Damped oscillation regime of the model. In all of the
simulations, the following parameters are fixed: (1) The ratio of time
constants A= τI /τE =1, (2) the background state E 0(t )= I0(t )=0.25, (3)
the connection weights are (wEI, wIE, wII)= (50,15,0) and (4) the input
P (t )=0.1 is a step function at time 0. Damped oscillation observed with

(Continued)

FIGURE 2 | Continued
self-excitation wEE =12. The time series of the excitatory and inhibitory
subpopulations are shown in (A). In these plots time is normalized by
excitatory membrane time constant τE . Phase-plane plots for the excitatory.
subpopulation are shown in (B). Amplitude spectra obtained by the FFT are
shown in (C). Normalized frequency is f τE . If τE =20 ms, a normalized
frequency of 1 corresponds to 50 Hz.

FFT in MATLAB (Mathworks, Natick, MA, USA). For sustained
oscillations in the limit cycle regime, we also analyzed the model
outputs either by using Hilbert Transforms to estimate the fre-
quency and amplitude of the oscillation or by a complex Morlet
wavelet transform. For the damped oscillations, we fit the oscil-
lation to a damped sinusoid exp(j2 πft (1+ jγ)) where f is the
frequency of the oscillation and γ is the damping coefficient. We
obtained direct estimates of frequency using zero crossings and
estimated the damping coefficient by fitting an exponential to the
decay of amplitude across cycles of the oscillation.

RESULTS
BASIC RESPONSE PROPERTIES OF WC OSCILLATOR
We first examined the behavior of the system with identical exci-
tatory and inhibitory time constants (A= τ1/τE = 1) and a fixed
background state (E0= I 0= 0.25). The specific value of wEE sep-
arating limit cycle from damped oscillations depends on the back-
ground excitability as in Eq. 8; with E0= I 0= 0.25 the critical
value is wEE= 15. The limit cycle is observed if the self-excitation
is sufficiently large (wEE > 15); smaller values lead to damped oscil-
lations of higher frequency. An example of numerical solutions for
the model with the self-excitation (wEE) parameter in the damped
oscillation range is shown in Figure 2. In the time series plot
(Figure 2A), the time variable is normalized with respect to the
excitatory membrane time constant τE and in the amplitude spec-
tra (Figure 2C) the frequency variable f is normalized as f τE For
example, if τE falls in the range of 10–20 ms range, the damped
oscillation corresponds to a gamma band oscillation in the 35–
70 Hz band. The limit cycle is observed if the self-excitation is
sufficiently large (Figure 3). The limit cycle has a lower funda-
mental frequency as shown in the spectrum in Figure 3C; if τE

falls in the range of 10–20 ms range, the dominant frequency is in
the 25–50 Hz range and also exhibits harmonics (Second harmonic
shown).

The ratio of inhibitory to excitatory time constants A influences
both the frequency and damping of the oscillations. Figures 4A,B
show the oscillation frequency and damping coefficient in the
damped oscillation regime for self-excitation in the damped oscil-
lation range (wEE= 12). When the inhibitory time constant is
smaller than the excitatory time constant (A < 1) the oscilla-
tions are highly damped, but if the inhibitory time is constant
is larger than the excitatory time constant (A > 1) the oscillations
are weakly damped. Thus, in order to observe the damped oscilla-
tions, it must be the case that inhibitory time constants are longer
than the excitatory time constant. As the ratio A increases further
the system will eventually transition to a limit cycle oscillation.

Figures 5A,B shows an example with the self-excitation para-
meter in the limit cycle regime (wEE= 18). As A increases the
frequency of the oscillation decreases and the amplitude increases
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FIGURE 3 | Limit cycle regime of the model. In all of the simulations, the
following parameters are fixed: (1) The ratio of time constants A= τI /τE =1,
(2) the background state E 0(t )= I0(t )=0.25, (3) the connection weights are
(wEI, wIE, wII)= (50,15,0) and (4) the input P (t )=0.1 is a step function at

(Continued)

FIGURE 3 | Continued
time 0. Limit cycle oscillation observed with self-excitation wEE =20. The
time series of the excitatory and inhibitory subpopulations are shown in
(A). In these plots time is normalized by excitatory membrane time
constant τE . Phase-plane plots for the excitatory subpopulation are shown
in (B). Amplitude spectra obtained by the FFT are shown in (C). Normalized
frequency is f τE . If τE =20 ms, a normalized frequency of 1 corresponds to
50 Hz.

FIGURE 4 | Effect of the ratio of inhibitory to excitatory time constants
(A = τI /τE ) on the damped oscillations. System connection weights are
fixed as (wEI, wIE, wII, wEE)= (50,15,0, 12). The background state is fixed as
E 0(t )= I0(t )=0.25. Input is a step function of magnitude P (t )=0.1.
Frequency was estimated by analyzing zero crossings. Damping was
estimated by fitting an exponential decay to the peaks of a rectified
(absolute value) of the time series. (A) Normalized frequency is f τE . If
τE =10 ms, a normalized frequency of 1 corresponds to 100 Hz. (B)
Damping coefficient.

consistent with reduced damping in the system. Essentially, for any
level of self-excitation wEE, as inhibitory time constant increases,
damping is reduced, and frequency decreases. The frequency range
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FIGURE 5 | Effect of the ratio of inhibitory to excitatory time constants
in the limit cycle regime. The background state is fixed as
E 0(t )= I0(t )=0.25. Input is a step function of magnitude P (t )=0.1. System
connection weights are fixed as (wEI, wIE, wII)= (50,15,0) and wEE =18 to fix
the system in the limit cycle regime. Frequency and amplitude estimated
using a Hilbert Transform of the period from of 100τE to 200τE . Normalized
frequency is f τE . If τE =10 ms, normalized frequency of 1 is 100 Hz. For A
smaller than the range shown for each plot the limit cycle transitions to a
damped oscillation. The main result is that increasing τE relative to τI

reduces damping (increasing amplitude) and lowers the frequency of the
oscillation. (A) Normalized frequency (B) Amplitude.

of the limit cycle oscillations is much lower than the damped
oscillation. For τE = 10 ms the damped oscillations are in the
high gamma band frequency range (60–100 Hz) when A ranges
from 0.5–1.5. In contrast, for the same range of τE and A ranging
from 1–2 the limit cycle oscillations range is in the lower gamma
frequency range (20–50 Hz).

EFFECT OF BACKGROUND STATE
The frequency and damping of the WC oscillator is strongly influ-
enced by the background state. Figures 6A,B shows the frequency
and damping as a function of background state variables E0= I 0

FIGURE 6 | Dependence of frequency and damping on background
state for the damped oscillations. System connection weights are fixed
as (wEI, wIE, wII, wEE)= (50,15,0, 15). Input is a step function of magnitude
0.1. We have verified that the curves are the same for step functions up to
0.3 Frequency was estimated by analyzing zero crossings. Damping was
estimated by fitting an exponential decay to the peaks of a rectified
(absolute value) of the time series. Normalized frequency is f τE . If
τE =20 ms, normalized frequency of 1 corresponds to a 50 Hz oscillation.
(A) Normalized frequency (B) Damping coefficient.

for an example in the damped oscillation regime (wEE= 12;
A= 1). At very low levels of background activity the system
exhibits low frequency rapidly damped oscillations. As the back-
ground activity increases above E0= I 0= 0.1 the oscillations
become weakly damped and frequency increases as damping
decreases. Damping reaches a minimum at E0= I 0= 0.25 and
the frequency of the oscillation reaches a peak at E0= I 0= 0.3. At
higher levels of background activity, the oscillations decrease in
frequency and are again highly damped. Thus only at the center of
the range, at around 0.2–0.3 can we observe high frequency weakly
damped oscillations.

If the system is in the limit cycle regime the same essential
damping behavior is observed as shown for an example in
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Figures 7A,B (wEE= 18; A= 1). The limit cycle amplitude is sup-
pressed above and below E0= I 0= 0.25; at very large or very small
values of the background state the limit cycle disappears and is
replaced by a damped oscillation. The range of background activity
over which the limit cycle is observed can be expanded by increas-
ing the self-excitation parameter (wEE). However, in contrast to
the damped oscillation regime, in the limit cycle the frequency of
the oscillations is much less dependent on the background activity
level, remaining stable over the range of background states with
the high amplitude.

FIGURE 7 | Dependence of frequency and amplitude of limit cycle
oscillations on the background state. System connection weights are
fixed as (wEI, wIE, wII, wEE)= (50,15,0, 20) (dashed line) or (wEI, wIE, wII,
wEE)= (50,15,0, 25) (solid line). Input is a step function of magnitude 0.1.
Frequency and amplitude estimated using a Hilbert Transform of the period
from of 100τE–200τE. Normalized frequency is f τE. If τE =20 ms, normalized
frequency of 1 corresponds to a 50 Hz oscillation. Outside the range of
background states shown there are no limit cycle oscillation for each level
of wEE and the oscillations damp out. The main point is that the amplitude of
the limit cycle oscillations depend strongly on the background state.
Compared to the damped oscillations (Figure 6) the limit cycle frequency
does not depend strongly on the background state. (A) Normalized
frequency (B) Amplitude.

EFFECTS OF TOP-DOWN SIGNALING
It is increasingly appreciated that neural populations are subject
to top-down signals reflected in oscillations in large-scale cortical
networks. We modified the WC system equations to incorporate
dynamic modulation of background state as in Eq. A12. For sim-
plicity we modulated the background state variables (E0, I 0) with a
sinusoidal signal of fixed frequency; these modulatory frequencies
are much slower than the intrinsic frequencies of the WC oscilla-
tor. The presence of the modulatory signal alone was not sufficient
to drive the system – excitatory input P(t ) was always required.

Figure 8 shows some example simulations of the model with the
self-excitation parameter set in the limit cycle regime (wEE= 18).
The main effect of the dynamic modulation of background state
is to modulate the amplitude and frequency of the oscillation.
Figures 8A,B show the time course of a modulatory signal and the
oscillation in the WC model. In this example, the modulatory sig-
nal is an oscillation about a background state E0= I 0= 0.2 with
normalized frequency fτE = 0.03. The oscillation in population
activity can be seen to modulate in amplitude at the rate of
the modulatory signal, with higher amplitude when background
activity increases. Thus the phase of the modulatory signal modu-
lates the amplitude of the oscillation. Figures 8D,E show another
example where the modulatory signal is an oscillation about a
background state E0= I 0= 0.3. Here a different phase relationship
is evident with higher amplitude when the background activity
decreases. For each example, the temporal evolution of the spec-
trum obtained with wavelet transform is shown in Figures 8C,F.
In these examples, the population oscillates at roughly fτE = 0.5
with amplitude modulated at fτE = 0.03. If τE = 10 ms, the under-
lying oscillation frequency is in the gamma band at approximately
50 Hz and the modulation is in the theta band at 3 Hz. In both
cases, during each cycle of the modulatory signal as the amplitude
of the population activity increases the frequency decreases.

We carried out simulations over a broad range of parameters
to determine if we could produce the apparent effect of amplitude
modulation of the intrinsic limit cycle oscillation by adding a sinu-
soidal modulation at low frequencies to the input P(t ). In no case
were we able to reproduce the amplitude modulation shown in
Figure 8, and the limit cycle show stable amplitude and frequency.

DISCUSSION
In this paper we have revised the Wilson–Cowan model of the
interactions within a population of excitatory and inhibitory neu-
rons in order to investigate the impact of background activity on
the dynamics of neural populations. In our model this background
state is determined statically at very long time scales (presumably
by neuromodulator systems) and dynamically at faster time scales
by the activity of other cortical systems that exert top-down control
on the neural population. We find that our model formalizes the
mechanisms by which background state can influence local pop-
ulation dynamics consistent with observations in experimental
studies in different behavioral contexts and recording methods.

DYNAMICS OF THE WILSON–COWAN SYSTEM
The basic response properties of the system around a fixed
background state indicate that the system produced damped oscil-
lations or sustained limit cycle oscillations depending on the
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FIGURE 8 | Dynamic modulation of background state produces
cross-frequency coupling in the model. Model parameters are in the limit
cycle regime (wEI, wIE, wII, wEE)= (50,15,0, 18). (A–C) correspond to a

background state E 0 = I0 =0.2 while (D–F) correspond to a background state
E 0 = I0 =0.3. (A,B,D,E) show the time series while (C,F) show the wavelet
spectrum.

level of self-excitation of the excitatory neurons and the relative
value of excitatory and inhibitory time constants. Linear analy-
sis about critical (equilibrium, fixed) points indicates that for
lower values of self-excitation damped oscillations will be observed
while at higher values of self-excitation limit cycle oscillations
are observed. In addition, sustained oscillations are more likely
to be observed within local populations with longer inhibitory
time constants than excitatory time constants. When excitatory
time constants are longer than the inhibitory time constants,

rapidly damped high frequency oscillations are observed in the
system. Inhibitory time constants that are longer than the excita-
tory time constants in the 10 ms range result in higher amplitude
lower frequency oscillations in the gamma band (30–100 Hz)
and generally support limit cycle oscillations rather than damped
oscillations. In cases where the inhibitory time constants are
much longer these sustained oscillations can be produced at even
lower frequencies in the beta (13–30 Hz) and alpha (8–12 Hz)
ranges.
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Whereas early studies of membrane time constants in mam-
malian cortex were very short, typically less than 10 ms, more
modern studies with improved recording methods report the wide
range up to 100 ms (Koch et al., 1996). In particular, very long
inhibitory time constants have been reported for thalamic and
cortical populations. Thus, we can reasonably expect the ratio of
inhibitory to excitatory time constants to be significantly larger
than one, supporting the existence of linear instability and cor-
responding limit cycle oscillations over a broad range of model
parameters. Such self-sustained dynamics may contribute locally
to the generation of spontaneous EEG rhythms.

EFFECTS OF BACKGROUND STATE ON POPULATION DYNAMICS
The dynamics of the model population depend very strongly on
the background state in both limit cycle and damped oscillation
ranges of the parameters. At very low levels of background activity
(E0, I 0 < 0.2), the population does not respond to the external
input. As background activity increases the system responds to
external input. In the limit cycle regime, the amplitude of the
oscillation depends strongly on the background activity while in
the damped oscillation regime the frequency of the oscillations
depends strongly on the background activity.

The overall level of background activity is determined by the
neuromodulatory systems that control the sleep-wake cycles, level
of arousal, and the response to reward and/or threat. Although
there are variations in the densities of neuromodulator inputs to
different cortical areas, almost all cortical areas receive neuromod-
ulatory input (Goldman-Rakic et al., 1990). Changes in these states
occur over very long time scales; in an awake, behaving animal (or
human) these tonic influences are generally considered constant.
Thus in general, we can expect that the background level is con-
stant over a responsive level of the population, although there
are also phasic modulations of the cholinergic and dopaminergic
neuromodulator systems that may play a role in stimulus response
and reward seeking behavior (Sarter and Bruno, 1997; Chuhma
et al., 2004; Zhang and Sulzer, 2004), and can be expected to have
dynamic influences on local networks.

MODULATION OF POPULATION DYNAMICS BY TOP-DOWN SIGNALS
The dynamic modulation of background state creates amplitude
and frequency modulation of the intrinsic gamma oscillations
of the WC system. The most salient effect is amplitude modu-
lation by the phase of slow modulations of the background states.
In the experimental literature this phenomenon is explained as
dynamic modulation of the excitability of the population (Jensen
and Colgin, 2007). Our model captures this essential behavior,
and provides a plausible mechanism to incorporate these types
of effects in computational models. In our model, the specific
phase/amplitude relationship was influenced by the overall activ-
ity level; the specific phase of the modulation that produced robust
oscillations was arbitrary. The experimental literature is consistent
with this picture, with different studies reporting different phases
of the modulation signal for peak amplitude of the local oscillation
as shown in Figure 1 of (Lisman and Buzsaki, 2008).

This essential phenomenon of cross-frequency coupling has
been observed in animal models in a number of experimental
contexts (Buzsaki and Draguhn, 2004; Scheffzuk et al., 2011) and

human ECoG recordings (Canolty and Knight, 2010; Voytek et al.,
2010). These findings have since been confirmed in human EEG
where the phase of the theta rhythm is shown to modulate the
amplitude of the gamma rhythm (Demiralp et al., 2007). It has
long been known that the phase of the alpha rhythm at stimu-
lus onset influences amplitude and phase of the evoked potential
(Dustman and Beck, 1965; Jansen and Brandt, 1991; Gruber et al.,
2005; Hanslmayr et al., 2007). Moreover, there are a number of
studies that have shown that the state of the cortex (as measured
by EEG oscillations) can predict the perception of a sensory stimu-
lus, presumably by modulating the sensory evoked response (Haig
and Gordon, 1998; Hanslmayr et al., 2007).

LOCAL-GLOBAL INTERACTIONS
We have proposed a conceptual framework in which local net-
works (cell assemblies) are embedded in a global environment that
produces standing waves due to propagation in the corticocortical
(white matter) fibers and periodic boundary conditions (Nunez,
1995, 2000; Nunez and Srinivasan, 2006). That is, the neocortex
and underlying white matter are modeled as a closed loop or spher-
ical shell. In this paper, we have a proposed a method to model the
top-down influences of such systems on a local network. These
top-down influences may be the result of feedback from global
network. In our analysis we have isolated the local network from
the global system, and only analyzed the local network dynamics.
Similarly, global models typically assume that the local network
is sufficiently localized such that its (bottom up) influence on the
global dynamics may be neglected to first approximation. This
condition might be satisfied in the eyes closed resting state, for
example. On the other hand, the (eyes open) processing of sub-
stantial visual input or complex cognitive functions may involve
multiple local thalamocortical networks that act (bottom up) to
modify the global networks that are influencing the local networks.
Future work must explicitly consider in more detail how the local
networks and global networks interact.

Our study suggests that models of these local networks must
incorporate the idea that the response properties of the networks
can be modified by modulatory inputs. In our modified WC
model, the addition of oscillatory afferent input does not modify
the system dynamics. We explicitly incorporated dynamic mod-
ulation of the system properties by making the background state
an explicit part of the model. In most models (including the orig-
inal WC) the background state of the neurons is mathematically
removed, and the dynamics of the system is studied without fur-
ther consideration of the background state. This approximation is
limiting; modification of the background state may be an impor-
tant mechanism of top-down signaling in the cortex, especially in
the control of goal-oriented behavior such as attention. Local net-
works in the cortex experience dynamic background states which
can be readily incorporated into most model formulations. This
may also have importance in specific models that seek to make a
distinction between feedforward and feedback connections in sen-
sory systems (Mountcastle, 1997; Lamme and Roelfsema, 2000).

CONCLUSIONS
Since the first human recording in the early 1920s the physiolog-
ical bases for the wide range of rhythmic EEG activity has been
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somewhat of a mystery. As one important “window on the mind,”
EEG has long provided a critical tool in pursuit of connecting
neural dynamics to cognitive processes. Human brains produce a
proverbial “spectral zoo” that is closely correlated to behavior and
cognition. A major obstacle in this quest is a shortage of robust
and widely appreciated theoretical support for EEG’s dynamic
behavior in time and spatial location over the scalp. The concep-
tual framework facilitated by such theory could have a substantial
influence on the design of new EEG-cognitive experiments. In this

paper, we propose an approach to incorporate global (top-down)
influences on local networks. The essence of our approach is to
immerse the local network in a dynamic background state. These
dynamics could be generated by a global model of interactions
across the cortex; they could also be modeled from experimental
EEG data. This approach is sufficiently general to be applied to
other theoretical formulations of population dynamics in neural
populations and to models of specific cognitive influences on local
circuit dynamics.
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APPENDIX
THE BASIC WC ANALYSIS
The classical WC model (Wilson and Cowan, 1972, 1973) applies
to populations of interacting excitatory and inhibitory neurons in
some local neocortical region as indicated in Figure 1. An impor-
tant WC assumption is that axon propagation delays are negligible;
that is, all WC delays are due to PSP rise and decay times. WC is
then a strictly local model and represents the opposite limiting
case to global models in which delays are axonal, especially in
the longer corticocortical axons forming most of human white
matter (Nunez, 1974; Nunez and Srinivasan, 2006). These distinct
local and global models have been shown to be fully compatible
and may be combined into local/global models (Jirsa and Haken,
1996; Nunez, 2000).

The basic WC dependent variables are the fractions of excitatory
and inhibitory active cells (dimensionless action potential densi-
ties) E(t ), I (t ), which can evidently exhibit very high frequency
jitter not treated in the analysis. Rather, the WC equations are
expressed in terms of coarse grained (in time) excitatory 〈E(t )〉
and inhibitory 〈I (t )〉 action potential densities, where the critical
point 〈E(t )〉, 〈I (t )〉= (0,0) is considered by WC to be an equi-
librium background state occurring when the external (afferent)
driving function P(t )= 0. Thus, the variables 〈E(t )〉, 〈I (t )〉 are
allowed to take on negative values by WC, an inaccurate and (as
we show here) unnecessary approximation to their physiological
interpretation as fractions of active cells. The WC equations (1.3.1
and 1.3.2 from the 1973 paper) are

τE
d 〈E(t )〉

dt
= −〈E(t )〉 + [1− rE 〈E(t )〉] SE [P(t )

+wEE 〈E(t )〉 − wIE I (t )]

τI
d 〈I (t )〉

dt
= −〈I (t )〉 + [1− rI 〈I (t )〉] SI [wEI 〈E(t )〉

−wII 〈I (t )〉] (A1)

Here we drop the spatial dependence x of all variables since
axon speeds are assumed to be infinite implying that neural spatial
separations have no effect on dynamic behaviors in this approxi-
mation. We also distinguish between the excitatory and inhibitory
membrane time constants τE , τI . In addition, we only allow
excitatory afferent input P(t ).

SOME ISSUES WITH THE ORIGINAL WC ANALYSIS
1. WC write the proportion of sensitive excitatory cells (neurons

currently firing or in their refractory periods rE) as RE (t ) =

1 −
t∫

t−rE

E(t ′)dt ′. This is not dimensionally correct and leads

to the dimensionally incorrect Eq. A1. The WC equation also
yields the incorrect result RE(t )→ 1 as the refractory period
rE→ 0. The correct expression is

RE (t ) = 1−
1

rE

t∫
t−rE

E(t ′)dt ′

RE (t )→ 1− E(t ) when rE → 0 (A2)

In this limit, the sensitive population RE(t ) consists of all cells
not firing at time t. The excitatory and inhibitory integrals
should have been divided by the refractory times rE, rI, equiva-
lent to setting rE, rI= 1, in Eq. A1, a simple corrective step often
adopted by others using the WC model.

2. Negative values of 〈E(t )〉, 〈I (t )〉 are not realistic physiologi-
cally for essentially the same reason. During times when E(t ),
I (t ) < 0, the fractions of sensitive cells RE(t ), RI(t ) > 1, which
is also inconsistent with realistic physiology. By contrast, the
modified WC model presented here forces

〈E (t )〉 , 〈I (t )〉 ≥ 0, for −∞ < t < +∞.

3. WC choose sigmoid response functions such that SE(0)= SI(0)
= 0 in order to force (0,0) to be a critical (equilibrium) point
where the variable time derivatives equal zero. Such critical
points may be either state or unstable. If a critical point is sta-
ble, any brain dynamic state coming sufficiently close to this
point will become fixed (forever static or “brain dead”). Of
more interest to us are unstable critical points associated with
on-going oscillations (limit cycles),possibly underlying EEG. In
WC, the tissue response functions can become negative, a phys-
iological impossibility; thus, in our following modified analysis,
the WC conditions are replaced by

SE [P(t ), 〈E(t )〉 , 〈I (t )〉] ≥ 0

SI [〈E(t )〉 , 〈I (t )〉] ≥ 0 (A3)

4. WC interpret the WC parameter µ as a single membrane time
constant. Based on the classic solution of the cable equation
and the distribution of excitatory synapses on dendrites with
inhibitory synapses typically near cell bodies and our increased
appreciation of wide ranges of excitatory and inhibitory time
constants τE, τI , we consider casesτE 6= τI .

A MODIFIED VERSION OF THE WC ANALYSIS
Define the non-dimensional time t1 =

t
τE

and time constant ratio

A = τI
τE

so that with rescaled variables Eq. A1 become

d 〈E〉

dt1
= −〈E〉 + (1− 〈E〉) SE (P + wEE 〈E〉 − wIE 〈I 〉)

A
d 〈I 〉

dt1
= −〈I 〉 + (1− 〈I 〉) SI (wEI 〈E〉 − wII 〈I 〉) (A4)

Here the non-dimensional parameter A may range from some-
what less than one to as high as perhaps 5. For convenience we
drop the subscript 1 on the non-dimensional time variable. We
introduce the new dependent variables XE(t ), XI(t ), which provide
perturbations about the critical point (E0, I 0)

〈E(t )〉 = E0 + XE (t )

〈I (t )〉 = I0 + XI (t ) (A5)

We assume that the input function P(t ) is exclusively excitatory
such that P(t )≥ 0 at all times. The following conditions follow
from the variable definitions
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0 ≤ E0 + XE (t ) ≤ 1

0 ≤ I0 + XI (t ) ≤ 1 (A6)

Equations (A4) then yield

dXE

dt
=− E0 − XE + (1− E0 − XE ) SE [P + wEE (E0 + XE )

−wIE (I0 + XI )]

A
dXI

dt
=− I0 − XI + (1− I0 − XI ) SI [wEI (E0 + XE )

−wII (I0 + XI )] (A7)

The sigmoid functions SE, SI are chosen here such that (E0, I 0)
is a critical point when P(t )= 0. Thus, we choose the following
alternate sigmoid tissue response functions.

SI =
1

1+ exp [−wEI (E0 + XE )+ wII (I0 + XI )+ KI ]
(A8)

SE =
1

1+ exp [−wEE (E0 + XE )+ wie(I0 + XI )+ KE ]
(A9)

The constants KE, KI are added to the original WC sigmoid
functions, thereby determining the response range during oscilla-
tions about fixed points. This choice of the forms of the sigmoid
response functions insures that (1) (E0, I 0) or (X,Y )= (0,0) is a
critical point and (2) 0≤ SE≤ 1 and 0≤ SI≤ 1. Substitution of
Eqs A8 and A9 into Eq. A7 and setting XE(t )=XI(t )= 0 yields the
sigmoid constants in terms of the critical point

KI = wEI E0 − wII I0 + Log

[
1

I0
− 2

]
(A10)

KE = wEE E0 − wIE I0 + Log

[
1

E0
− 2

]
(A11)

Substitution of Eqs A10 and A11 into Eqs A8 and A9 yields

SI [wEI (E0 + XE )− wII (I0 + XI )]

=
1

1+
(

1
I0
− 2

)
exp (−wEI XE + wII XI )

I0 <
1

2
(A12)

SE [wEE (E0 + XE )− wIE (I0 + XI )]

=
1

1+
(

1
E0
− 2

)
exp (−wEE XE + wIE XI )

E0 <
1

2
(A13)

PHASE-PLANE ANALYSIS
We assume wII

∼= 0 in all of the following analyses based on our
preliminary studies: In simulations with non-zero wII the effect is
only to set the activity level of the system and has no significant
influence on the dynamics. The first step in the analysis of Eq. A7 is
to find the nature of the critical point (0,0). To accomplish this we
expand the functions F(XE, XI) and G(XE, XI) about (0,0), where
these functions are the expressions on the right sides of Eq. A7,
that is

F(XE , XI ) = −E0 − XE + (1− E0 − XE ) Se

G(XE , XI ) = [−I0 − XI + (1− I0 − XI ) Si]/A (A14)

Taylor expansion about the critical point (0,0) yields equations
of the general form

dXE

dt
= F(XE , XI ) ∼= F(0, 0)+

(
∂F

∂XE

)
0
XE +

(
∂F

∂XI

)
0
XI

≡ aXE + bXI

dXI

dt
= G(XE , XI ) ∼= G(0, 0)+

(
∂G

∂XE

)
0
XE +

(
∂G

∂XI

)
0
XI

≡ cXE + dXI (A15)

Here we have forced F(0,0)=G(0,0)= 0 by proper choice of
the constants KE, KI in Eqs A10 and A11. The partial deriva-
tives are evaluated at (0,0) yielding the parameters (a, b, c, d).
Eq. A15 then consist of two first order linear equations gov-
erning the dynamic behavior of the non-linear system close
to (0,0). Define the parameters β= a+ d and γ= ad − bc ; the
eigenvalues λ1,2 of the linear system satisfy λ2

− βλ+ γ=0 with
solution

λ1,2 =
1

2

(
β±

√
β2 − 4γ

)
(A16)

We are mainly interested in oscillatory solutions about the crit-
ical point (0,0); that is, stable limit cycle solutions. These are
expected when (0,0) is an unstable spiral, which occurs when β > 0
and β2 < 4γ. By contrast, stable spirals result in damped oscilla-
tions. Saddle points and nodes result in non-oscillatory solutions
(stable or unstable) that are of minimal interest here.

Consider the following example with E0= I 0. The critical point
(E0, I 0) is unstable if the following condition is met

wEE >
A + 1

AE0 (1− 2E0)
0 < E0 <

1

2
(A17)

Note that A = τI
τE

so if inhibitory time constants are much
shorter than excitatory time constants, larger values of wEE are
required to produce linear instability. For the physiologically inter-
esting range 0.1 < E0 < 0.4 and A= 1, all wEE > 25 cause the fixed
point to be unstable.

For the case E0= I 0 and A= 1, the fixed point is a spiral if

wEE < 2
√

wIE wEI (A18)

By combining Eqs A17 and A18 we find the necessary (but pos-
sibly not sufficient) conditions for a stable limit cycle about (E0,
E0) when A= 1, that is

2

E0 (1− 2E0)
< wEE < 2

√
wIE wEI (A19)

If this condition is met, the corresponding spiral frequency is

ωspiral = N (E0)

√
4wIE wEI − w2

EE (A20)

Here the numerical factor lies in the range 0.00790 < N (E0)
< 0.0294 if 0.1 < E0 < 0.4. An unstable spiral point at (E0, I 0)
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suggests a likely stable limit cycle, but the limit cycle frequency will
not generally equal the (linear) spiral frequency. If wEE exceeds
the upper limit in Eq. A19 an unstable node or saddle point will

occur. In this case the solutions XE(t ), XI(t ) are likely to grow
beyond physiologically realistic ranges, implying that the basic
WC equations are no longer valid.
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