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Synchronization plays an important role in neural signal processing and transmission.
Many hypotheses have been proposed to explain the origin of neural synchronization.
In recent years, correlated noise-induced synchronization has received support from
many theoretical and experimental studies. However, many of these prior studies have
assumed that neurons have identical biophysical properties and that their inputs are well
modeled by white noise. In this context, we use colored noise to induce synchronization
between oscillators with heterogeneity in both phase-response curves and frequencies.
In the low noise limit, we derive novel analytical theory showing that the time constant
of colored noise influences correlated noise-induced synchronization and that oscillator
heterogeneity can limit synchronization. Surprisingly, however, heterogeneous oscillators
may synchronize better than homogeneous oscillators given low input correlations. We
also find resonance of oscillator synchronization to colored noise inputs when firing
frequencies diverge. Collectively, these results prove robust for both relatively high noise
regimes and when applied to biophysically realistic spiking neuron models, and further
match experimental recordings from acute brain slices.
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1. INTRODUCTION
Synchronization of neural oscillators is thought to play a criti-
cal role in sensory, motor, and cognitive processes (Sanes and
Donoghue, 1993; Fries et al., 2001; Wang, 2010). In many net-
works, synchronization is achieved via direct coupling such as
through gap junctions and chemical synapses. However, there
are several systems (notably, the mammalian olfactory bulb)
where the mode of coupling is less clear and neural synchrony is
hypothesized to arise from partially correlated presynaptic inputs
(Galán et al., 2006; Marella and Ermentrout, 2010). Indeed, in
non-oscillatory networks of neurons, such correlated input is
largely responsible for the output correlations of the neurons
(de la Rocha et al., 2007). Thus, a natural question is: how do the
properties of neurons and networks alter output correlations for
a given degree of input correlation? At small input correlations,
output and input correlations can be regarded as linearly pro-
portional; this ratio is called the susceptibility (Shea-Brown et al.,
2008). For example, (de la Rocha et al., 2007) showed that the
susceptibility depends on the background firing rate of the neu-
ron. For some model systems, this susceptibility can be computed
using linear response theory (which assumes small perturbations
around the stationary state).

When neurons fire regularly, they can be regarded as noisy
nonlinear oscillators and, as such, there are many mathemat-
ical techniques available for their analysis. In particular, the
phase-response curve (PRC) provides a compact and useful char-
acterization of the responses of a nonlinear oscillator to external

perturbations. The PRC describes the shift in timing of, say, an
action potential as a function of the timing of the input rel-
ative to the last action potential. In several studies, we have
described the theoretical relationship between the shape of the
PRC and the ability of identical neurons to transfer partially syn-
chronized activity (Marella and Ermentrout, 2008; Abouzeid and
Ermentrout, 2009). In these studies, the only source of hetero-
geneity considered between neural oscillators was their unshared
(uncorrelated) inputs, which consisted of white noise. Recently,
we extended these methods to cases in the low noise limit in
which the oscillators were not identical and showed how het-
erogeneity in intrinsic properties could significantly degrade the
output correlation in pairs receiving common inputs (Burton
et al., 2012).

In this study, we extend this theory to include colored noise
inputs and, further, report some surprising effects of heterogene-
ity. First, we derive a set of equations for the distribution of
phase differences for pairs of heterogeneous oscillators driven by a
partially correlated Ornstein-Uhlenbeck (OU) process (low-pass
filtered noise). We next show that the theory developed for phase
reduced models works well with a conductance-based biophys-
ical model. We then show that, quite surprisingly, at low input
correlations, heterogeneity can sometimes produce higher out-
put correlations than the homogeneous case. That is, consider
two distinct oscillators, A and B, such that the AA pair has a
small susceptibility and the BB pair a larger susceptibility. Then, at
low correlations, the susceptibility of the AB pair can sometimes
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exceed that of the AA pair. We confirm this somewhat counter-
intuitive prediction with recordings from regularly firing mitral
cells of the main olfactory bulb. In addition to heterogeneity in
response properties, neurons can fire at different frequencies, and
such frequency differences can significantly impact correlated-
noise induced synchronization (Markowitz et al., 2008; Burton
et al., 2012). Here, we find that for some frequency differences
between oscillators, there is an optimal time scale of correlated
noise that will maximally synchronize the oscillators. We do not
see this effect when the oscillators have the same frequency.

2. MATERIALS AND METHODS
2.1. PHASE REDUCTION MODEL
In Appendix, we provide a brief overview of how to reduce a gen-
eral weakly perturbed limit cycle to a single differential equation
for the phase of the cycle. If we assume that the original limit cycle
represents repetitive firing of a single compartment neuron model
that is driven by a noisy current, I(t), then we obtain:

dθ

dt
= 1 + ε�(θ)I(t)/Cm (1)

where Cm is the membrane capacitance, θ is the phase (or, typ-
ically, the time since the last spike), and �(θ) is the PRC of the
neuron. The PRC describes the phase-dependent shift in the spike
times of an oscillator receiving small perturbations. It is readily
measured in neurons and other biological oscillators (Torben-
Nielsen et al., 2010) and provides a compact representation of
the effects of stimuli on the timing of action potentials. �(θ)

has dimensions of milliseconds per millivolt; that is, the shift in
timing of the next action potential per millivolt perturbation of
the potential. Mathematically, for a given model, �(θ) is found
by solving a certain differential equation (see Appendix). It is a
periodic function of phase and, with no loss in generality, we can
normalize the period to be 2π for simplicity.

2.2. STATIONARY DENSITY
Given the reduced model (Equation 1), we can now turn to the
main question at hand, which is: how do oscillating heteroge-
neous neurons transfer correlations? We will consider two types
of heterogeneity: differences in the PRC shapes and differences
in natural frequencies. We drive the oscillators with correlated
filtered noise. After reduction to phase variables, we obtain:

θ′
1 = 1 + ε�1(θ1)x (2)

θ′
2 = 1 + ε�2(θ2)y + ε2ω (3)

x′ = −x/τ + ξx/
√

τ (4)

y′ = −y/τ + ξy/
√

τ (5)

θ1 and θ2 are the phases of two oscillators, and �1(θ) and �2(θ)

are PRCs of the two oscillators. Without loss of generality, we set
the natural frequency of one oscillator to 1. The parameter ω then
determines the magnitude of the difference in natural frequencies
between the two oscillators. ε � 1, thus the noise is weak and the
frequency difference is small. The processes x and y are generated

by an OU process with the same time constant τ. ξx and ξy are two
correlated white noise processes, i.e., 〈ξx(t)ξx(t′)〉 = δ(t − t′),
〈ξy(t)ξy(t′)〉 = δ(t − t′), 〈ξx(t)ξy(t′)〉 = cδ(t − t′), where c is the
degree of correlation.

We remark that the allowable frequency difference is O(ε2),
which seems considerably smaller than the magnitude of the
noise, which is ε. However, as the noise has zero mean, what mat-
ters is the variance of the noise, which has magnitude ε2. Thus,
the scales of both the frequency difference and the synchroniz-
ing inputs (correlations in the noise) are similar. If the frequency
differences are larger, then no synchronization is possible.

Our goal is to compute the stationary distribution of the
phase difference between two neurons since this will enable us to
compute various measures of correlation and synchrony. Thus,
some variable substitution will be helpful: θ = θ1,φ = θ2 − θ1.
Therefore, φ is the phase difference between the two oscillators.
With this change of variables, the equations are:

θ′ = 1 + ε�1(θ)x (6)

φ′ = ε[�2(θ + φ)y − �1(θ)x] + ε2ω (7)

and x, y are as above. Let ρ(x, y, θ,φ, t) represent the probability
density function at time t:

Pr(X(t) ∈ (x, x + dx), Y(t) ∈ (y, y + dy), �(t) ∈ (θ, θ + dθ),

�(t) ∈ (φ,φ + dφ)) = ρ(x, y, θ,φ)dxdydθdφ (8)

We denote the stationary density (long-time behavior as t → ∞)
as ρss(x, y, θ,φ).

Our goal is to compute the probability density of the phase
difference between the two oscillators, R(φ), which is:

R(φ) :=
∫ ∞

−∞

∫ ∞

−∞

∫ 2π

0
ρss(x, y, θ,φ) dxdydθ (9)

If the oscillators are perfectly synchronized, then R(φ) will be a
delta function centered at φ = 0. If the oscillators are completely
independent, then R(φ) = 1/(2π). In Appendix, we show that
R(φ) satisfies a simple first order boundary value problem (BVP).
We present the exact equation for this in Results.

2.3. ORDER PARAMETER
Once we get the distribution of phase differences, R(φ), we need
a number to estimate the synchronization, which means the
sharpness of this distribution. In this study, we use an order
parameter (OP) to do this. We define:

OP =
√

C2 + S2 (10)

C =
∫ 2π

0
R(φ) cos(φ)dφ

S =
∫ 2π

0
R(φ) sin(φ)dφ

θ = atan2(C, S)
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OP is a representation of sharpness and θ is the estima-
tion of the peak position. For certain types of heterogeneity,
R(φ) is peaked at φ = 0; in this case, we can show that the
cross correlation of the spike times is (R(0) − 1/(2π))/(2π)

(Burton et al., 2012). However, OP provides a better global
measure of the synchrony and is not dependent on the peak
being centered at 0; we will therefore use OP in our current
results.

2.4. MORRIS-LECAR MODEL
The Morris-Lecar (ML) model (Rinzel and Ermentrout, 1989)
is a simplified two-dimensional system membrane model that
we use to compare the phase models with a full biophysical model:

C
dV1

dt
= I1 − gL(V1 − VL) − gK w1(V1 − VK)

− gCam∞(V1)(V1 − VCa) + σx (11)

dw1

dt
= φ

w∞(V1) − w1

τw(V1)
(12)

C
dV2

dt
= I2 − gL(V2 − VL) − gK w2(V2 − VK)

− gCam∞(V2)(V2 − VCa) + σx (13)

dw2

dt
= φ

w∞(V2) − w2

τw(V2)
(14)

x′ = − x/τ + ξx/
√

τ (15)

y′ = − y/τ + ξy/
√

τ (16)

with 〈ξ1(t), ξ1(t′)〉 = δ(t − t′), 〈ξ2(t), ξ2(t′)〉 = δ(t − t′), and
〈ξ1(t), ξ2(t′)〉 = cδ(t − t′), c ∈ [0, 1]. The auxiliary functions are:

m∞(V) = 0.5 · (1 + tanh((V − Va)/Vb)) (17)

w∞(V) = 0.5 · (1 + tanh((V − Vc)/Vd)) (18)

τw(V) = 1

cosh((V − Vc)/(2Vd))
(19)

The parameters used in this paper are: VK = −84 mV , VL =
−60 mV , VCa = 120 mV , gK = 8 mS

cm2 , gL = 2 mS
cm2 , gCa = 4 mS

cm2 ,

C = 20 μF
cm2 , Va = −1.2 mV , Vb = 18 mV , Vc = 2 mV , and Vd =

30 mV . I1, I2 and φ1, φ2 vary for each figure.
To get the phase from the noisy voltage signal generated by

the ML model, we first apply the Hilbert transform (HT) to V(t)
which allows us to get a phase. However, the phase is not uni-
form as it is not a temporal phase. We then map the HT phase to
a temporal phase on the noise-free limit cycle which gives a uni-
form phase-distribution as required by the theory. This allows us
to estimate R(φ) for the biophysical model, where φ here is the
phase difference between two ML model neurons that are driven
with partially correlated noise.

In some of the figures, we simulate the phase-reduced dynam-
ics for the ML model. To do this, we must compute the
infinitesimal PRC, �ML(θ). As described in Appendix, the PRC

for the model is the voltage component of the solution to
the adjoint equation (Equation 32). The software package XPP
(Ermentrout, 2002) includes an algorithm for computing the
adjoint solution for an exponentially stable limit cycle, so we
simply compute various limit cycles (say with very different
parameters but similar periods) and then compute �ML(θ) for
those specific parameters. We save the result as a lookup table and
then numerically solve the phase equation.

2.5. NUMERICS
To get solutions to the stochastic phase and membrane equations,
we use the Euler-Murayama method. We solve the BVP for the
stationary phase difference density using a custom BVP solver
written in MATLAB. All codes are available by request.

3. RESULTS
3.1. APPROXIMATION OF THE PHASE DIFFERENCE DENSITY
Oscillators driven with a correlated fluctuating signal will exhibit
a degree of synchronization that depends on the size of the sig-
nal, the strength of correlation, and the similarity of the two
oscillators. Thus, for example, identical oscillators driven by
small enough identical white noise will synchronize perfectly
(Pikovsky et al., 1997; Teramae and Tanaka, 2004). The rate
at which these identical oscillators synchronize depends on the
properties of the noise - in particular, its autocorrelation (Nakao
et al., 2007; Goldobin et al., 2010). In general, and especially
in biological systems, there will be a great deal of heterogene-
ity in any pair of oscillators. For example, for neurons, there
is always some source of independent noise so that the input
correlation is always less than 1. The neurons may also be fir-
ing at slightly different frequencies. Finally, even if the neurons
are adjusted to fire at the same frequency, their distribution of
ion channels can be very different and, thus, their response to
correlated signals can be quite different (Burton et al., 2012).
If the fluctuating inputs are sufficiently small, then any sta-
ble limit cycle oscillator can be reduced to a so-called phase
model where the dynamics are characterized by a single vari-
able, the phase, such that the firing is considered to occur at
a phase of 0 and the time between spikes is mapped onto an
angle between zero and 2π. Here, we consider driven pairs of
heterogeneous oscillators that receive partially correlated filtered
noise. As our main examples come from neuroscience, we assume
that the external inputs are implemented as currents, in which
case the phase model for the pair of neural oscillators has the
form:

θ′
1 = 1 + ε�1(θ1)x(t)

θ′
2 = 1 + ε2ω + ε�2(θ2)y(t)

where x(t) and y(t) are OU processes with the same time
constant, τ, and with correlation c; �1,2(θ) are the PRCs for
the two oscillators; ε is a small positive parameter (charac-
terizing the magnitude of the fluctuations); and ω accounts
for the frequency difference in the unperturbed oscillators (see
Materials and Methods, Equations 2–5). We are primarily inter-
ested in the distribution of the phase difference, φ := θ2 −
θ1. In the Appendix (Equation 62), we show that R(φ), the
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probability density function for the phase difference, satisfies a
simple BVP:

d

dφ
{[c · g(φ) − C1]R(φ)} + (4πω − C2)R(φ) = K

R(φ) = R(φ + 2π)

g(φ) = g(φ + 2π)∫ π

−π

R(φ)dφ = 1

K = 2ω − C2

2π

The 2π−periodic function g(φ) and the constants, C1,2, depend
in a complicated way on the forms of the PRCs and the time con-
stant of the noise, τ (see Appendix). However, all quantities can
be found by integrating elementary functions. If the oscillators
have the same PRC, then C2 = 0 and g(φ) is even symmetric.
If the oscillators have the same frequency, then ω = 0. When
both C2 and ω vanish, we can immediately solve the BVP, yield-
ing R(φ) = N/(C1 − cg(φ)), where N is a normalization constant
so that the integral is 1. This is the result found in Marella and
Ermentrout (2008) for white noise, but is clearly also true for
colored noise. When the oscillators are identical and there is no
difference in frequencies, the phase difference density is symmet-
ric and always peaks at 0. However, when ω − C2 is nonzero,
the peak of the phase difference density will generally be off-
set. We note that ε does not appear in the expression for R(φ),
which says that the phase difference density is, to a first approx-
imation, independent of the amplitude of the noise. Figure 1
shows typical results comparing the perturbation calculation and
the simulation of the Langevin equation. In Figure 1A, at fairly
high noise ε = 1, there is some distortion at the peak of the
distribution, but as predicted from the theory, the distribution
magnitude is largely independent of the magnitude of the fluctua-
tions. Figure 1B shows a similar simulation, but the correlation of
noise is lower (c = 0.5 vs. c = 0.8), the noise is faster (τ = 0.25 vs.

FIGURE 1 | Novel analytical theory of correlated colored noise-induced

synchronization of heterogeneous oscillators matches Monte Carlo

simulations for low to moderate levels of noise. Stationary phase
difference density is shown as computed from the solution of the BVP and
through Monte Carlo simulation from t = 1000 to t = 201000 in steps of
0.05. Monte Carlo data binned into 100 bins between −π and π. There is a
frequency difference of ε2/2 where ε is the magnitude of the noise. Here
�j (θj ) = sin(aj ) − sin(θj + aj ) + bj sin(2θj ), where j = 1, 2 for two
oscillators. (A) τ = 1, a1 = 0.1, a2 = 0.6, b1 = 0.32, b2 = 0.3, and c = 0.8.
(B) τ = 0.25, a1 = a2 = 0.5, b1 = b2 = 0.3, and c = 0.5.

τ = 1), and the PRCs are identical. In this case, even the higher
noise simulations match the theory. We once again emphasize
that the perturbation expansion requires a small value of ε, but
clearly, the simulations show that ε can be nearly 1 and still yield
good agreement.

We note that the density of the phase differences can be related
to more conventional measures of correlation. In Burton et al.
(2012), we showed that the spike time cross-correlation (CC)
between a pair of weakly noisy oscillators is:

CC(τ) = 1

2π

[
R(−τ) − 1

2π

]
(20)

For example, if the oscillators are asynchronous, then they have
a uniform phase difference density and the cross-correlation
will be 0. This calculation confirms ones intuition that differ-
ent neurons that receive correlated noise will have spike time
cross-correlations that peak off-center.

Figure 2 shows that we can apply the theory through two
levels of simplification. The ML system is a simple, biophysi-
cally realistic model for a spiking neuron (Rinzel and Ermentrout,
1989). With different choices of parameters, the onset to oscilla-
tory behavior can be either through a Hopf bifurcation (HB) or a
saddle-node on an invariant circle (SNIC) bifurcation. The PRCs
that result from these distinct bifurcations are often quite differ-
ent (Brown et al., 2004; Izhikevich, 2007) and thus have quite
different synchronization properties. In Figure 2, we tune the ML
model so that each cell has the same frequency but the parameters
are quite different and so the PRCs are different (see Figure 2B).

FIGURE 2 | Analytical theory accurately predicts synchronization of

biophysically realistic spiking neuron models. (A) Invariant phase
difference density computed from the reconstructed phase of two ML
model neurons receiving partially correlated colored noise (period is
91.25 ms, τ = 5 ms, c = 0.8). Three cases are illustrated with either
identical (homogeneous) or mixed (heterogeneous) PRCs. The “Hopf” case
corresponds to a set of parameters where the oscillatory activity arises via
a HB and the “SNIC” case through a SNIC bifurcation (Rinzel and
Ermentrout, 1989); see Appendix for parameters. (B) PRCs for the two
cases. (C) Same as (A), but using simulations of the phase reduced
equations. (D) Solutions to the BVP using the PRCs from (B).
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In Figure 2C, we show the results of a Monte Carlo simulation in
which the biophysical model is driven by correlated noise. Phase
is reconstructed from the voltage traces using a Hilbert transform
and from these, we obtain phase difference histograms. In this
figure, the correlation c is 0.8, τ = 5 ms, and the natural period
of the oscillation is 91.25 ms. For the same degree of correla-
tion, two HB oscillators are much better at synchronizing than
are two SNIC oscillators. This result is consistent with the the-
ory developed in Marella and Ermentrout (2008) for white noise
and also for spike time correlations over fast timescales (i.e., spike
synchrony) (Barreiro et al., 2010). At this high correlation, the
heterogeneous HB-SNIC pair shows greatly reduced synchrony
from either of the homogeneous cases and a shift in the peak
even though there is no frequency difference. Figure 2B shows the
two PRCs that were determined using the adjoint method. We
then used these PRCs to compute the invariant densities for the
corresponding phase reduced models. The invariant density is
a function that describes the distribution of phase differences
of the two neurons over some time interval consisting of many
cycles. Thus, the peak of the invariant density indicates the most
likely phase difference, and a large peak at zero phase differ-
ence would indicate that the two neurons are well synchronized.
Comparison between Figures 2A,C shows excellent agreement.
Finally, we substituted the numerically computed PRCs into our
BVP and computed the invariant density. The result of this cal-
culation is shown in Figure 2D. There are small differences in the
amplitude, but the shapes and the shift of the densities in the het-
erogeneous case are almost identical. Thus, through two levels of
reduction (first, from the full model to the phase model, and sec-
ond, from the Langevin phase model to the approximate invariant
density), we see that our analytical method works very well at esti-
mating the invariant density of phase differences between neural
oscillators.

3.2. PRC HETEROGENEITY
Our approximation of the invariant density, while requiring that
we solve a BVP, allows us to explore the effects of heterogeneity
much faster than simulating the appropriate Monte Carlo system.
Thus, we will use this method to explore the effects of PRC het-
erogeneity, frequency differences, and the color of the noise on the
ability of oscillators to synchronize. One simple global measure
of synchrony/correlation for systems whose natural dynamics
are periodic is the circular variance, σcircle = 1 − OP, where we
define an order parameter (OP) (see Materials and Methods,
Equation 10):

OP =
[(∫ π

−π

R(φ) cos φ dφ

)2

+
(∫ π

−π

R(φ) sin φ dφ

)2
] 1

2

For a flat distribution, OP = 0 (σcircle = 1) and for a delta func-
tion distribution, OP = 1 (σcircle = 0). The OP is a commonly
used measure for the degree of synchronization between two
oscillators (Kuramoto, 2003).

In general, one expects that the synchrony between two oscil-
lators forced with correlated noise would be greatest if the oscil-
lators are homogeneous. Certainly, if the inputs are identical

(i.e., no independent or unshared noise), then identical oscillators
will synchronize perfectly, while heterogeneous oscillators will not
synchronize perfectly. That is, the phase density will not be a
delta function. [See Burton et al. (2012) for a proof]. However,
surprisingly, at low input correlations, it is possible for a hetero-
geneous pair of oscillators to produce greater synchrony than one
(but not both) of the respective homogeneous pairs of oscillators.
Figure 3 illustrates the behavior of two separate homogeneous
pairs of oscillators (blue and green lines, respectively) as the input
correlation varies from 0 to 1. A third, heterogeneous pair com-
prised of an oscillator from each homogeneous pair is shown in
red. Figure 3A shows the two different PRCs; pairs of oscillators
with the green PRC (“PRC 1-PRC 1”) produce weaker synchrony
than pairs of oscillators with the blue PRC (“PRC 2-PRC 2”).
This is demonstrated in Figure 3B, where the correlation is set
to 0.8. Note that the phase difference density for PRC 2-PRC
2 pair is more peaked than that for PRC 1-PRC 1 pair, while
both densities are more peaked than the heterogeneous “PRC
1-PRC 2” pair. As noted above, the peak of the heterogeneous
pair is not at the origin but rather, is shifted to the left. In order
to get a global measure of synchrony, we plot OP as a function
of the input correlation (Figure 3C). As c → 1, both homoge-
neous pairs approach OP = 1 (i.e., perfect synchrony) while the
heterogeneous pair never exceeds OP = 0.4. However, at low cor-
relations, the heterogeneous pair can actually synchronize better
than the PRC 1-PRC 1 pair (compare red to green lines in inset).
That is, in the presence of low correlations, a “good synchro-
nizer” paired with a “bad synchronizer” performs better than the
homogeneous pair of bad synchronizers. This effect is not just due

FIGURE 3 | Oscillator heterogeneity can enhance correlated

noise-induced synchronization at low input correlations. (A) Two PRCs
with the form �j (θj ) = sin(aj ) − sin(aj + θj ) + bj sin(2θj ), a1 = 0.1,
b1 = 0.32, a2 = 0.6, and b6 = 0.3. (B) R(φ) with different combinations of
PRCs. Blue: PRC 2-PRC 2; red: PRC 1-PRC 2; green: PRC 1-PRC 1. Solid
lines are theoretical predictions from the solution to the BVP and open
symbols are Monte Carlo simulation results (same notation applies in
following figures). Parameters used: τ = 1 and c = 0.8. (C) Synchronization
as input correlation varies from 0 to 1; inset shows magnification when
c < 0.5. (D) Same as (C), but using the ML model. Parameters used:
I1 = 110, φ1 = 0.04616, I2 = 120, and φ2 = 0.04.
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to our approximate expansion as the Monte Carlo simulations
show the same phenomenon. Figure 3D further hints that we can
also see the effect in the full ML model, although the results are
not as clear.

3.2.1. Experimental evidence
Could this subtle difference in the ability of neural oscillators to
transfer correlation be seen in experiments? To answer this, we
re-examined data from a previous study (Burton et al., 2012).
Mitral cells from the mouse main olfactory bulb were injected
with constant current overlaid with frozen noise to evoke noisy
periodic firing. PRCs were then experimentally estimated using
our previously described method using the spike-triggered aver-
age (Ermentrout et al., 2007). [Complete methods are provided

in Burton et al. (2012)]. In this dataset, we found several exam-
ples where injecting partially correlated noise produced greater
synchrony between two different mitral cells firing at the same
rate than for one of the mitral cells across different trials (experi-
mentally simulating a homogeneous pair of mitral cells). Figure 4
illustrates an example. In Figure 4A, we show the voltage traces
(top) of two mitral cells receiving correlated inputs, and the spike
times (middle) and phase (bottom) as determined by a simple lin-
ear interpolation between spikes. Figure 4B shows the PRCs from
each of these two cells along with their fit to the exponential-sine
PRC model (see Appendix, Equation 64). In Figure 4C, we show
the phase difference density as constructed from the linear phase
interpolation of the two cells. In this example, the currents deliv-
ered through the electrodes are perfectly correlated. However,

FIGURE 4 | Physiological neuronal heterogeneity can enhance correlated

noise-induced synchronization at low input correlations. (A) Example
linear interpolation of phase between recorded spike times of two mitral cells
injected with perfectly correlated colored noise. Top: experimentally recorded
membrane potentials. Middle: raster plot of spike times. Bottom: phase. (B)

Experimentally estimated PRCs for the two cells shown in (A). Dashed lines
are fits of the exponential-sine PRC model to the estimated PRCs. (C) Phase
difference densities of the two cells during injection of perfectly correlated
currents. Densities were calculated from pairs of 5 sec recordings. Blue and
green curves show densities for homogeneous pairs of cell 1 and cell 2,
respectively. The red curve shows the density for the heterogeneous pair of
cell 1 with cell 2. (Di) Experimental and (Dii) theoretical OP vs. input
correlation for homogeneous and heterogeneous pairs of the two mitral cells.
Theoretical curves calculated by solving the BVP with the model PRC fits and
τ = 5. [Note that the same results were obtained in separate calculations for
τ = 3, the time scale of the noise used in Burton et al. (2012)]. (Ei–Eii) Mean
OP (±SEM) vs. input correlation across 85 pairs of mitral cells (formed from
27 separate mitral cell recordings described in Burton et al. (2012)). For each

pair, the cell with the greatest area under its homogeneous OP vs. correlation
curve was classified as the “good synchronizer” of the pair. (Fi) Theoretical
OP vs. input correlation (with τ = 3) for each of the 85 heterogeneous pairs
from (E) (light red lines), plotted against the theoretical OP vs. input
correlation of a homogeneous pair formed from the average mitral cell PRC.
Note that many (but not all) of the heterogeneous pairs exceed the
homogeneous pair in the low correlation range shown. On average (dark red
line), physiological heterogeneity enhances synchrony for input correlations
up to ∼0.27. (Fii) Magnification of the homogeneous and average
heterogeneous lines from Fi for low input correlations. (Gi) Percent and (Gii)

absolute change in theoretical OP for heterogeneous vs. homogeneous bad
pairs of mitral cells. Black lines plot OP changes for pairs in which
heterogeneity increased synchrony at low input correlations; magenta line
plots mean OP enhancement (±SEM) for these pairs. Grey lines plot OP
changes for pairs in which heterogeneity did not increase synchrony. Note
that heterogeneity mediates the greatest percent increase in OP at low
(<0.1) input correlations, similar to experimental results shown in (E). Inset
shows magnification when |�OP| < 0.03.
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unlike the simulations, the neurons themselves are intrinsically
noisy, so there is a substantial component of “private” noise.
Nevertheless, one can see that cell 1 (blue) synchronizes better
across trials than does cell 2 (green) across trials. Figures 4Di,Dii
show the OP as reconstructed from the experimental data and as
obtained by using the computed PRCs, respectively. This shows
that at low correlations, the heterogeneous pair (“1–2”) can syn-
chronize better than the “2–2” homogeneous pair (but not the
“1–1” homogeneous pair). The inset in 4Dii magnifies the low c
region.

Are the results presented in Figures 4A–D for a single pair of
mitral cells consistent across a larger population of mitral cells?
To answer this, we examined recordings from 27 regularly fir-
ing mitral cells, from which we were able to form 85 different
pairs of mitral cells with highly similar (≤5 Hz difference) fir-
ing rates. For each pair of mitral cells, we computed the OP
across varying input correlations for both homogeneous com-
binations and the heterogeneous combination. We automatically
classified the mitral cell with the greatest homogeneous OP across
all levels of input correlation as the “good synchronizer” of the
mitral cell pair. Figure 4E shows the mean OP vs. correlation
across the 85 good, bad, and heterogeneous mitral cell pairs.
Note that, even with this relatively insensitive classification of
good vs. bad synchronizers, there is a region at low input corre-
lations where, on average, heterogeneous pairs synchronize better
than the bad homogeneous pairs. This phenomenon is seen more
clearly when we use the experimentally estimated PRCs and the
BVP to compute the OP vs. input correlation. Figure 4Fi plots
OP vs. c for all heterogeneous pairs (light red lines), the mean of
the heterogeneous pairs (dark red line), and the OP for a single
homogeneous pair whose PRC is the mean of all the PRCs (black
line). For many cases (but not all), heterogeneity increases the OP
above that achieved by a uniform population of neural oscilla-
tors with the mean PRC. Figure 4Fii magnifies the mean OP vs. c
curves at low correlation; the red curve is clearly higher than the
black curve.

We then quantified the degree to which physiological levels of
heterogeneity [as experimentally measured in mitral cells (Burton
et al., 2012)] can enhance synchrony between neural oscillators.
Using the BVP and our experimentally estimated mitral cell PRCs,
we calculated the percent and absolute change in OP for all 85 het-
erogenous vs. homogeneous bad mitral cell pairs. That is, for the
example pair in Figure 4Dii, we subtracted the green from the red
line to calculate the absolute change in OP, and divided this dif-
ference by the green line to calculate the percent change in OP.
Figures 4Gi,Gii plot the results of this analysis for all 85 pairs.
In 26 of these pairs (plotted in black), heterogeneity enhanced
synchrony at low input correlations, with a mean increase in
OP (plotted in magenta; ±SEM) of up to 36%. Thus, in rela-
tive terms, physiological levels of heterogeneity can significantly
enhance correlated noise-induced synchrony at low input correla-
tions. While this relative enhancement in synchrony corresponds
to an admittedly low absolute increase in OP of up to 0.01 on
average (Figure 4Gii), we nevertheless expect this phenomenon
to significantly contribute to patterns of oscillatory synchrony
in the olfactory bulb and potentially other brain regions (see
Discussion).

3.2.2. Good vs. bad synchronizers
When is a neuron a good vs. bad synchronizer? Here, the BVP is
much simpler since we just have to compare homogeneous pairs.
In this case, the probability density function can be written as:

R(φ) = N

1 − c g(φ)
g(0)

(21)

where N is a normalization and g(φ) is defined above by setting
n = m. For low values of c, we get:

R(φ) ≈ N

[
1 + c

g(φ)

g(0)

]
(22)

and integrating, we can find N:

1

N
≈ 2π

[
1 + c

1

2π

∫ 2π

0
g(φ)/g(0) dφ

]
(23)

Since the two neurons are identical, the peak of R(φ) occurs at
φ = 0 and, so, we can estimate the zero lag cross-correlation as
[R(0) − 1/(2π)]/(2π). Using the approximations above, we see
that:

CC ≈ c

2π

(
1 − 1

2π

∫ 2π

0

g(φ)

g(0)
dφ

)
:= cS (24)

That is, the cross-correlation is linearly proportional to the input
correlation (for small c) and this factor [called the susceptibil-
ity (de la Rocha et al., 2007)], is a simple function of g(φ). We
can maximize S if we can make the integral as small as possi-
ble. Note that g(φ) is periodic, and the integral over a period
is proportional to the constant Fourier coefficient. Recall that
g(φ) is a low-pass filtered version of h(φ), which is the auto-
correlation function of the PRC. Thus, h(0) is positive and so
is g(0). The integral of g(φ) is proportional to the integral of
h(φ), which is just 2πa2

0 where a0 is the DC component of
the PRC. Hence, we can minimize the integral and maximize
the correlation transfer (susceptibility) if we mimimize the DC
component of the PRC. This fact generalizes the conclusions in
Marella and Ermentrout (2008) and Abouzeid and Ermentrout
(2009) that state that more sinusoidal PRCs are the best syn-
chronizers. For example, with a PRC of the form (sin(a) −
sin(x + a)) exp(C(x − 2π)), we obtain the best synchrony when
a = − arctan C.

Can we determine when a pair of oscillators will have the prop-
erty that a good-bad heterogeneous pair is better than a bad-bad
homogeneous pair? Since the effect is only seen at low corre-
lations, this suggests a perturbation expansion for small c. We
write R(φ) = ∑

cnRn(φ) and find that R0 is constant and so to
order 1, R(φ) = R0 + cR1(φ). From this, we can compute OP,

OP = c
∫ 2π

0 cos φR1(φ) dφ. The formulas for this are not terribly
useful, but we can illustrate the results with a simple example. Let
�j(φ) = sin(aj) − sin(φ + aj), where j = 1, 2 for two oscillators.
Then:

OPjk = c
K

1 + (
τ2 + 1

) [
sin2 aj + sin2 ak

] (25)
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Thus, for 0 ≤ a1 < a2 ≤ π/2, we always have OP11 > OP12 >

OP22 for all τ and sufficiently small values of c. This provides a
simple and surprising illustration that heterogeneity will improve
synchrony at low correlations for very simple PRCs. We remark,
however, that this phenomenon does not always hold. Pairs of
PRCs can be found such that OP is always bigger for both of
the homogeneous oscillator pairs than for the heterogeneous
oscillator pair, as can be seen from Figures 4F,G.

3.2.3. PRC heterogeneity tunes the sharpness and peak position of
the phase difference density

If two neurons are identical but driven with partially correlated
noise, then the peak of the phase difference density will be cen-
tered at φ = 0, which means that the two oscillators will tend
to have the same phase. However, with heterogeneity, the peak
will shift depending on the degree of heterogeneity, just as two
coupled oscillators will shift if they have different intrinsic fre-
quencies. Figure 5 shows how the peak of the phase difference
density is shifted by oscillator heterogeneity. Using the two term
double sinusoidal form PRC (Equation 63), we keep PRC 1 con-
stant (a1 = 0.1, b1 = 0.32) as we vary PRC 2 (b2 = 0.3 is constant
and a2 varies from −π to π). From the results shown in Figure 5,
we can conclude that heterogeneity can tune oscillator synchro-
nization in both the sharpness and peak position of the phase
difference density, which might be useful in neural signal coding.
We also note that OP is minimized when the peak is at ±π/2 and
that “changing the sign” of the PRC (e.g., setting a2 = π) shifts
the peak but has very little effect on the OP.

3.3. FREQUENCY DIFFERENCES HIGHLY LIMIT SYNCHRONIZATION
In the above results, we assume that all oscillators have the
same natural frequency, which means ω = 0. This is a somewhat
unreasonable assumption for real neurons. Thus, we now study
how synchronization is dependent on the frequency differences
between oscillators. Figure 6 shows the effects of frequency dif-
ferences on a pair of oscillators that have different PRCs (of the
two term double sinusoidal form, Equation 63) and are driven by
partially correlated noise. With no frequency difference, the het-
erogeneity in oscillator PRCs yields a shift in the peak position
(Figure 5), consistent with previous measurements of synchrony
between irregularly firing neurons (Tchumatchenko et al., 2010).
This means that, if frequency differences can shift the peak in the

FIGURE 5 | PRC heterogeneity tunes the sharpness and peak position

of the phase difference density. OP vs. a2 (black axis) and the peak
position of the phase difference density vs. a2 (grey axis). Parameters used:
a1 = 0.1, b1 = 0.32, b2 = 0.3, τ = 1, and c = 0.8.

opposite direction [e.g., see Figure 1C of Burton et al. (2012)],
then changes in frequency could “cancel” the effects of PRC het-
erogeneity so that the peak of the phase difference density is at 0.
This cancellation can be seen in Figure 6 near ω = 0.2. However,
this cancellation comes at a loss to precision, as seen by the
decrease in OP. While not shown, we remark that the drop in
OP is symmetric about ω = 0; thus, a negative frequency differ-
ence will not result in a larger OP. While it remains to be proven,
we conjecture that the OP is always maximal when there is no
frequency difference. This differs from the case that we looked
at in the previous section where heterogeneity (in PRCs) can
sometimes lead to a larger OP than homogeneity.

3.4. CORRELATED NOISE-INDUCED SYNCHRONIZATION IS
DEPENDENT ON THE TIME CONSTANT OF THE NOISE

Because of the natural decay times of synapses, broadband inputs
into neurons have some temporal correlations. Thus, we now
explore how the temporal properties of noise interact with het-
erogeneities in the PRCs. Figure 7 shows that synchronization
decreases monotonically as τ increases for ω = 0, while there
exists an optimal value of τ that achieves the greatest synchroniza-
tion for ω = 0.5. This means synchronization of two oscillators
with different frequencies (i.e., ω = 0) can have a resonance
with τ. Furthermore, as seen in Figures 7B,D the peak of the
phase difference density depends on τ only when there is a fre-
quency difference between the two oscillators. In Figure 8, we
explore this resonance in more detail where R(φ) is plotted as τ

varies. The left panels (showing the solution to the BVP and the
results of Monte Carlo simulation) show that when ω = 0, the
peak position of R(φ) is largely unchanged and the magnitude
decreases monotonically with τ. There is a sharp drop off in R(φ)

at τ ≈ 2. A different result emerges in the right panels, where a
frequency difference exists (ω = 0.5). At low and high values of
τ, R(φ) is almost flat with a distinct resonance when τ ≈ 1. We
see the same resonance in the biophysical ML model when the
neurons have different frequencies and different PRCs (Figure 9).

We can see why the frequency differences are needed for res-
onance by considering the simplest example of identical PRCs
of the form �(φ) = sin a − sin(φ + a). In this case, we solve the
BVP:

G(φ, τ)R(φ)

dφ
= α

1 + τ2

τ
(R(φ) − 1) (26)

FIGURE 6 | Frequency differences limit noise-induced synchronization.

OP decreases quickly as frequency differences increase (black axis). The
peak position of the phase difference density is shifted by changing
frequency differences between two oscillators (grey axis). Parameters used
here: a1 = 0.1, b1 = 0.32, a2 = 0.6, b2 = 0.3, τ = 1, and c = 0.8.
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FIGURE 7 | Frequency differences between oscillators change the

dependence of synchrony on the time constant of the correlated noise.

(A) OP and (B) the peak position of the phase difference density for
oscillators with no frequency difference (ω = 0). (C) OP and (D) the peak
position of the phase difference density for oscillators with a frequency
difference (ω = 0.5). Parameters used: a1 = 0.1, b1 = 0.32, a2 = 0.6,
b2 = 0.3, and c = 0.8.

FIGURE 8 | Synchronization of oscillators with different frequencies

resonates with the time constant of the correlated noise. (A) BVP
solution and (C) results of Monte Carlo simulation for R(φ) between two
oscillators with no frequency difference (ω = 0) as τ varies. X-axis shows
the phase difference, φ, and higher R(φ) is plotted as hotter colors in the
heat map. (B) and (D), same as (A) and (C) for two oscillators with a
frequency difference (ω = 0.5). Parameters used: a1 = 0.1, b1 = 0.32,
a2 = 0.6, b2 = 0.3, and c = 0.8.

where G(φ, τ) = (1 + τ2) sin(a)2 + 1 − c cos φ. Here, α is pro-
portional to the frequency difference. In particular, note that
when ω = 0, G is independent of τ and otherwise, τ acts
to weaken the correlated noise-induced synchronization as it
increases the part of G that is not phase dependent. However,

FIGURE 9 | Frequency differences between biophysically realistic

spiking neuron models change the dependence of synchrony on the

time constant of the correlated noise. (A) OP and (B) peak position for
model neurons with different PRCs but the same frequency
(I1 = 120,φ1 = 0.04, I2 = 110, and φ2 = 0.04616). (C) OP and (D) peak
position for model neurons with different PRCs (same as above) and slightly
different frequencies (I1 = 120,φ1 = 0.041, I2 = 110, and φ2 = 0.04616).

the right side of this equation shows that the effect of the fre-
quency difference is minimized when τ = 1, and thus we expect
resonance in the OP. This effect disappears when α = 0.

4. DISCUSSION
In our current study, we have extended a number of previous
results describing the ability of neural oscillators to synchronize
in the presence of correlated noise. Our methods are similar to
those in Burton et al. (2012), with the additional aspect that we
now use colored noise (OU process). The properties of the noise
show up only through a convolution of the autocorrelation func-
tion of the noise with the phase functions hnm(φ) that, in turn,
depend only on the PRCs (see Appendix, Equation 56). Thus, we
could easily generalize this work to noise with an arbitrary auto-
correlation function. In addition, we have now included many
more examples of the theory and shown that the conclusions
from the perturbation theory continue to be valid for full bio-
physical models (cf. Figure 2). Further, we have shown that for
low input correlations, heterogeneity can actually improve syn-
chrony both pairwise and in large populations. We demonstrated
that this theoretical effect can be seen in experimental recordings
of regularly firing olfactory bulb mitral cells. Thus, we have sig-
nificantly extended the findings presented in Burton et al. (2012),
and our results on colored noise further suggest some experimen-
tally testable phenomena, such as the resonance seen in slightly
detuned oscillators (Figures 7–9). These novel findings and their
biological implications are discussed in more detail below.

4.1. HETEROGENEITY CAN IMPROVE SYNCHRONY
We found that correlated noise can synchronize a heterogeneous
pair of oscillators (comprised of a “bad synchronizer” and a
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“good synchronizer”) better than a homogeneous pair of bad
synchronizers at low levels of input correlation and verified this
experimentally. We showed that good (bad) synchronizers are
characterized by having a relatively low (high) DC component in
their PRC. Consistent with this, oscillators with the generic “type
II” PRC (i.e., sin φ) are better synchronizers than oscillators with
the generic “type I” PRC (i.e., 1 − cos φ).

Several authors have previously studied the effects of het-
erogeneity on the transfer of correlation. As we noted in
Introduction, at low correlations, the output correlation is lin-
early proportional to the input correlation through a factor, S,
called the susceptibility (de la Rocha et al., 2007; Shea-Brown
et al., 2008). If we let S(A, B) denote the susceptibility for two
neurons, A, B, then what we have found in our current study
is that in some cases, S(A, A) > S(A, B) > S(B, B). Note that
in our study, we are looking at output correlation related to
spike-to-spike synchronization, whereas in many other studies
of output correlation, the interest is in spike count correlation.
We can regard our measure of synchrony as the same as spike
count correlation, but over a time window that is of the order
of the mean interspike interval. In a recent paper, (Shea-Brown
et al., 2008) showed that for spike count correlation, S(A, B) =√

S(A, A)S(B, B) and thus, trivially, we can obtain S(A, A) >

S(A, B) > S(B, B) when A is “better” than B at transferring cor-
relation. We want to emphasize that their result is for long time
windows (that is, the window length tends to infinity). Which
neurons are better than others at the transfer of correlation
depends very strongly on the window of time through which
you measure the correlation. Indeed, Barreiro et al. (2010) and
Abouzeid and Ermentrout (2011) showed that type II PRCs have
larger susceptibilities than type I for short time windows (i.e.,
spike synchrony) but the trend is reversed for large time windows
(i.e., rate correlation).

Interestingly, the efficiency of correlated-noise induced syn-
chronization is also modulated by firing rate in the low input
correlation regime (de la Rocha et al., 2007; Tchumatchenko
et al., 2010). Given that changes in firing rate can modulate PRC
shape in biophysically realistic neuron models and in real neurons
(Gutkin et al., 2005; Marella and Ermentrout, 2008; Stiefel et al.,
2008, 2009; Schultheiss et al., 2010; Fink et al., 2011; Burton et al.,
2012), whether or not (and the degree to which) PRC hetero-
geneity will enhance synchrony may depend in part on the firing
rate. However, in the simplest cases (such as models like the leaky-
integrate and fire model and the theta model), the only effect of
the firing rate on the shape of the PRC is to change its amplitude.
Since amplitude (but not shape) changes can be absorbed into the
size of the noise, and our theory shows that the phase difference
density is independent of the size of the noise (at least, if it is small
enough), changes in firing rate will have no effect on the synchro-
nization of pairs of neurons firing at the same or nearly the same
rates.

The ability of cellular heterogeneity to regulate which oscilla-
tors synchronize best as a function of input correlation likely con-
tributes to coding in many neural systems. In the olfactory bulb,
where oscillatory synchrony appears to be critical to olfactory
coding [for review, see Bathellier et al. (2010)], tens of “sister”
mitral cells are linked to each glomerulus where they receive

highly correlated afferent input (Carlson et al., 2000; Schoppa
and Westbrook, 2001). Each sister mitral cell of a glomerulus may
also participate in independent (i.e., unshared) lateral inhibitory
circuits with non-sister mitral cells of surrounding glomeruli,
mediated by local inhibitory granule cells (Dhawale et al., 2010;
Tan et al., 2010). On average, sister mitral cells are thus subject to
high input correlations while non-sister mitral cells are subject to
low (though non-zero) input correlations (Dhawale et al., 2010).
Further, we and others have demonstrated that mitral cells exhibit
substantial cell-to-cell heterogeneity (Padmanabhan and Urban,
2010; Angelo and Margrie, 2011; Angelo et al., 2012; Burton et al.,
2012). Based on our current results, this heterogeneity will thus
act to reduce output synchrony of sister mitral cells but enhance
output synchrony of non-sister mitral cells. Thus, in the context
of the olfactory system, heterogeneity will promote encoding of
combinatorial sensory information (i.e., activation of non-sister
mitral cells by odor combinations).

Our results suggest that heterogeneity can only enhance
correlation-induced synchronization by a moderate amount
between two neural oscillators (up to 36% in BVP solutions
using mitral cell PRCs). Two properties of the olfactory bulb
nevertheless suggest that even this moderate effect can signifi-
cantly influence patterns of oscillatory synchrony in the olfac-
tory system. First, the reciprocal dendrodendritic connectivity
between mitral cells and granule cells enables activity-dependent
regulation of granule cell recruitment (Arevian et al., 2008),
which can lead to amplification of granule cell-mediated corre-
lated noise-induced synchronization (Marella and Ermentrout,
2010). Second, mitral cells separated by up to ∼2 mm can
engage in lateral inhibitory interactions (Egger and Urban,
2006), thus multiplying the synchrony-enhancing effect of cel-
lular heterogeneity across a potentially large fraction of the
∼40,000 total mitral cells per mouse olfactory bulb (Benson
et al., 1984). Whether neural oscillator heterogeneity exists in,
and significantly enhances, correlated-noise induced synchrony
in other brain regions remains a promising topic of future
research.

4.2. RESONANCE
In addition to the above findings, we found that there exists
some resonance of correlated noise-induced synchronization with
respect to the time scale of the noise. That is, we found a local
maximum in OP as the time scale of the correlated noise var-
ied. Surprisingly, this only occurs when there is a difference in
the frequencies between the two oscillators. The requirement for
the frequency difference would seem to contradict earlier work
(Galán et al., 2008), where it was found that the Liapunov expo-
nent was most negative when the noise has a particular time scale.
However, when the noise is only partially correlated, the uncor-
related part of the noise causes a drift in the phase difference.
The degree of this drift is also dependent on the time scale of
the noise, and thus the two effects cancel. A frequency difference
breaks this symmetry by adding an additional drift term, which
prevents one from factoring out the resonance. A frequency dif-
ference thus leads to a dependence of OP on the time scale of
the noise. We have not yet tested this idea experimentally, but it
seems to be quite robust, having been found in both the simple
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phase models (Figures 7, 8) and in the biophysical ML model
(Figure 9).

4.3. LIMITATIONS OF THE THEORY
The analysis that we have done in this paper and in our earlier
papers requires that the neurons fire almost periodically. This
means that the activity of the neurons is mean driven rather than
fluctuation driven so that the coefficient of variation of the inter-
spike intervals should be small. While this may not be the case in
all areas of the brain, there are many regions, such as the olfactory
bulb, where the firing rate can be quite regular and synchronous
as indicated by the large rhythmic local field potentials. Assuming
that the neurons are firing at a fairly regular rate, it is also reason-
able to ask how well the PRC describes such noisy neurons. An
extensive review of the caveats of PRC theory for real neurons can
be found in Smeal et al. (2010). Another issue is the actual esti-
mation of the PRCs in the presence of noise. Several studies have
shown that background synaptic activity and other forms of noise
do not significantly affect the shape of the PRC (Ermentrout et al.,
2011; Netoff et al., 2012).

In conclusion, we have extended our previous work
to demonstrate that oscillator heterogeneity and frequency
differences interact with the time scale of input noise
to regulate how correlated noise synchronizes uncoupled
oscillators.

4.4. DATA SHARING
All codes are available by request from the authors. They include
Matlab and XPPaut files.
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APPENDIX
REDUCTION TO A PHASE MODEL
Consider a general oscillator receiving a possibly noisy time-dependent signal:

dX

dt
= F(X) + εN(X, t) (27)

Here N(X, t) is the external or imposed inputs into the system. For single compartment neural models, N will typically only affect the
membrane potential, e.g., as an injected or synaptic current. We assume that X′ = F(X) has as a solution an exponentially stable limit
cycle, U(t + T) = U(t) and that ε is a small positive parameter characterizing the magnitude of the input. We are interested in how
the phase of the limit cycle evolves in time in the presence of small inputs. The phase of a limit cycle is easy to define when a point
lies on the limit cycle. For example, for neurons, the phase is just the time since the last spike of the cell. However, if the limit cycle is
attracting, then it is also possible to define the phase of a point that is near, but not directly on the limit cycle. Specifically, there is a
function �(X) that maps a point near the limit cycle, X, to the phase that it will eventually reach as it is attracted to the limit cycle
(asymptotic phase). Clearly �(U(t)) = t. Define the phase to be θ(t) = �(X(t)), so that by the chain rule:

dθ

dt
= ∇X�(X) · dX

dt
(28)

= ∇X�(X) · F(X) + ε∇X�(X) · N(X(t), t) (29)

= 1 + ε∇X�(X) · N(X(t), t) (30)

Thus, in the absence of inputs, the phase moves around the circle at constant velocity. This expression is exact, but not very helpful since
it requires knowledge of the solution X(t). Kuramoto’s approximation (which is valid for small ε) is to replace X(t) in the right-hand
side by U(θ(t)), where U is the unperturbed limit cycle (Kuramoto, 2003). This closes the system yielding:

dθ

dt
= 1 + εZ(θ) · N(U(θ), t) (31)

where we have defined Z(θ) := ∇X�(U(θ)). The function, Z(θ) is the so-called adjoint function satisfying the linear equation:

Z′ = − (DXF(U(t)))T Z(t) (32)

with Z(t) · U ′(t) = 1. Here DXF(U(t)) means the linearization of F(X) evaluated along the limit cycle.
In single compartment neuron models, inputs appear only in the voltage component of the neural oscillator in the form of external

currents so that the dot product in Equation 31 becomes scalar multiplication:

dθ

dt
= 1 + ε�(θ)I(U(θ), t)/C (33)

where I is the input current, C is the capacitance, and �(θ) is the voltage component of the vector Z. The quantity, �(θ), is sometimes
called the infinitesimal PRC and, for small perturbations, is proportional to the PRC.

DERIVATION OF THE STATIONARY DENSITY OF PHASE DIFFERENCES
The Langevin equations that drive the phase models (Equations 4–6) correspond to a forward Fokker-Planck (FP) equation that can
be written as (Risken, 1984):

∂ρ

∂t
= 1

τ

{
∂

∂x

(
1

2

∂

∂x
+ x

)
+ ∂

∂y

(
1

2

∂

∂y
+ y

)
+ c

∂2

∂x∂y

}
ρ − ∂

∂θ
ρ (34)

−ε

{
∂

∂θ
[�1(θ)xρ] + ∂

∂φ
[(�2(θ + φ)y − �1(θ)x)ρ]

}

−ε2ω
∂

∂φ
ρ

When the distribution of phase differences is stationary,
∂ρ

∂t
= 0. Our goal is to exploit the smallness of ε to compute this stationary

density with which we can compute the marginal distribution of the phase difference.
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ANALYTICAL SOLUTION
We expand the steady state ρ in ε:

ρ(x, y, θ,φ) = ρ0(x, y, θ,φ) + ερ1(x, y, θ,φ) + ε2ρ2(x, y, θ,φ) (35)∫∫∫∫
ρ0(x, y, θ,φ)dxdydθdφ = 1

∫∫∫∫
ρn(x, y, θ,φ)dxdydθdφ = 0, n = 1, 2

We define the operator:

L0 = 1

τ

{
∂

∂x

(
1

2

∂

∂x
+ x

)
+ ∂

∂y

(
1

2

∂

∂y
+ y

)
+ c

∂2

∂x∂y

}
+ ∂

∂θ
(36)

At steady state condition (
∂ρ

∂t
= 0), we substitute the above expansion into the FP equation and collect the powers of ε. We need to go

to ε2:

0 = L0ρ0 (37)

0 = L0ρ1 −
{

∂

∂θ
[�1(θ)xρ0] + ∂

∂φ
[(�2(θ + φ)y − �1(θ)x)ρ0]

}
(38)

0 = L0ρ2 −
{

∂

∂θ
[�1(θ)xρ1] + ∂

∂φ
[(�2(θ + φ)y − �1(θ)x)ρ1]

}
− a

∂

∂φ
ρ0 (39)

Solving Equation 37
Equation 37 is just a linear separable equation, independent of φ, so, by inspection:

ρ0(x, y, θ,φ) = 1

2π
G(x, y)R(φ) (40)

where:

G(x, y) = 1√
1 − c2π

e
− 1

1 − c2 (x2 + y2 − 2cxy)
(41)

and R(φ) remains to be determined. Note that G(x, y) is just the standard stationary solution to the multivariate OU equation. At
this juncture, we remark that our main goal is to find R(φ), which is the marginal density of the phase differences between the two
oscillators.

Solving Equation 38
Both Equations 38 and 39 have the form L0ρ = b(x, y, θ). L0 operates on the space of functions defined on R2 × S1 that are twice
continuously differentiable in x, y and continuously differentiable in θ. In this space, L0 has a one-dimensional nullspace spanned by
G(x, y) (constant in θ) and so L0 is not invertible. However, L0ρ(x, y, θ) = b(x, y, θ) does have a solution provided that b(x, y, θ) is
orthogonal to the null space of L∗

0, which is the adjoint linear operator of L0. Since L0 is a standard probability operator, its adjoint is
always 1 (i.e., the function that is 1 everywhere).

Since:

b1(x, y, θ) = xG(x, y)

2π
[�′

1(θ)R(φ) − �1(θ)R′(φ)] + yG(x, y)[�′
2(θ + φ)R(φ) + �2(θ + φ)R′(φ)] (42)

we see that
�

b1(x, y, θ)dxdydθ = 0. Thus, L0ρ1 = b1 has a solution. Since:

L0[xG(x, y)] = −xG(x, y)/τ (43)

L0[yG(x, y)] = −yG(x, y)/τ (44)

we look for a solution of the form:

ρ1(x, y, θ,φ) = w1(θ,φ)xG(x, y) + w2(θ,φ)yG(x, y)

2π
(45)
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Inserting this into Equation 38, we find that wj(θ,φ) must satisfy:

∂

∂θ
w1(θ,φ) + w1(θ,φ)

τ
= −�′

1(θ)R(φ) + �1(θ)R′(φ) (46)

∂

∂θ
w2(θ,φ) + w2(θ,φ)

τ
= −�′

2(θ + φ)R(φ) − �2(θ + φ)R′(φ) (47)

wj must be periodic functions of θ; we defer their exact solution to later, but note that there is always a unique periodic solution to
each of these equations.

Solving Equation 39
We now have:

b2(x, y, θ) = ∂

∂θ
[�1(θ)xρ1] + ∂

∂φ
[(�2(θ + φ)y − �1(θ)x)ρ1] + a

∂

∂φ
ρ0 (48)

In order to solve Equation 39, for ρ2(x, y, θ,φ), we must have:

0 =
∫∫ ∞

−∞

∫ 2π

0
b2(x, y, θ)dxdydθ

= 0 + ∂

∂φ

{∫∫ ∞

−∞

∫ 2π

0

{
�2(θ + φ)

2π
[w2(θ,φ)y2 + w1(θ,φ)xy]G(x, y)

−�1(θ)

2π
[w1(θ,φ)x2 + w2(θ,φ)xy]G(x, y) + a

2π
R(φ)G(x, y)

}
dxdydθ

}

= 1

4π

∂

∂φ

{∫ 2π

0
{�2(θ + φ)[w2(θ,φ) + c · w1(θ,φ)] − �1(θ)[w1(θ,φ) + c · w2(θ,φ)]}dθ + 4πωR(φ)

}

= 1

4π

∂

∂φ
[f (φ) + 4πaR(φ)] (49)

where:

f (φ) =
∫ 2π

0
[�2(θ + φ)v2(θ,φ) − �1(θ)v1(θ,φ)]dθ (50)

v1(θ,φ) = w1(θ,φ) + cw2(θ,φ)

v2(θ,φ) = w2(θ,φ) + cw1(θ,φ)

Given Equations 46 and 47, we see that v1(θ) and v2(θ) satisfy:

v′
1(θ) + v1(θ)

τ
= −[�′

1(θ) + c · �′
2(θ + φ)]R(φ) + [�1(θ) − c · �2(θ + φ)]R′(φ)

:= q1(θ) (51)

v′
2(θ) + v2(θ)

τ
= −[c · �′

1(θ) + �′
2(θ + φ)]R(φ) + [c · �1(θ) − �2(θ + φ)]R′(φ)

:= q2(θ) (52)

For Equations 51 and 52, we can write down the solution of v1(θ) and v2(θ) in terms of q1(θ) and q2(θ) (see Appendix):

vn(θ) =
∫ ∞

0
e− s

τ qn(θ − s)ds, n = 1, 2 (53)
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We substitute vn(φ) into f (φ),

f (φ) =
∫ 2π

0
[�2(θ + φ)v2(θ) − �1(θ)v1(θ)]dθ

=
∫ ∞

0
e− s

τ ds

∫ 2π

0
[�2(θ + φ)q2(θ − s) − �1(θ)q1(θ − s)]dθ

=
∫ ∞

0
e− s

τ ds

∫ 2π

0
h(θ,φ, s)dθ (54)

where:

h(θ,φ, s) = �2(θ + φ)q2(θ − s) − �1(θ)q1(θ − s)

= �1(θ − s)[c · �2(θ + φ) − �1(θ)]R′(φ)

+ �2(θ + φ − s)[−�2(θ + φ) + c · �1(θ)]R′(φ)

+ �′
1(θ − s)[−c · �2(θ + φ) + �1(θ)]R(φ)

+ �′
2(θ + φ − s)[−�2(θ + φ) + c · �1(θ)]R(φ) (55)

Define:

gmn(φ) =
∫ ∞

0
hmn(s + φ)e− s

τ ds (56)

hmn(s) =
∫ 2π

0
�m(θ)�n(θ + s)dθ

Since �1(θ) and �2(θ) are periodic functions,

∫ 2π

0
h(θ,φ, s)dθ =

∫ 2π

0
{�1(θ − s){[c�2(θ + φ) − �1(θ)]R′(φ) + [c�′

2(θ + φ) − �′
1(θ)]R(φ)}

+ �2(θ + φ − s){[c�1(θ) − �2(θ + φ)]R′(φ) − [c�′
1(θ) − �′

2(θ + φ)]R(φ)}}dθ

= {c[h12(s + φ) + h21(s − φ)] − [h11(s) + h22(s)]}R′(φ)

+
{

c
d

dφ
[h12(s + φ) + h21(s − φ)] − d

dφ
[h11(s + φ) − h22(s + φ)]∣∣

φ = 0

}
R(φ) (57)

f (φ) =
∫ ∞

0
e− s

τ ds

∫ 2π

0
h(θ,φ, s)dθ

= {c[g12(φ) + g21(−φ)] − [g11(0) + g22(0)]}R′(φ)

+
{

c · d

dφ
[g12(φ) + g21(−φ)] − [g ′

11(0) − g ′
22(0)]

}
R(φ)

= d

dφ
{[c · g(φ) − C1]R(φ)} − C2R(φ) (58)

where:

g(φ) = g12(φ) + g21(−φ) (59)

C1 = g11(0) + g22(0) (60)

C2 = g ′
11(0) − g ′

22(0) (61)
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Combined with Equations 49–58, we have a boundary value problem (BVP):

d

dφ
{[c · g(φ) − C1]R(φ)} + (4πω − C2)R(φ) = K (62)

R(φ) = R(φ + 2π)

g(φ) = g(φ + 2π)∫ π

−π

R(φ)dφ = 1

K = 2ω − C2

2π

To solve this BVP, we need to compute g(φ) for a given PRC. We use two forms of the PRC in this paper:

�(θ) = sin(a) − sin(θ + a) + b sin(2θ) (63)

and
�(θ) = A[sin(B) − sin(θ + B)]eC(θ − 2π) (θ ∈ (0, 2π),�(θ) = �(θ + 2π)) (64)

The required integrals can be computed for both PRC forms. More generally, all PRCs can be written in Fourier form and, again, the
integrals are readily computed to obtain g(φ) (see below).

Small correlation approximation for R(φ)

We use a BVP solver to get the numerical solution for R(φ), but we would like to better understand the form of R(φ) at low values
of correlation, c, so we expand R as a series in c. As K is dependent on c, we must also expand K in c. Finally, we need to keep the
normalization condition for R(φ), hence:

R(φ) = R0(φ) + cR1(φ) + . . . K = K0 + cK1 + . . . (65)

R0(φ) = R(φ)
∣∣
c = 0,

∫ π

−π

R0(φ)dφ = 1

∫ π

−π

Rn(φ) = 0, n ≥ 1

We substitute these expressions into the BVP, Equation 62 and find after equating powers of c:

− C1R′
0(φ) + (4πω − C2)R0(φ) = K0 (66)

−C1R′
1(φ) + (4πa − C2)R1(φ) + [g(φ)R0(φ)]′ = K1 (67)

We can integrate both left and right side over [−π,π], then use the assumptions and periodicity requirements above to get:

K0 = 4πω − C2

2π
, K1 = 0 (68)

Rewriting these equations,

R′
0(φ) + DR0(φ) = Q0 (69)

D = C2 − 4πω

C1
, Q0 = −K0

C1

R′
1(φ) + DR1(φ) = Q1(φ) (70)

Q1(φ) = [g(φ)R0(φ)]′
C1

we see:

R0(φ) = 1

2π

[R1(φ)e Dφ]′ = Q1(φ)e Dφ
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We can use numerical methods to get the solution of R1(φ) given R0(φ) and for some choices of PRCs we can get exact expressions.
For example, for the two term double sinusoidal form PRC (Equation 63) we get:

R1(φ) = 1

C1

{
τ

τ2 + 1

cos(φ + a2 − a1) − D sin(φ + a2 − a1)

1 + D2
+ 2b1b2τ

4τ2 + 1

2 cos(2φ) − D sin(2φ)

4 + D2

}
(71)

DIFFERENT PRCS
Double sines form PRC
For the PRC:

�m(θ) = sin(am) − sin(θ + am) + bm sin(2θ)

We have:

hmn(s) =
∫ 2π

0
�m(θ)�n(θ + s)dθ

= 2π sin(am) sin(an) + π cos(s − am + an) + bmbnπ cos(2s) (72)

gmn(φ) =
∫ ∞

0
hmn(s + φ)e− s

τ ds

= 2πτ sin(am) sin(an) + πτ
cos(φ + an − am) − τ sin(φ + an − am)

τ2 + 1

+ bmbnπτ
cos(2φ) − 2τ sin(2φ)

4τ2 + 1
(73)

g ′
mn(φ) = −πτ

τ cos(φ + an − am) + sin(φ + an − am)

τ2 + 1
− 2bmbnπτ

2τ cos(2φ) + sin(2φ)

4τ2 + 1
(74)

g(φ) = g12(φ) + g21(−φ)

= 4πτ sin(a1) sin(a2) + 2πτ
cos(φ + a2 − a1)

τ2 + 1
+ 2b1b2πτ

cos(2φ)

4τ2 + 1
(75)

g ′(φ) = g ′
12(φ) − g ′

21(−φ)

= −2πτ
sin(φ + a2 − a1)

τ2 + 1
− 4b1b2πτ

sin(2φ)

4τ2 + 1
(76)

C1 = g11(0) + g22(0) = 2πτ(sin2(a1) + sin2(a2)) + 2πτ

τ2 + 1
+ (b2

1 + b2
2)πτ

4τ2 + 1
(77)

C2 = g ′
11(0) − g ′

22(0) = 4πτ2(b2
2 − b2

1)

4τ2 + 1
(78)

Exponential-sine form PRC
For empirical PRCs:

�1(θ) = a1[sin(b1) − sin(b1 + θ)]ec1(θ − 2π)

�2(θ) = a2[sin(b2) − sin(b2 + θ)]ec2(θ − 2π)

θ ∈ (0, 2π)

We have:

hmn(s) = B1 · e−cms(hc1, hv1(s)) + B0 · ecns(hc0, hv0(s)) (79)

gmn(φ) = C0 · e
φ
τ − e−cmφ(gc1, gv1(φ)) − ecnφ(gc0, gv0(φ)) (80)

Frontiers in Computational Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 113 | 18

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zhou et al. Correlated colored noise-induced synchrony

Where s ∈ [0, 2π) and φ ∈ [0, 2π), both have the period of 2π. Note also that (,) means the inner product of two vectors. The above
quantities are defined as:

B1 = am · an · e−2πcn · [1 − e−2πcm ]
B0 = am · an · [1 − e−2πcn ]
D1 = cm + 1

τ

D0 = cn − 1

τ

k0 = sin(bm) · sin(bn)

cm + cn
− sin(bm)

1 + (cm + cn)2
[(cm + cn) · sin(bn) − cos(bn)]

k1 = 1

2(cm + cn)
, k2 = 1

4 + (cm + cn)2
, k3 = − cm + cn

2[4 + (cm + cn)2]
k4 = (cm + cn) · sin(bn)

1 + (cm + cn)2
, k5 = sin(bn)

1 + (cm + cn)2

j0 = sin(bm) · sin(bn)

cm + cn
− sin(bn)

1 + (cm + cn)2
[(cm + cn) · sin(bm) − cos(bm)]

j1 = 1

2(cm + cn)
, j2 = − 1

4 + (cm + cn)2
, j3 = − cm + cn

2[4 + (cm + cn)2]
j4 = − (cm + cn) · sin(bm)

1 + (cm + cn)2
, j5 = sin(bm)

1 + (cm + cn)2

hc1 = [k0, k1, k2, k3, k4, k5]
hc0 = [j0, j1, j2, j3, j4, j5]
hv1 = [1, cos(s + bn − bm), sin(s − bm − bn), cos(s − bm − bn), sin(s − bm), cos(s − bm)]
hv0 = [1, cos(s + bn − bm), sin(s + bm + bn), cos(s + bm + bn), sin(s + bn), cos(s + bn)]

gc1 = B1

1 + D2
1

[−1 + D2
1

D1
k0,−D1k1, k1, k3 − D1k2,−k2 − D1k3, k5 − D1k4,−k4 − D1k5]

gc0 = B0

1 + D2
0

[1 + D2
0

D0
j0, D0j1, j1, j3 + D0j2,−j2 + D0j3, j5 + D0j4, −j4 + D0j5]

gv1(φ) = [1, cos(φ + bn − bm), sin(φ + bn − bm), sin(φ − bm − bn),

cos(φ − bm − bn), sin(φ − bm), cos(s − bm)]
gv0(φ) = [1, cos(φ + bn − bm), sin(φ + bn − bm), sin(φ + bm + bn),

cos(φ + bm + bn), sin(φ + bn), cos(s + bn)]

C0 = e−2πτ

1 − e− 2π
τ

[(e−2πcm − 1) · (gc1, gv1(0)) + (e2πcn − 1) · (gc0, gv0(0))]

Fourier form PRC
For the Fourier form of the PRC:

�m(θ) =
∞∑

k = −∞
am,keikθ

hmn(s) =
∫ 2π

0
�m(θ)�n(θ)ds

=
∑
k1, k2

am, k1 an, k2

∫ 2π

0
eik1θeik2(θ + s)dθ
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= 2π

∞∑
k = −∞

am, kan, −ke−iks (81)

gmn(φ) =
∫ ∞

0
hmn(s + φ)e− s

τ ds

= 2π

∞∑
k = −∞

am, kan, −k

∫ ∞

0
e−ik(s + φ)e− s

τ ds

= 2π

∞∑
k = −∞

am, kan, −k

k2 + 1
τ2

(
1

τ
− ik)e−ikφ (82)
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