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Many biological systems are modulated by unknown slow processes. This can severely
hinder analysis – especially in excitable neurons, which are highly non-linear and stochastic
systems. We show the analysis simplifies considerably if the input matches the sparse
“spiky” nature of the output. In this case, a linearized spiking Input–Output (I/O) relation
can be derived semi-analytically, relating input spike trains to output spikes based on
known biophysical properties. Using this I/O relation we obtain closed-form expressions
for all second order statistics (input – internal state – output correlations and spectra),
construct optimal linear estimators for the neuronal response and internal state and
perform parameter identification. These results are guaranteed to hold, for a general
stochastic biophysical neuron model, with only a few assumptions (mainly, timescale
separation). We numerically test the resulting expressions for various models, and show
that they hold well, even in cases where our assumptions fail to hold. In a companion
paper we demonstrate how this approach enables us to fit a biophysical neuron model so
it reproduces experimentally observed temporal firing statistics on days-long experiments.
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1. INTRODUCTION
Neurons are modeled biophysically using Conductance-Based
Models (CBMs). In CBMs, the membrane time constant and
the timescales of fast channel kinetics determine the timescale
of Action Potential (AP) generation in the neuron. These are
typically around 1–20 ms. However, there are various modulat-
ing processes that affect the response on slower timescales. Many
types of ion channels exist, and some change with a timescale
as slow as 10 s (Channelpedia), and possibly even minutes (Toib
et al., 1998). Additional new sub-cellular kinetic processes are
being discovered at an explosive rate (Bean, 2007; Sjöström et al.,
2008; Debanne et al., 2011). This variety is particularly large for
very slow processes (Marom, 2010).

For example, ion channels are known to be regulated over
the course of long timescales (Levitan, 1994; Staub et al., 1997;
Jugloff, 2000; Monjaraz et al., 2000), which could cause changes
in ion channel numbers, conductances and kinetics. Also, the
ionic concentrations in the cell depend on the activity of the ionic
pumps, which can be affected by the metabolism of the network
(Silver et al., 1997; Kasischke et al., 2004). Finally, the cellular neu-
rites (De Paola et al., 2006; Nishiyama et al., 2007) and even the
spike initiation region (Grubb and Burrone, 2010) can shift their
location with time. All these changes can have a large effect on
excitability.

Therefore, current CBMs can be considered as strictly accurate
only below a certain timescale, since they do not incorporate most
of these slow processes. A main reason for this “neglect” is that
such slow processes are not well characterized. This is especially
problematic since neurons are excitable, so their dynamics is far
from equilibrium, highly non-linear and contain feedback. Due

to the large number of processes which are unknown or lacking
known parameters, it would be hard to simulate or analyze such
models. Therefore, it may be hard to quantitatively predict how
adding and tuning slow processes in the model would affect the
dynamics at longer timescales.

In order to allow CBMs with many slow process to be fit-
ted and analyzed, it is desirable to have general expressions that
describe their Input–Output (I/O) relation explicitly, based on
biophysical parameters. In a previous paper (Soudry and Meir,
2012b), we found that this becomes possible if we use (experi-
mentally relevant Elul and Adey, 1966; Kaplan et al., 1996; De Col
et al., 2008; Gal et al., 2010; Goldwyn et al., 2012) sparse spike
inputs, similar to the typical output of the neuron (Figures 1A,B).
In this case, we derived semi-analytically1 a discrete piecewise
linear map describing the neuronal dynamics between stimula-
tion spikes, for a general deterministic neuron model with a few
assumptions (mainly, a timescale separation assumption). Based
on this reduced map, we were able to derive expressions for the
“mean” behavior of the neuron (e.g., firing modes, firing rate and
mean latency).

In this paper, we find that stronger and more general analytical
results can be obtained if we take into account the stochastic-
ity of the neuron – arising from ion channel noise 2 (Neher
and Sakmann, 1976; Hille, 2001). Due to the presence of this
noise, the discrete map describing the neuronal dynamics is

1A semi-analytic derivation is an analytic derivation in which some terms are
obtained by relatively simple numerics. See 2.2 for our implementation.
2We demonstrated that such noise should strongly affect the neuronal
response to sparse stimulation (Soudry and Meir, 2012b).
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FIGURE 1 | Schematic summary. (A) Aim: find the I/O relation
between inter-stimulus intervals

(
Tm
)

and Action Potential (AP)
occurrences

(
Ym

)
– for a general biophysical neuron model

(Equations 1–3). (B) An AP “occurred” if the voltage V crossed a

threshold Vth following the (sparse) stimulus, with Tm � τAP. (C)

Result: Biophysical neuron model reduced to a simple linear system
with feedback (Equations 11, 12), and biophysically meaningful
parameters (F,d,a and w).

“smoothed out,” and can be linearized. This linearized map con-
stitutes a concise description for the neuronal I/O (Equations
11, 12) based on biophysically meaningful parameters. This I/O
is well described by an “engineering-style” block diagram with
feedback (Figure 1C), where the input is the process of stimu-
lation intervals and the output is the AP response (Figure 1A).
Note that the response is affected both by internal noise and by
the input. Beyond conceptual lucidity, such a linear I/O allows
the utilization of well known statistical tools to derive all sec-
ond order statistics, to construct linear optimal estimators and to
perform parameter identification. These results hold numerically
(Figure 3), even sometimes when our assumptions break down
(Figure 4).

In our previous paper, Soudry and Meir (2012b), we used
our results to model recent experiments (Gal et al., 2010) where
synaptically isolated individual neurons, from rat cortical cul-
ture, were stimulated with extra-cellular sparse current pulses for
an unprecedented duration of days. Our results enabled us to
explain the “mean” response of these neurons. However, the sec-
ond order-statistics in the experiment seem particularly puzzling.
The neurons exhibited 1/f α statistics (Keshner, 1982), respond-
ing in a complex and irregular manner from seconds to days. In a
companion paper (Soudry and Meir, 2014), we demonstrate the
utility of our new results. These results allow us to reproduce and
analyze the origins of this 1/f α on very long timescales.

2. RESULTS
This section described our main results in outline. The details of
each sub-section here appear in the corresponding sub-section
in section 4. For readers who do not wish to go through the
detailed derivations, the present section is self-contained. Readers
who do wish to follow the mathematical derivations, should first

read section 4, where, for convenience, each subsection (except
for the last one) can be read independently. In our notation 〈·〉
is an ensemble average, i

�= √−1, a non-capital boldfaced let-

ter x
�= (x1, . . . , xn)

� is a column vector (where (·)� denotes
transpose), and a boldfaced capital letter X is a matrix (with
components Xmn).

2.1. FULL MODEL
The voltage dynamics of an isopotential neuron are determined
by ion channels, protein pores which change their conforma-
tions stochastically with voltage-dependent rates (Hille, 2001). At
the population level, such dynamics are generically described by
Fox and Lu (1994), Goldwyn et al. (2011), and Soudry and Meir
(2012b) a CBM

V̇ = f (V, r, s, I (t)) (1)

ṙ = Ar (V) r+ Br (V, r) ξ r (2)

ṡ = As (V) s+ Bs (V, s) ξ s, (3)

with voltage V , stimulation current I (t), rapid variables r
(e.g., m, n, h in the Hodgkin–Huxley (HH) model Hodgkin and
Huxley, 1952), slow “excitability” variables s (e.g., slow sodium
inactivation Chandler and Meves, 1970), rate matrices Ar/s, white
noise processes ξ r/s (with zero mean and unit variance), and
matrices Br/s which can be written explicitly using the rates
and ion channel numbers (Orio and Soudry, 2012) (D = BB�
is the diffusion matrix Orio and Soudry, 2012). For simplicity,
we assumed that r and s are not coupled directly, but this is
non-essential (Contou-Carrere, 2011; Wainrib et al., 2011). The
parameter space can be constrained (Soudry and Meir, 2012b),
since we consider here only excitable, non-oscillatory neurons
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which do not fire spontaneously3 and which have a single resting
state – as is common for cortical cells, e.g., Gal et al. (2010).

Since the components of r and s usually represent fractions,
in some cases it is more convenient to use the normalization con-
straint (i.e., that fractions sum to one), and reduce the dimensions
of r, s, and ξr/s. After this reduction, the form of Equations (1–3)
changes to

V̇ = f (V, r, s, I (t)) (4)

ṙ = Ar (V) r− br (V)+ Br (V, r) ξ r, (5)

ṡ = As (V) s− bs (V)+ Bs (V, s) ξ s, (6)

where all the variables and parameters have been redefined (with
their size decreased). Note that we have slightly abused nota-
tion by using the same symbols in Equations (4–6) and in
Equations (1–3). The specific set of equations used will always
be stated. We call Equations (4–6) the “compressed form” of
the CBM.

Such biophysical neuronal models (either Equations 1–3 or
4–6) are generally complex and non-linear, containing many
variables and unknown parameters (sometimes ranging in the
hundreds Koch and Segev, 1989; Roth and Häusser, 2001), not
all of which can be identified (Huys et al., 2006). Therefore, such
models are notoriously difficult to tune, highly susceptible to
over-fitting and computationally expensive (Migliore et al., 2006;
Gerstner and Naud, 2009; Druckmann et al., 2011). Also, the high
degree of non-linearity usually prevents exact mathematical anal-
ysis of such models at their full level of complexity (Ermentrout
and Terman, 2010). However, much of the complexity in such
models can be overcome under well defined and experimentally
relevant settings (Elul and Adey, 1966; Kaplan et al., 1996; De Col
et al., 2008; Gal et al., 2010; Goldwyn et al., 2012), if we use sparse
inputs, similar in nature to the spikes commonly produced by the
neuron.

2.2. MODEL REDUCTION
We consider a stimulation setting motivated by the experiments
described in Gal et al. (2010) and further elaborated on in sec-
tion 3. Specifically, suppose I (t) consists of a train of pulses
arriving at times {tm} (Figure 1A, top), so Tm = tm+ 1 − tm �
τAP with τAP being the timescale of an AP (Figure 1B). Our aim
is to describe the AP occurrences Ym, where Ym = 1 if an AP
occurred immediately after the m-th stimulation, and 0 other-
wise (Figure 1A, bottom). Recall again that we assume the neuron
does not generate APs unless stimulated (as observed in Gal et al.,
2010).

In this section we “average out” Equations (1–3) using a semi-
analytical method similar to that in Soudry and Meir (2012b).To
do so, we need to integrate Equations (1–3) between tm and
tm+ 1. Since Tm � τAP, the rapid AP generation dynamics of
(V, r) relax to a steady state before tm+ 1. Therefore, the neuron
AP “remembers” any history before tm only through sm = s (tm).
Given sm, the response of the fast variables (V, r) to the m-th

3I.e., if ∀t : I (t) = 0, then the probability that a neuron will fire is negligible –
on any relevant finite time interval (e.g., minutes or days).

stimulation spike will determine the probability to generate an
AP. This probability,

pAP (sm) � P (Ym|sm) = 〈Ym|sm〉 ,

collapses all the relevant information from Equations (1, 2), and
can be found numerically from the pulse response of Equations
(1, 2) with s held fixed (section 4.2.4).

In order to integrate the remaining Equation (3), we define
X+, X− and X0 to be the averages of a quantity Xs during an AP
response, a failed AP response and rest, respectively 4. Also, we
denote

X (Ym, Tm)
�= τAPT−1

m (YmX+ + (1 − Ym) X−)+(
1 − τAPT−1

m

)
X0, (7)

as the steady state mean value of Xs. For analytical simplicity we
assume5 Tm � τs. We obtain, to first order

sm+ 1 = sm + TmA (Ym, Tm) sm + nm. (8)

where nm is a white noise process with zero mean and vari-
ance TmD (Ym, Tm). For the compressed form (Equations 4–6)
we have instead

sm+ 1 = sm + Tm
[
A (Ym, Tm) sm − b (Ym, Tm)

]+ nm. (9)

Note that such a simplified discrete time map, which describes the
excitability dynamics of the neuron, has far fewer parameters than
the full model, since it is written explicitly only using the aver-
aged microscopic rates of s (through A and D), population sizes
(through D), the probability to generate an AP given s, pAP (s),
and the relevant timescales. This effective model exposes the large
degeneracy in the parameters of the full model and leads to signif-
icantly reduced simulation times and mathematical tractability.
Notably, the dynamics of the state sm (Equation 8) depends on
the input Tm and the output Ym – and this feedback affects all of
our following results.

2.3. LINEARIZATION
In this section we exploit the intrinsic ion channel noise to
linearize the neuronal dynamics, rendering it more tractable
than the (less realistic) noiseless case (Soudry and Meir, 2012b).
Suppose that the inter-stimulus intervals {Tm} have stationary
statistics with mean T∗ so that τAP � Tm � τs with high prob-
ability. Since s is slow and AP generation is rather noisy in this
regime (Soudry and Meir, 2012b) (so pAP (sm) is slowly varying),
we assume that a stable excitability fixed point s∗ exists (Figure 2).
Therefore, the perturbations ŝm = sm − s∗ are small and we can
linearize

pAP (sm) ≈ p∗ + w�ŝm.

4E.g., as in Equations (50–52). Note also a similar notation was also used in
Soudry and Meir (2012b) (e.g., Equations 2.15, 2.16), where we used H/M/L
instead of+/− /0.
5Later we shall demonstrate numerically that this is not a necessary condition.
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FIGURE 2 | Schematic explanation of linearization. In a deterministic
neuron, an AP will be generated in response to stimulation if and only if the
neuronal excitability (here, s) is above a certain threshold (A). This
generates discontinuous dynamics in the neuronal excitability (B), see
Equations 7, 8). In a stochastic neuron, the response probability is a smooth
function of s (C). In turn, this “smooths” the dynamics (D). Note that if the
noise is sufficiently high (as is true in many cases, for biophysically realistic
levels of noise), then this generates a stable fixed point s∗ – which gives
the mean response probability p∗, and around which the dynamics can be
linearized (yellow region).

Denoting X∗ = X
(
p∗, T∗

)
, the mean AP firing rate can be found

self consistently from the location of the fixed point s∗,

〈Ym〉 = p∗ = pAP (s∗) , (10)

where s∗ depends on p∗ through A∗s∗ = 0, or s∗ = A−1∗ b∗ in the
compressed form.

The perturbations ŝm = sm − s∗ around the fixed point s∗ are
described by the linear system

ŝm+ 1 = Fŝm + dT̂m + aŶm + nm, (11)

Ŷm = w�ŝm + em, (12)

where T̂m = Tm − T∗, Ŷm = Ym − 〈Ym〉, F
�= I+ T∗A∗,〈

nmn�m
〉 = T∗D∗, em is a (non-Gaussian) white noise process,

〈em〉 = 〈emnm〉 = 0, σ 2
e

�= 〈e2
m

〉 = p∗
(
1− p∗

)
, d

�= A0s∗ and

a
�= τAP (A+ − A−) s∗. If we use the compressed form instead,

then these results remain valid, except we need to re-define

d
�= A0s∗ − b0 and a

�= τAP
[
(A+ − A−) s∗ −

(
b+ − b−

)]
.

The linear I/O for the fluctuations in Equations (11, 12),
which contains feedback from the “output” Ŷm to the state vari-
able ŝm (Figure 1C), can be very helpful mathematically and its
parameters are directly related to biophysical quantities.

2.4. LINEAR SYSTEMS ANALYSIS
Using standard tools, this formulation makes it now possible to
construct optimal linear estimators for Ym and sm (Anderson
and Moore, 1979), perform parameter identification (Lejung,
1999), and find all second order statistics in the system (Papoulis
and Pillai, 1965; Gardiner, 2004), such as correlations or Power

Spectral Densities (PSD). For example, for f � T−1∗ , the PSD of
the output is

SY
(
f
) = w�Hc

(−f
) (

D∗ + T−2∗ dd�ST
(
f
))

H�c
(
f
)

w (13)

+ T∗σ 2
e

∣∣∣1+ T−1∗ w�Hc
(
f
)

a
∣∣∣2

where

Hc
(
f
) �=

(
2πfi− A∗ − T−1∗ aw�

)−1
. (14)

Similarly, the PSD of the state variables is

Ss
(
f
) = Hc

(−f
) (

D∗ + T−1∗ aa�σ 2
e + T−2∗ dd�ST

(
f
))

H�c
(
f
)
,

(15)
and the input–output cross-PSD is

SYT
(
f
) = T−1∗ w�Hc

(−f
)

dST
(
f
)
. (16)

Again, note the large degeneracy here – many different sets of
parameters will generate the same PSD. Using similar methods,
the PSDs of various response features, such as the AP latency or
amplitude, can also be derived (Equation 124).

Finally, we note Equations (11) and (12) can be re-arranged as
a direct I/O relation. First, we define the filters (transfer functions)

Hext (f ) � T−1∗ w�Hc
(
f
)

d (17)

Hint (f ) �
(

T−1∗ w�Hc
(
f
)

K+ 1
)

σv (18)

where K = a+ FPwσ−2
v and σ 2

v = w�Pw+ σ 2
e ,, with P being

the solution of

P = FPF� −
(

w�Pw+ σ 2
e

)−1
FPww�PF� + T∗D∗. (19)

Using these filters, we obtain, in the frequency domain,

Ŷ
(
f
) = Hext (f ) T̂

(
f
)+Hint (f ) z

(
f
)
, (20)

where Ŷ
(
f
)
, T̂
(
f
)

and z
(
f
)

are the Fourier transforms of Ym, T̂m

and zm, respectively, with zm being a white noise process with
zero mean and unit variance. Notably, these transfer functions
can be identified from the spiking input–output of the neuron{

T̂m, Ŷm

}
, without access to the underlying dynamics or biophys-

ical parameters. Specifically, Equation (20) has the form of an
ARMAx(M, M, M) model6 (Lejung, 1999) (recall M is the dimen-
sion of s), which can be estimated using standard tools (e.g., the
system identification toolbox in Matlab).

6Note a more general Box–Jenkins model is not required, since the poles of
Hext

(
f
)

and Hint
(
f
)

are identical (assuming no pole-zero cancelation).
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2.5. NUMERICAL TESTS
As we argued so far, a main asset of the present approach is its
applicability to a broad range of models of various degrees of
complexity and realism. Recall that our three assumptions are

1. τAP � Tm (temporally sparse input).
2. Tm � τs (timescale separation).
3. A stable excitability fixed point s∗ exists, (“noisy” neuron).

In this section we will demonstrate that our analytical approxi-
mations agree very well with the numerical solution of Equations
(1–3), even in some cases where the assumptions 2 and 3 do
not hold. Therefore, these assumptions are sufficient, but not
necessary.

2.5.1. The HHS model
First, in Figure 3 we tested our results on the HH model with
Slow sodium inactivation. This “HHS” model (Soudry and Meir,
2012b, and see section 4.5.1 for parameter values) augments the
classic HH model (Hodgkin and Huxley, 1952) with an additional
slow inactivation process of the sodium conductance (Chandler
and Meves, 1970; Fleidervish et al., 1996). The HHS model
includes the uncoupled stochastic Hodgkin–Huxley (HH) model
equations (Fox and Lu, 1994), and is written in the compressed

formulation (Equations 4–6)

CV̇ = ḡNasm3h (ENa − V)+ ḡK n4 (EK − V)

+ ḡL (EL − V)+ I (t) (21)

ṙ = [αr (V) (1− r)− βr (V) r] φ +√
N−1φ (αr (V) (1− r)+ βr (V) r)ξr, (22)

for r = m, n and h, with the additional kinetic equation for slow
sodium inactivation

ṡ = δ (V) (1− s)− γ (V) s+
√

N−1 (δ (V) (1− s)+ γ (V) s)ξs,

(23)
where V is the membrane voltage, I (t) is the input current, m, n
and h are ion channel “gating variables,” αr (V) , βr (V) , δ (V) ,

and γ (V) are the voltage dependent kinetic rates of these gating
variables, φ is an auxiliary dimensionless number, C is the mem-
brane’s capacitance, EK , ENa and EL are ionic reversal potentials,
ḡK , ḡNa and ḡL are ionic conductances and N is the number of ion
channels. Note that in this model τs is between 20 s (at rest) and
40 s (during an AP).

In Figure 3A we show that through Equation (10) we can
accurately calculate p∗, the mean probability to generate an AP

FIGURE 3 | Comparing the mathematical results with the numerical

simulation of the full model (Equations 1–3) for the stochastic HHS

model (section 4.5.1). (A) Firing probability p∗
(
T−1∗

)
(Equation 10) for

different currents (Istim = 7.5, 7.7, 7.9, 8.1, 8.3 μA from bottom to top). (B)

The PSDs SY
(
f
)

and Ss
(
f
)
. “Sim” is a simulation of the full model, “Map” is

a (104 faster) simulation of Equation (8) together with pAP (sm), while
“Approx” refers to the analytical expressions (Equations 13–15). “Ident” is

the PSD SY
(
f
)

of the linear system identified from the spiking data. Note the
high/low-pass filter shapes of SY (f ) and Ss(f ), respectively. (C) Optimal linear
estimation of ŝ. (D) Amplitude and phase of the cross-spectrum SYT

(
f
)

for
Poisson stimulation (Equations 16). Note that the frequency range was cut
due to spectral estimation noise (see Figure 8). Parameters: I0 = 7.9 μA and
T∗ = 50 ms in (B–D), and also stimulation is periodical in (A–C). Note the
low-pass filter shapes of SYT (f ).
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(so p∗T−1∗ is the firing rate of the neuron). In Figure 3B we
demonstrate both the analytical expression (Equations 13, 15),
or a simulation of the reduced model (Equation 8), will give
the PSDs SY

(
f
)

or Ss
(
f
)

of the full model (Equations 1–3). In
Figure 3D we do the same for the analytical expression (Equation
16) of the Cross-PSD SYT

(
f
)
. In Figure 3C we show that we can

construct a linear optimal filter for the internal state ŝm, given{
{Tk}m− 1

k= 0 , {Yk}m− 1
k= 0

}
quite well, with low mean square error

(section 4.4.4). Finally, back in Figure 3B, top, we infer the linear
model parameters from the spike output using system identifi-
cation tools [here, with ARMAx(1, 1, 1)], and present the PSD

of the identified model (“Ident”). Since SY
(
f
) = ∣∣Hint

(
f
)∣∣2 (see

Equation 111) for periodical input (in which T̂m = 0) this allows
us to confirm that the linear model was identified. As can be seen,
the identified filter matches well with that of the linear system.

2.5.2. Testing the limit of our assumptions
Next, we demonstrate that our analytical expressions hold also for
various other models. Specifically, in the following scenarios: (1)
when the kinetics of the neuron are extended to arbitrarily slow
timescales, (2) when the assumptions 2 and 3 break down, (3)
when the rapid and slow kinetics are coupled, (4) when “physi-
ological” synaptic inputs are used. These results are presented in
Figures 4, 5, with specific model parameters given in section 4.5.

First, we tested whether or not the model can be extended
to arbitrarily slow timescales. We added to the HHS model four
types of slow sodium inactivation processes with increasingly
slower kinetics and smaller channel numbers. In the first case,
those processes were added additively (as different currents), so
s was replaced with

∑
i si in the voltage equation (Equation 21).

This model was denoted “HHMS” (HH with Many Sodium
slow inactivation processes, section 4.5.4). In the second case,
those processes were added in a multiplicative manner (as dif-
ferent processes affecting the same channel, in the uncoupled
approximation), so s was replaced with

∏
i si in the voltage equa-

tion (Equation 21). We denote this model as “Multiplicative
HHMS” (section 4.5.5). In both cases, our analytical approxima-
tions seemed to hold quite well. For example, the approximated
SY
(
f
)

(Equation 13) corresponded rather well with the numerical
simulation of the full model (Figures 5B,D, respectively).

Next, to test the limits of our assumptions we extended the
HHS model to the HHSIP model (from Soudry and Meir, 2012b,
see section 4.5.6) and added a potassium inactivation current
which had faster kinetics (so τs ≈ 5 Hz). So if T−1∗ = 10 Hz, we
get T∗ ≈ 0.5τs, so the timescale separation assumption 2 is not
strictly valid here. Also, for certain parameter values we get a limit
cycle in the dynamics of ŝm, so the fixed point assumption 3 fails.
However, it seems that our approximations still follow the numer-
ical simulation of the full model: for p∗ at various stimulation

FIGURE 4 | Comparing mathematical results with full model simulation

when the assumptions fail to hold. In the HHSIP model (HHS with
potassium inactivation) we plot (A) p∗

(
T−1∗

)
for different currents

(I0 = 7.5, 7.7, 7.9, 8.1, 8.3μA from bottom to top). (B) SY
(
f
)

for two values of
T∗. As before, “Sim” is a simulation of the full model, “Approx” is the
analytical approximation, and “Ident” is the PSD SY

(
f
)

of the linear system
identified from the spiking data. Upper figure shows the case when
T∗ ≈ 0.5τs so the timescale separation assumption breaks down. In the lower

figure the parameters are close to a Hopf bifurcation where a limit cycle is
formed so the fixed point assumption breaks down, so the estimation of the
limit cycle frequency component is less accurate. (C) The estimation of ŝ1 for
T−1∗ ≈ 30 Hz is even better than in the HHS case. Similarly to (A–C) we plot
the results of the HHMSIP model (HHSIP with many additional slow sodium
inactivation kinetics) in (D–F), which has considerably more noise in the slow
kinetics, and so even larger fluctuations (which further invalidates the fixed
point assumption). See section 4.5 for various model details.
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FIGURE 5 | Comparing mathematical results (green) with full model

simulation (blue) for various models. (A) Coupled HHS (HHS coupled slow
and rapid kinetics) (B) HHMS (HHS with many additional slow sodium
inactivation kinetics) (C) HHSTM (HHS with a synapse) (D) Multiplicative

HHMS (variant of HHMS). As before, “Sim” is a simulation of the full model,
“Approx” is the analytical approximation, and “Ident” is the PSD SY

(
f
)

of the
linear system identified from the spiking data. See section 4.5 for various
model details.

frequencies T−1∗ and currents I0 (Figure 4A), for SY
(
f
)

at T−1∗ =
10 Hz when assumption 2 breaks down (Figure 4B, top), for
SY
(
f
)

at T−1∗ = 30 Hz when assumption 3 breaks down (near a
Hopf bifurcation) and a limit cycle begins to form (see Figure 4B,
bottom), and for state estimation of ŝ1 using a linear optimal filter,
again at T−1∗ = 10 Hz (Figure 4C).

The only discrepancy seemed to appear in the limit cycle case,
where the frequency of the limit cycle “sharpens” the peak in
SY
(
f
)

(Figure 4B, bottom). This may suggest that, in this case,
the perturbations of the system near the limit cycle could be lin-
earized, and that the eigenvalues of that linearized system might
be related to the eigenvalues of the linearized system around the
(now unstable) fixed point s∗. More generally, the results so far
indicate that even if our assumptions are inaccurate, it is possible
that the resulting error will not accumulate and remain small – in
comparison with the intrinsic noise in the model.

Next, to challenge the approximation even more, we added to
the HHSIP model four types of sodium currents with increas-
ingly slower kinetics and fewer channels, similarly to the HHMS
model (so this is the “HHMSIP” model, section 4.5.7). This
significantly increased the variance of the dynamic noise nm, ren-
dering the dynamics more “noisy.” These random fluctuations
in sm (Figure 4E) are of similar magnitude to the width of the
threshold (non-saturated) region in pAP (sm) (see Figure 6). This
renders the fixed point assumption 3 inaccurate, since now the
linear approximation pAP (sm) ≈ p∗ + w�ŝm breaks down most
of the time. However, even in this case, the approximations seem
to hold quite well with simulations of the full neuronal model
(Figures 4D–F).

In Figure 5A we used a coupled version of the HHS model
(“coupled HHS” model, section 4.5.2), in which the equations
for r and s in the full model are tangled together, and not sep-
arated as we assumed in Equations (2, 3). Even in this case, our
approximations seemed to hold well.

Finally, in Figure 5C, we extend the HHS model so that
the stimulations are not given directly, but through a synapse.

We used the biophysical Tsodyks–Markram model (Tsodyks and
Markram, 1997) of a synapse with short-term depression, with
added stochasticity (“HHSTM” model, section 4.5.3). This also
seemed to work well.

In all simulation we also added the PSD of the linear model
identified from the spike output (“Ident.”), to show that it can
be estimated reasonably well. Note that the performance at the
lowest frequencies seems to be significantly worse when they
contain relatively high power. This is not surprising since it is
typically harder to estimate model parameters, when the data has
such (1/f α) PSD shape – which indicates long-term correlations
(Beran, 1992).

3. DISCUSSION
In this work we found that under a temporally sparse (“spike-
like”) stimulation regime (Figures 1A,B) we can perform accurate
semi-analytical linearization of the spiking input–output relation
of a CBM (Figure 1C), while retaining biophysical interpretability
of the parameters (e.g., Figure 7). This linearization considerably
reduces model complexity and parameter degeneracy, and enables
the use of standard analysis and estimation tools. Importantly,
this method is rather general, since it can be applied to any
stochastic CBM, with only a few assumptions.

3.1. CONNECTION TO PREVIOUS WORK
To the best of our knowledge, such results are novel, as no
previous work examined analytically the response of general
stochastic CBMs to temporally sparse input for extended dura-
tions. However, the connection between sparse inputs and slow
timescales has been previously made. It was previously suggested
(Linaro et al., 2011) that sparse inputs could be used to identify
neuronal parameters in a network of integrate and fire neurons
with spike frequency adaptation. Interestingly, using different
methods we reach a qualitatively similar conclusion here, though
not in a network setting, and for a different class of neuron
models.
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Additionally, in Soudry and Meir (2012b) we modeled neurons
under periodical stimulation using deterministic CBMs with slow
kinetics, which are completely uncoupled from each other, and
slower than the stimulation rate. Using a reduction scheme simi-
lar in nature to that described here, we were able to describe the
deterministic CBM’s excitability and response using a discrete-
time map – which “samples” the neuronal state at each stimula-
tion. Analyzing this map, we obtained analytical results describing
the neuronal activation modes, spike latency dynamics, mean fir-
ing rate and short-time firing patterns. Stochastic CBMs were
then examined numerically, and were shown to lead to qualita-
tively different responses, which are more similar to the experi-
mentally observed responses.

The current work, therefore, generalizes this previous work.
Here, we analyze the general case of stochastic CBMs, under gen-
eral sparse stimulation patterns and with coupled slow kinetic
dynamics. Therefore, the framework in the previous work
(Soudry and Meir, 2012b) could be considered as a special case
of this work, in which there is an infinite number of ion chan-
nels (N →∞, so Br/s = Dr/s = 0), Tm = T∗ (so T̂m = 0) and
As (V) (the rate matrix) is a diagonal matrix. In the current work
we similarly show that, in the generalized framework, the CBM’s
excitability and responses can be succinctly described using a
discrete-time map. It is then straightforward to derive results par-
alleling those in Soudry and Meir (2012b) in this more general
setting, such as the mean firing rate (Equation 10).

3.2. THEORETICAL NOVELTY
However, the main novelty lies in our additional results, that
could not be derived in Soudry and Meir (2012b). Specifically,
due to the presence of noise, we were able to linearize the map’s
dynamics, and derive an explicit input–output relation. Such a
linearization became possible because we made the (unusual)
choice that the “input” to the CBM consists of the time-intervals
between stimulation pulses, while the “output” is a binary series
indicating whether or not an AP happened immediately after
a stimulation pulse. The linearized input–output relation can
be expressed either in biophysically interpretable “state space”
(Equations 11, 12 and Figure 1C), or as a sum of the filtered
input and filtered noise (Equation 20). Note that the overall I/O
includes the mean output (Equation 10) which is non-linear.
However, the linear part of the response, allows the derivation
of the power spectral densities (Equation 13), the construc-
tion of linear optimal estimators (e.g., Figure 3C) and blind
identification of the (linearized) system parameters (“Ident.” in
Figures 3–5).

Our results rely on three main assumptions. The temporal
sparseness of the input τAP � Tm insures that the slow variables
sm effectively represent the “neuronal state” alone (as V and r
always relax to a steady state before the next stimulation is given).
The additional assumption Tm � τs allowed us to integrate the
model dynamics and derive the reduced map (Equation 8) for
the dynamics of sm, which is linear in Tm. The last assump-
tion is that the dynamics of sm can be linearized around a stable
fixed point s∗. This fixed point is generated due to the noisi-
ness of the rapid variables (Figure 2), and the assumption Tm �
τs ensures that the stochastic fluctuations around s∗ are small.

We performed extensive numerical simulations (section 2.5) that
indicate that our analytical results are accurate – sometimes even
if our assumptions break down.

However, clearly there are cases, beyond our assumptions, in

which are results cannot hold. For example, if T̂m has very large
fluctuations, then the response of the neuron cannot be com-
pletely linear, since 0 < Ŷm < 1. Such cases may require an exten-
sion of the formalism described here. There are many possible
extensions which we did not pursue here. For example, one can
extend the modeling framework (e.g., multi-compartment neu-
rons), stimulation regime (e.g., heterogeneous pulse amplitudes),
or the type of neurons modeled (e.g., bursting and spontaneously
firing neurons). However, it seems that an important assump-
tion, that cannot be easily removed, is that the input is temporally
sparse (τAP � Tm ).

3.3. PRACTICAL SIGNIFICANCE
Is such a sparse temporally stimulation regime “physiologically
relevant” for the soma of a neuron? Currently, such question
cannot be answered directly, since it is impossible to accurately
measure all the current arriving to the soma from the den-
drites under completely physiological conditions. However, there
is some indirect evidence. Recent studies have shown that the dis-
tribution of synaptic efficacies in the cortex is log-normal (Song
et al., 2005) – so a few synapses are very strong, while most
are very weak. This indicates that the neuronal firing patterns
might in fact be dominated by a small number of very strong
synapses while the sum of the weak synapses sets the voltage
baseline (Ikegaya et al., 2012). Such a possibility is supported
by the fact that individual APs can trigger the complex network
events in humans (Molnár et al., 2008; Komlósi et al., 2012).
Also, in rats, individual cortical cells can elicit whisker move-
ments in Brecht et al. (2004) and even modify the global brain
state (Li et al., 2009). Taken together, these observations suggests
that the above-threshold stimulation reaching the soma may be
temporally sparse in some cases.

There are other obvious cases were our results are immedi-
ately applicable. First, in an axonal compartment, the relevant
input current is indeed sparse – an AP spike train arriving from
a previous compartment. Second, a direct pulse-like stimula-
tion is used in cochlear implants (Goldwyn et al., 2012, and
references therein). Lastly, such stimulation is used as an exper-
imental probe (De Col et al., 2008; Gal et al., 2010; Gal and
Marom, 2013). Specifically, since we now have a precise expres-
sion for the power spectral density of the response, we are
now ready to use these analytical results in Soudry and Meir
(2014) to reproduce the experimentally observed 1/f α behavior
of the neuron and explore its implications on its input–output
relation.

4. METHODS
In this section we provide the details of the results presented in the
paper. Sections 4.1–4.5 here respectively correspond to Sections
2.1–2.5. The first four (theoretical) sections can be read inde-
pendently of each other (except when we discuss the repeating
“HHS model” example). The last section give the details of the
numerical simulations.
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4.1. FULL MODEL (BIOPHYSICAL NEURON MODELS)
As we explained in section 2.1, a general model for a biophysical
isopotential neuron is given by the following equations

V̇ = f (V, r, s, I (t)) , (24)

ṙ = Ar (V) r+ Br (V, r) ξ r, (25)

ṡ = As (V) s+ Bs (V, s) ξ s, (26)

with voltage V , stimulation current I (t), rapid variables r
(e.g., m, n, h in the Hodgkin–Huxley (HH) model Hodgkin and
Huxley, 1952), slow variables s (e.g., slow sodium inactivation
Chandler and Meves, 1970), rate matrices Ar/s, white noise pro-
cesses ξ r/s (with zero mean and unit variance), and matrices Br/s

which can be written explicitly using the rates and ion channel
numbers (Orio and Soudry, 2012) (D = BB� is the diffusion
matrix Gardiner, 2004; Orio and Soudry, 2012). In this section
we give the specific forms of Ar/s and Br/s, and their origin based
on neuronal biophysics.

Microscopic origins
Such a model is commonly called a stochastic Conductance Based
Model (CBM). In a non-stochastic CBM, the dynamics of the
membrane voltage V (Equation 36) are deterministically deter-
mined by some general function of V , the stimulation current
I (t), and some internal state variables r and s. In contrast,
the dynamical equations for r and s here adhere to a specific
Stochastic Differential Equation (SDE) form, since these vari-
ables describe the “population state” of all the ion channels in the
neuron. We now explain the biophysical interpretation of those
equations.

At the microscopic level, each ion channel has several states,
and it switches between those states with voltage dependent rates
(Hille, 2001). This is usually modeled using a Markov model
framework (Colquhoun and Hawkes, 1981). Formally, suppose
we index by c the different types of channels, c = 1, . . . , C. For
each channel type c there exist N(c) channels, where each channel
of type c possesses K(c) internal states. In the Markov frame-
work, for each ion channel that resides in state i, the probability
that the channel will be in state j after an infinitesimal time dt is
given by

{
A(c)

ij (V) dt , if j = i

1−∑j = i A(c)
ji (V) dt , if j = i

, (27)

where A(c) (V) is called the “rate matrix” for that channel
type.

To facilitate mathematical analysis and efficient numerical
simulation, we preferred to model stochastic CBMs using a com-
pressed, SDE form. This method was initially suggested by Fox
and Lu (1994), but their method suffered from several prob-
lems (Goldwyn et al., 2011). In a recent paper (Orio and Soudry,
2012) a more general method was derived, which had none of
the previous problems, and was shown numerically to produce
a very accurate approximation of the original Markov process
description.

Derivation
According to Orio and Soudry (2012), if we define x(c)

k to be the

fraction of c-type channels in state k, and x(c) to be a column

vector composed of x(c)
k , then

ẋ(c) = A(c) (V) x(c) + B(c)
(

V, x(c)
)

ξ (c), (28)

where ξ (c) is a white noise vector process – meaning it has zero
mean and auto-covariance〈

ξ (c) (t)
(
ξ (c) (t′))�〉 = Iδc,c′δ

(
t − t′

)

where I is the identity matrix, δ (t) is the Dirac delta func-
tion, and δc,c′ = 1 if c = c′ and 0 otherwise. Furthermore, B(c)

is defined so that in Equation (28) each component of ξ (c),
which is associated with a transition pair i � j, is multiplied by√(

A(c)
ij x(c)

j + A(c)
ji x(c)

i

)
/N(c), and appears in the equation for ẋ(c)

i

and ẋ(c)
j with opposite signs. Note that B(c) is not necessarily

square since it has K(c) rows but the number of columns is equal
to the number of transition pairs.

We now need to combine Equation (28) for all c to obtain
Equations (1–3) . For simplicity, assume now that all ion
channels types can be classified as either “rapid” or “slow”
(this assumption can be relaxed). In this case we can concate-

nate all vectors related to rapid channels r �
(

x�(1), . . . , x�(R)

)�
and to slow channels s �

(
x�(R+ 1), . . . , x�(R+S)

)�
, where R+

S = C. We similarly define ξ r and ξ s together with the block
matrices

Ar �

⎛
⎜⎜⎜⎜⎝

A(1) 0 . . . 0

0 A(2) . . . 0
...

...
. . .

...

0 0 · · · A(R)

⎞
⎟⎟⎟⎟⎠ , As �

⎛
⎜⎜⎜⎜⎝

A(R+1) 0 . . . 0

0 A(R+2) . . . 0
...

...
. . .

...

0 0 · · · A(R+S)

⎞
⎟⎟⎟⎟⎠

and similarly for Br and Bs. Note that Ar is square with
size M̃ =∑R

c= 1 K(c) rows while As is square with size

M̃ =∑R+ S
c=R+ 1 K(c) rows.

4.1.1. Compressed formulation
In some cases, it is more convenient to re-write Equations (1–3)
in a compressed form (this is always possible)

V̇ = f (V, r, s, I (t)) , (29)

ṙ = Ãr (V) r− br (V)+ B̃r (V, r) ξ r, (30)

ṡ = Ãs (V) s− bs (V)+ B̃s (V, s) ξ s, (31)

where r, s, and ξr/s have been redefined (their dimension has
decreased), as we will show next. First, we comment that the
main disadvantage is of these equations is that they are less
compact and the notation is somewhat more cumbersome.
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However, there are also several advantages to this approach:
(1) The vectors and matrices are smaller, (2) The rate and
diffusion matrices do not have “troublesome” zero eigen-
values and can be diagonal (which is analytically conve-
nient), (3) Most CBMs are written using this form (e.g., the
HH model), so it is easier to apply our results using this
formalism.

Derivation
To derive these compressed equations, we use the fact x(c)

k

denote fractions, so
∑

k x(c)
k = 1, for all c. We can use this

constraint, together with the irreducibility of the underlying
ion channel process, to reduce by one the dimensionality of
Equation (28) (see Soudry and Meir, 2012a for further details).
Defining I to be the identity function, J to be the I with it
last row removed, e � (0, 0, . . . , 1)�, u � (1, 1, . . . , 1)�, G �(

I− eu�
)

J�, Ã
(c) � JA(c)G, B̃

(c) � JB(c) (with x(c)
K(c) replaced by

1− x1 − x2 . . .− xK(c)−1) and b(c) � −JA(c)e (Ã
(c)

is invertible),
we obtain the following equation for the reduced state vector
y(c) = Jx(c) (which has only K(c) − 1 states)

ẏ(c) = Ã
(c)

y(c) − b+ B̃
(c)

ξ (c).

Again assuming that all channels can be classified as either
“rapid” or “slow,” we concatenate all vectors related to rapid

channels r �
(

y�(1), . . . , y�(R)

)�
and to slow channels s �(

y�(R+1), . . . , y�(R+S)

)�
, where R+ S = C. We obtain Equations

(30, 31) by similarly defining br ,bs,ξ r and ξ s together with the
block matrices

Ãr �

⎛
⎜⎜⎜⎜⎜⎝

Ã
(1)

0 . . . 0

0 Ã
(2)

. . . 0
...

...
. . .

...

0 0 · · · Ã
(R)

⎞
⎟⎟⎟⎟⎟⎠ , Ãs �

⎛
⎜⎜⎜⎜⎜⎝

Ã
(R+1)

0 . . . 0

0 Ã
(R+2)

. . . 0
...

...
. . .

...

0 0 · · · Ã
(R+S)

⎞
⎟⎟⎟⎟⎟⎠,

and similarly for B̃r and B̃s. Note that Ãr is square with
M̃r =∑R

c= 1 K(c) − R rows while Ãs is square with M̃s =∑R+S
c=R+ 1 K(c) − S rows. Furthermore, it can be shown (Soudry

and Meir, 2012a) that Ã
(c)

is a strictly stable matrix (all its
eigenvalues are also eigenvalues of A(c) except its zero eigen-

value, and so have a strictly negative real part), and D̃
(c) �

B̃
(c)

B̃
(c)�

is positive definite (so all its eigenvalues are real and
strictly positive). Therefore, also Ãr and Ãs are both strictly sta-
ble and D̃r and D̃s are positive definite. Therefore, if V is held

constant, 〈s〉 and 〈r〉 tend to s∞ = Ã
−1
s bs and r∞ = Ã

−1
r br ,

respectively.

Example – the HHS model
The HHS model can be easily written using the compressed for-
mulation. For example, comparing Equation (23) with Equation
(31) we find that

As (V) = −γ (V)− δ (V) (32)

bs (V) = −δ (V) (33)

Bs (V, s) =
√

(δ (V) (1 − s)+ γ (V) s) N−1
s φ (34)

Ds (V, s) = (δ (V) (1 − s)+ γ (V) s) N−1
s φ. (35)

Note that all the parameters are scalar in the HHS model, and so
are not boldfaced, as in the general case.

4.2. MODEL REDUCTION
In this section we give additional technical details on section
2.2. Specifically, we show how, given sparse spike stimulation
and a few assumptions, it is possible to derive a simple reduced
dynamical system (Equation 8) from the full equations of a gen-
eral biophysical model for an isopotential neuron (Equations
1–3),

V̇ = f (V, r, s, I (t)) , (36)

ṙ = Ar (V) r+ Br (V, r) ξ r, (37)

ṡ = As (V) s+ Bs (V, s) ξ s. (38)

For more details on how its parameters and variables map to
microscopic biophysical quantities, see section 4.1.

4.2.1. The excitability constraint
As explained in section 2.1, we focus on models for excitable
neurons describable by equations of the general form of
Equations (36–38), rather than on arbitrary dynamical sys-
tems. This imposes some constraints on the parameters
(Soudry and Meir, 2012b). Formally, recall that τAP and τs

are the respective kinetic timescales of {V, r} and s, and
that τAP < τs. Suppose we “freeze” the dynamics of s (so
that effectively τs=∞) and allow only V and r to evolve in
time. We say the original model describes an excitable neu-
ron, if the following conditions hold in this “semi-frozen”
model:

1. If I (t) = 0, then for all initial conditions, V and r rapidly
(within timescale τAP) relax to a constant and unique steady
state (“rest”).

2. Assume that V and r are near rest, and a short stimula-
tion pulse is given with duration tstim ≤ τAP and amplitude
I0. For certain initial conditions and values of I0, we get
either a stereotypical “strong” response (“AP response”) or
a stereotypical “weak” response in V (“no AP response”).
Only for a very small set of initial conditions and val-
ues of I0, do we get an “intermediate” response (“weak AP
response”). By “stereotypical” we mean that the shape of
response does not change much between trials or for dif-
ferent initial conditions in {V, r} (however, it can change
with s).

Note that due to condition 1, such an excitable neuron is not
oscillatory and does not spontaneously fire APs.
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4.2.2. Problem formulation
Formally, suppose an excitable neuron receives a train of identical
stimuli, so

I (t) =
∞∑

m=−∞
� (t − tm) ,

where � (x) is a pulse, of width tw (so � (x) = 0 for x out-
side [0, tw]). We denote by {Ym}∞m=−∞ the occurrence events of
AP responses at times {tm}∞m=−∞ , i.e., immediately after each
stimulation time tm (Figure 1A),

Ym �
{

1 , if an AP occurs

0 , otherwise
. (39)

Defining Tm � tm+ 1 − tm, the inter-stimulus interval, and τAP

as the upper timescale of an AP event (Figure 1B) we make the
following assumption.

Assumption 1. (a) The stimulation pulse width is small, tw <

τAP.(b) The spike times {tm}∞m= 0 are temporally sparse, i.e., τAP �
Tm for every m (“no collisions”).

Our main objective here is to mathematically characterize
the relation between {Ym} and {Tm} under the most general
conditions.

4.2.3. Derivations
We define the sampled quantities Vm � V (tm), rm � r (tm),

sm � s (tm), xm �
(
Vm, r�m, s�m

)�
and the history set Hm �{{xk}mk=−∞ , {Tk}mk=−∞ , {Yk}mk=−∞
}

(note that Hm ⊂ Hm+ 1).
The Stochastic Differential Equation (SDE) description in
Equations (36–38) implies that xm is a “state vector” with the
Markov property, namely it is a sufficient statistic on the his-
tory to determine the probability of generating an AP at each
stimulation,

P (Ym = 1|xm) = P (Ym = 1|xm,Hm− 1) , (40)

and, together with Ym and Tm, its own dynamics

P (xm+ 1|xm, Tm, Ym) = P (xm+ 1|Hm) , (41)

which implies the following causality relations

x0
T0→ x1

T1→ x2 · · · xm

↓ ↗ ↓ ↗ ↓ ↓
Y0 Y1 Y2 · · · Ym

. (42)

This causality structure is reminiscent of the well known Hidden
Markov Model (Rabiner, 1989), except that in the present
case the output Ym, affects the transition probability, and we
have input Tm. Theoretically, if we knew the distributions in
Equations (40) and (41), as well as the initial condition P (x0),
we could integrate and find an exact probabilistic I/O relation

P
({Yk}mk=0 | {Tk}mk=0

)
. However, since it may be hard to find

an expression for P (xm+ 1|xm, Tm, Ym) in general, we make a
simplifying assumption.

Assumption 2. Tm � τs for every m.

This assumption, together with Assumption 1 and the excitable
nature of the CBM, renders the dynamics between stimula-
tions relatively easy to understand. Specifically, between two
consecutive stimulations, the fast variables (V (t) , r (t)) follow
stereotypically either the “AP response” (Ym = 1) or the “no-AP
response” (Ym = 0), then equilibrate rapidly (within time τAP)
to some quasi-stationary distribution q (V, r|sm). Meanwhile,
the slow variable s (t), starting from its initial condition at
the time of the previous stimulation, changes slowly accord-
ing to Equation (38), affected by the voltage trace of V (t)
(through As (V)).

Summarizing this mathematically, we obtain the following
approximations

P (Ym|sm) ≈
∫

P (Ym|V, r, sm) q (V, r|sm) dVdr, (43)

P (Vm+ 1, rm+ 1, sm+ 1|sm, Tm, Ym) ≈ q (Vm+ 1, rm+ 1|sm+ 1)

P (sm+ 1|sm, Tm, Ym) . (44)

Using these equations together with Equations (40) and (41), we
obtain

pAP (sm) � P (Ym = 1|sm) = P (Ym = 1|sm,Hm− 1) , (45)

P (sm+ 1|sm, Ym, Tm) = P (sm+ 1|sm, Ym, Tm,Hm− 1). (46)

Therefore, the “excitability” vector sm can now replace the full

state vector xm =
(
Vm, r�m, s�m

)�
as the sufficient statistic that

retains all relevant the information about the history of previ-
ous stimuli. Given the input {Tm}∞m=−∞, Equations (45) and (46)
together completely specify a Markov process with the causality
structure

s0
T0→ s1

T1→ s2 · · · sm

↓ ↗ ↓ ↗ ↓ ↓
Y0 Y1 Y2 · · · Ym

. (47)

Since the function pAP (s) is not affected by the kinetics of s, it
can be found by numerical simulation of a single AP using only
Equations (36, 37), when s is held constant (see section 4.2.4).
Now, instead of finding P (sm+ 1|sm, Ym, Tm) directly, we calcu-
late the increments �sm � sm+ 1 − sm by integration of the SDE
in Equation (38) between tm and tm+ 1. First, we integrate the
“predictable” part of the increment

〈�sm|sm, Tm, Ym〉 =
∫ tm+ 1

tm

As (V (t)) s (t) dt, (48)

≈
(∫ tm+ 1

tm

As (V (t)) dt

)
sm, (49)

Frontiers in Computational Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 29 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Soudry and Meir A linearized spiking input-output

to first order, where 〈X|Y〉 denotes the conditional expectation
of X given Y . Note that As ∼ O

(
τ−1

s

)
, so second order correc-

tions are of order O
((

Tmτ−1
s

)2
)

. Due to assumption 2, we have

Tmτ−1
s � 1, so these corrections are negligible. Now,

∫ tm+ 1

tm

As (V (t)) dt = τAP

(
1

τAP

∫ tm + τAP

tm

As (V (t)) dt

)

+ (Tm − τAP)

(
1

Tm − τAP

∫ tm+ 1

tm+τAP

As (V (t)) dt

)

= τAP (A+ (sm) Ym + A− (sm) (1− Ym))

+ (Tm − τAP) A0 (sm)

where we defined

A0 (sm) = 1

Tm − τAP

∫ tm+ 1

tm+τAP

As (V (t)) dt, (50)

A− (sm) = 1

τAP

∫ tm+τAP

tm

As (V (t)) dt , if Ym = 0 , (51)

A+ (sm) = 1

τAP

∫ tm+τAP

tm

As (V (t)) dt , if Ym = 1, (52)

which are the average rates during rest, during an AP response
and during a no-AP response, receptively. Note a similar notation
was also used in Soudry and Meir (2012b) (e.g., Equations 2.15,
2.16 there), where the+/− /0 were replaced with H/M/L.

Next, we calculate the remaining part of the increment, which
is the “innovation,”

nm � �sm − 〈�sm|sm, Tm, Ym〉 .

Obviously, 〈nm|sm, Tm, Ym〉 = 0, and also

〈
nmn�m|sm, Tm, Ym

〉
=
〈(∫ tm+ 1

tm

Bs (V (t) , s (t)) ξ s (t) dt

)
(∫ tm+1

tm

Bs
(
V (t) , s

(
t′
))

ξ s

(
t′
)

dt′
)� |sm, Tm, Ym

〉

=
∫ tm+ 1

tm

dt

∫ tm+ 1

tm

dt′δ
(
t − t′

)
Bs(V (t) , s(t)) B�s

(
V
(
t′
)
, s
(
t′
))

=
∫ tm+ 1

tm

Bs (V (t) , s (t)) B�s
(
V
(
t′
)
, s (t)

)
dt

=
∫ tm+ 1

tm

Ds (V (t) , s (t)) dt

≈
∫ tm+ 1

tm

Ds (V (t) , sm) dt

to first order. Note that Ds ∼ O
(
τ−1

s /N
)
, where N = minc N(c)

(N(c) is the channel number of the c-type channel, as we defined
in section 4.1), while Equation (53) has corrections of size

O
((

Tmτ−1
s /N

)2
)

. Since N ≥ 1 (usually N � 1), and due to

assumption 2, we have Tmτ−1
s /N � 1, so these corrections are

also negligible. Now,

∫ tm+ 1

tm

Ds (V (t) , sm) dt (53)

= τAP (YmD+ (sm)+ (1− Ym) D− (sm))+ (Tm − τAP) D0 (sm)

where we defined

D0 (sm) = 1

Tm − τAP

∫ tm+ 1

tm+τAP

Ds (V (t) , sm) dt (54)

D− (sm) = 1

τAP

∫ tm+τAP

tm

Ds (V (t) , sm) dt , if Ym = 0 (55)

D+ (sm) = 1

τAP

∫ tm+τAP

tm

Ds (V (t) , sm) dt , if Ym = 1. (56)

Additionally, we note that A±/0 (sm) generally tend to be rather
insensitive to changes in sm. This is because the kinetic transi-
tion rates (which are used to construct As (V), as explained in
section 4.1) tend to demonstrate this insensitivity when simi-
larly averaged (see Figures 4B, 5 in Soudry and Meir, 2012b).
The usual reasons behind this are (see appendix section B1 of
Soudry and Meir, 2012b): (1) The common sigmoidal shape of
the voltage dependency of the kinetic rates reduces their sensitiv-
ity to changes in the amplitude of the AP or the resting potential
(2) The shape of the AP is relatively insensitive to s (3) The
resting voltage is relatively insensitive to s. Therefore, in most
cases we can approximate A±/0 (sm) to be constant for simplic-
ity (though this not critical to our subsequent results), as we shall
henceforth do.

Additionally, we note that, strictly speaking, the voltage trace
during an AP and at rest are stochastic, and therefore, A+, A−,
A0, D+, D− and D0 are stochastic. However, there are two fac-
tors that render this stochasticity negligible. First, the sigmoidal
shape of the kinetic rates implies that A(V) is rather insensitive
to fluctuations in the voltage (Figure 4 in our Soudry and Meir,
2012b). Second, noise mainly plays a role in the timing of AP
initiation, but does not much affect the AP shape above thresh-
old (see AP voltage traces in Schneidman et al., 1998, p. 1687).
Therefore, we shall approximate A+, A−, A0, D+, D− and D0 to
be deterministic.

In summary, defining

A (Ym, Tm) = τAPT−1
m (YmA+ + (1 − Ym) A−)+(

1 − τAPT−1
m

)
A0, (57)

and

D (Ym, Tm, sm) = τAPT−1
m (YmD+ (sm)+ (1− Ym) D− (sm))

+ (1− τAPT−1
m

)
D0 (sm) (58)

we can write

�sm = TmA (Ym, Tm) sm + nm, (59)
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with〈nm|sm, Tm, Ym〉 = 0 and

〈
nmn�m|sm, Tm, Ym

〉
= TmD (Ym, Tm, sm) . (60)

These equations correspond to the result presented in
Equation (8).

Finally, we note that the distribution of nm given sm, Tm, Ym

can be generally computed using the approach described in Orio
and Soudry (2012). For example, it can be well approximated to
have a normal distribution if channel numbers are sufficiently
high and channel kinetics are not too slow (Orio and Soudry,
2012). In that case only knowledge of the variance (Equation 60)
is sufficient to generate nm. And so, using Equations (45), (59)
and the full distribution of nm, we can now simulate the neuronal
response using a reduced model, more efficiently and concisely
(with fewer parameters) than the full model (Equations 36, 38),
since every time step is a stimulation event. The simulation time
should shorten approximately by a factor of 〈Tm〉 /dt, where dt
is the full model simulation step. Note that the reduced model
parameters, having been deduced from the full model itself, still
retain a biophysical interpretation.

4.2.4. Calculation of pAP (s)

We numerically calculated pAP (s) by disabling all the slow kinet-
ics in the model – i.e., we only use Equations (1, 2) in main text,
while ṡ = 0. Then, for every value of s we simulated this “semi-
frozen” model numerically by first allowing r to relax to a steady
state and then giving a stimulation pulse with amplitude I0. We
repeat this procedures 200 times for each s, and calculate pAP (s)
as the fraction of simulations that produced an AP. A few com-
ments are in order: (1) In some cases (e.g., the HHMS model)
we can use a shortcut and calculate pAP (s) based on previous
results. For example, suppose we know the probability function
p̃AP (s) for some model with a scalar s and we make the substitu-
tion s = h (s) where the components of s represent independent
and uncoupled channel types (Orio and Soudry, 2012) – then
pAP (s) = p̃AP (h (s)) in the new model. (2) The timescale sepa-
ration assumption τAP � Tm � τs implies that all the properties
of the generated AP (amplitude, latency etc.) maintain similar
causality relations with sm as does Ym, so we can find their dis-
tribution using the same simulation we used to find pAP (s),
similarly to the approach taken to compute L (s) in the deter-
ministic setting (Soudry and Meir, 2012b). (3) Numerical results
(Figure 6) suggest that we can generally write

FIGURE 6 | Fitting of pAP (s) = �
(
(s − a) /b

)
in the HHS model. (A) Fitting of pAP (s) for various values of I0. (B) Fitting shows that a is linearly decreasing

in I0. (C) Fitting of pAP (s) for various values of N. (D) Fitting shows that b ∝ 1/
√

N.
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pAP (s) = �
(

E (s) /
√

Nr

)
, (61)

where � is the cumulative distribution function of the nor-
mal distribution, E (s) is some “excitability function” (as defined
in Soudry and Meir (2012b), so pAP (s) = 0.5 on the threshold

 = {s|E (s) = 0}), and N−1/2
r , the “noisiness” of the rapid sub-

system, directly affects the slope of pAP (s) (Figure 6D, bottom).
Also, as explained in Soudry and Meir (2012b), E (s) is usually
monotonic in each component separately and increasing in I0

(Figure 6C, top) – which could be considered as just another
component of s which has zero rates.

4.2.5. Compressed formulation – reduction
We can perform a very similar model reduction and lineariza-
tion using the compressed formalism presented in section 4.1.1.
We just need to define (or re-define) A±,0, b±,0, D±,0 (sm),
A (Ym, Tm), b (Ym, Tm) and D (Ym, Tm, sm) in the obvious way
and repeat very similar derivations, arriving to

�sm = Tm
[
A (Ym, Tm) sm − b (Ym, Tm)

]+ nm,

instead of Equation (59) (or Equation 8). Next, we demonstrate
this for the HHS model.

4.2.6. Example – HHS model reduction
We derive the parameters of the HHS reduced map. Recall that the
HHS model is based on the compressed formulation. Following
the reduction technique described in the previous sections, we
numerically find the average rates γ±,0 and δ±,0 (as in Equations
(2.15, 2.16) of Soudry and Meir (2012b), where there we denoted
H/M/L instead of+/− /0 here), τAP and pAP (s) (section 4.2.4).

From Equations (32, 35), we find,

A±,0 = −γ±,0 − δ±,0 (62)

b±,0 = −δ±,0 (63)

D±,0 (s) = N−1
s

(
δ±,0 (1− s)+ γ±,0s

)
. (64)

and so A (Ym, Tm) and D (Ym, Tm, sm) are defined as in Equations
(57) and (58), and similarly

b(Ym, Tm)= τAPT−1
m (Ymb+ + (1 − Ym) b−)+(1− τAPT−1

m

)
b0.

We give for example some specific values: if τAP = 15 ms, then
in the range I0 = 7.5− 8.3 μA, we have δ±,0 = 25.5− 25.6 mHz,
γ+ = 22.9− 22.1 mHz, γ− = 0.9− 1.3μ Hz and γ0 = 0.29−
0.28μ Hz.

Recall that these averaged kinetic rates are determined by
the shape of the voltage dependent rates (γ (V) and δ (V), see
Equation 125) (Soudry and Meir, 2012b). The relative values of
the averaged kinetic rates determine what kind of information
can be stored in s (which retains the “memory” of the neu-
ron between stimulation). We qualitatively demonstrate this in
Figure 7 depicting the values of γ±,0 for three different shapes
of γ (V): when γ (V) is sigmoidal with high threshold, when it is
sigmoidal with low threshold and when it is constant. These deter-
mine whether γ (V) is affected by the output (APs), the input

FIGURE 7 | The averaged kinetic rates. Left: The averaged rates
demonstrated for three common kinetic rates γ

(
V
)

with sigmoidal shapes.
Right: The voltage threshold of the sigmoid determines whether the process
is sensitive to APs (the output), stimulation pulse (the input), or neither. Note
that a similar classification of biophysical processes affecting excitability was
previously suggested inWallach (2012, Figure 3.1).

(stimulation pulses) or neither. Therefore: (1) if γ (V) and δ (V)

are independent of the voltage, then s cannot store any informa-
tion on input or output. (2) if γ (V) or δ (V) have low voltage
threshold , then s can directly store information on the input. (3)
if γ (V) or δ (V) have high voltage threshold , then s can directly
store information about the output. In the HHS model the inacti-
vation rate γ has high threshold, while δ is voltage independent –
therefore, s directly stores information on the output.

4.3. LINEARIZATION
In this section we present a more detailed account on how
to arrive from the reduced model (mainly, Equation 8) to its
linearized version (the results in Equations 11, 12).

First, we write the complete reduced model, using Equations
(59), (60), and (45). The reduced model is a non-linear stochastic
dynamic “state-space” system with Tm, the inter-stimulus interval
lengths, serving as inputs, sm representing the neuronal state, and
Ym the output. We have

�sm = TmA (Ym, Tm) sm + nm, (65)

Ym = pAP (sm)+ em, (66)

where
〈
nmn�m|sm, Tm, Ym

〉 = TmD (Ym, Tm, sm),

A (Ym, Tm) = τAPT−1
m (YmA+ + (1 − Ym) A−)+(

1− τAPT−1
m

)
A0,

and
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D (Ym, Tm, sm) = τAPT−1
m (YmD+ (sm)+ (1− Ym) D− (sm))+(

1− τAPT−1
m

)
D0 (sm) ,

and we defined
em � Ym − pAP (sm) . (67)

Based on the causality structure in Equation (42), it is straight-
forward to prove that em and nm are uncorrelated white noise
processes – i.e., 〈em〉 = 0, 〈nm〉 = 〈ennm〉 = 0 and

〈
nmn�n

〉 =〈
nmn�m

〉
δmn, 〈emen〉 =

〈
e2

m

〉
δmn where δnm = 1 if n = m and 0

otherwise.
We now examine the case where {Tm} is a Wide Sense

Stationary (WSS) process (i.e., the first and second order statis-
tics of the process are invariant to time shifts), with mean T∗,
so that the assumptions τAP � Tm � τs are fulfilled with high
probability. In this case the processes {sm} and {Ym} are also
WSS, with constant means 〈sm〉 = s∗ and 〈Ym〉 = p∗. Also, it is

straightforward to verify that
〈
T̂mnn

〉
= 0, and

〈
T̂men

〉
= 0.

In order to linearize the system in Equations (59–66)

we denote T̂m � Tm − T∗, Ŷm � Ym − p∗, ŝm � sm − s∗, w �
∇pAP

∣∣
s∗ . In order for this linearization to be accurate we require

that ŝm is “small enough.”

Assumption 3. With high probability
∣∣ŝm
∣∣� |s∗| (component-

wise) and
∣∣w�ŝm

∣∣� ∣∣∣ŝ�m (∇∇pAP
∣∣
s∗
)

ŝm

∣∣∣.
This assumption essentially means that s∗ = s∗

(
p∗, T∗

)
is a stable

fixed point of the system (Equations 59–66), and stochastic fluc-
tuations around it are small, compared to the size of the region{

s|pAP (sm) = 0, 1
}

(usually determined by the noise level of
the rapid system {V, r}, see section 4.2.4). Note that the region
is usually rather narrow (Figure 6) and therefore

∣∣ŝm
∣∣� |s∗| is

often implied by this description. Given Assumption 3, we can
approximate to first order

pAP (sm) ≈ p∗ + w�ŝm, (68)

which allows us to linearize Equation (66). This essentially means
that the components of ŝm determine the neuronal response lin-
early, with the components of w serving as the effective weights
(related to the relevant conductances in the original full neuron
model).

Next, we wish to linearize Equation (59). Using our assump-
tions, we obtain to first order

ŝm+ 1 ≈ ŝm + A
(
p∗, T∗

) (
s∗ + ŝm

)
(69)

+ A0
(

s∗ + ŝm
)

T̂m + τAP (A+ − A−)
(

s∗ + ŝm
)

Ŷm + nm

Taking expectations and using Equations (66) and (68), we obtain

0 = 〈sm+ 1 − sm〉 ≈ T∗A
(
p∗, T∗

)
s∗, (70)

to zeroth order. Defining the solution of this equation is
s∗
(
p∗, T∗

)
and we can find p∗ implicitly from

p∗ = pAP
(

s∗
(
p∗, T∗

))
. (71)

We write the explicit solution of this equation as p∗ (T∗). Next,
using

∣∣ŝm
∣∣� |s∗|, Equation (70) and defining

F � I+ T∗A∗
(
p∗, T∗

)
(72)

d � A0s∗ (73)

a � τAP (A+ − A−) s∗ (74)

we can approximate Equation (69) as

ŝm+ 1 = Fŝm + dT̂m + aŶm + nm, (75)

which, together with

Ŷm = w�ŝm + em, (76)

yields a simple linear state space representation with T̂m as the
input, ŝm as the state, Ŷm as the output and two uncorrelated
white noise sources with variances

�n �
〈
nmn�m

〉
= T∗D∗

(
p∗, T∗, s∗

)
, (77)

σ 2
e �

〈
e2

m

〉 ≈ p∗ − p2∗, (78)

to first order.

4.3.1. Derivation of w
From Equation (61), we note that generally we can write

w = ∇pAP (s)s=s∗ =
∇E (s∗)√

2πNr
exp

(
−E2 (s∗)

2Nr

)
, (79)

where in many cases the excitability function E (s) has the
form E (s) = μ�s− θ , where the components of μ are propor-
tional to the relevant conductances (Soudry and Meir, 2012b).
Therefore, if

p∗ = pAP (s∗) = �
(

E (s) /
√

Nr

)
→ 0 or 1

then E (s)→±∞, so in this case (assuming E (s∗) is not a
particularly “pathological” function) we have

w→ 0. (80)

4.3.2. Compressed formulation – linearization
In the compressed formulation (introduced in sections
4.1.1 and 4.2.5), we can perform similar linearization by
re-defining F � I+ T∗A

(
p∗, T∗

)
, d � A0s∗ − b0, a � τAP(

(A+ − A−) s∗ −
(

b+ − b−
))

, and repeat very similar
derivations, where now we can write more explicitly

s∗ = A−1 (p∗, T∗
)

b
(
p∗, T∗

)
, (81)

instead of Equation (70).
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4.3.3. Example – HHS model linearization
Note again that all the parameters are scalar now, and so are not
boldfaced, as in the general case. From Equations (71) and (81) we
obtain s∗ and p∗ for a given T∗. Once s∗ is known, from Equation
(79) w can be obtained7. Next, we denote the average inactivation
rate at steady state by

γ∗ �
(
p∗γ+ +

(
1 − p∗

)
γ−
)
τAPT−1∗ +

(
1− τAPT−1∗

)
γ0,

and similarly for the recovery rate δ∗. And so, s∗ = δ∗/ (γ∗ + δ∗),
and

A∗ = A∗
(
p∗, s∗

) = −γ∗ − δ∗, (82)

b∗ = −δ∗, (83)

D∗ = D∗
(
p∗, T∗, s∗

) = N−1
s (δ∗γ∗/ (γ∗ + δ∗)) . (84)

Denoting γ1 � γ+ − γ− and similarly for δ1, we obtain

F = 1− T∗ (γ∗ + δ∗) (85)

a = τAP (γ∗δ1 − γ1δ∗) / (γ∗ + δ∗) (86)

d = (γ∗δ0 − γ0δ∗) / (γ∗ + δ∗) (87)

Finally, from Equations (77, 78) we find

�n = T∗D∗ (88)

σ 2
e = p∗ − p2∗. (89)

4.4. LINEAR SYSTEMS ANALYSIS
In section 2.4 we describe the neuronal dynamics using a linear
system for the fluctuations, as depicted in Figure 1. This linear
description allows us to use standard engineering tools to analyze
the system. In this section we provide an easy to follow description
on how this was done, for those unfamiliar with these topics.

4.4.1. Second order statistics and linear systems
We start with a short reminder on some known results for
stochastic processes (Papoulis and Pillai, 1965; Gardiner, 2004);
these results are standard but are provided for completeness.
These results will be used in later sections.

Assume {xm} and
{

ym

}
are two real-valued vector stochastic

processes that are jointly wide-sense stationary (i.e., a simultane-
ous time shift of both processes will not change their first and
second order statistics). We define the cross-covariance (recall
that x̂ = x− 〈x〉)

Rxy (k) �
〈
x̂mŷ�m+ k

〉
and the Cross-Power Spectral Density (CPSD), given by its
Fourier transform

Sxy (ω) � F [
Rxy (·)] (ω) =

∞∑
k=−∞

Rxy (k) e−iωk.

7Also, as explained in section 4.3.1, we approximately have w ∝ ḡNa, from
Equation (21).

Additionally, the auto-covariance is defined as Rx � Rxx and the
corresponding Power Spectral Density (PSD) as Sx � Sxx. Also,
note that Ryx (k) = R�xy (−k) and so Syx (k) = S�xy (−ω).

Suppose now that
{

ym

}
is generated from a process {xm}

using a linear system: i.e., if the Fourier transform x (ω) �∑∞
k=−∞ xke−iωk exists, then in the frequency domain

y (ω) = H (ω) x (ω) ,

where H (ω) is a matrix-valued “transfer” function. Therefore,
under some regularity conditions (allowing us to switch the order
of integration end expectation),

Sxy (ω) =
∞∑

k=−∞

〈
x̂mŷ�m+ k

〉
e−iωk

= Sx (ω) H� (ω) (90)

And similarly

Sy (ω) =
∞∑

k=−∞

〈
ŷmŷ�m+ k

〉
e−iωk

= H (−ω) Sx (ω) H� (ω) (91)

where in the second equality here we used an almost identical
derivation as for Sxy (ω).

Note that if instead

y (ω) = Hx (ω) x (ω)+Hz (ω) z (ω) ,

where x and z are two uncorrelated signals, then we can write

y (ω) = H (ω) v (ω) ,

where

H (ω) =
[

Hx (ω) 0
0 Hz (ω)

]
, v (ω) = [x (ω) , z (ω)] .

Thus Equations (90) and (91), respectively give

Sxy (ω) = Sx (ω) H�x (ω) , (92)

Sy (ω) = Hx (−ω) Sx (ω) H�x (ω)+Hz (−ω) Sz (ω) HT
z (ω). (93)

4.4.2. The second order statistics of our system
Previously, we derived Equations (11, 12), which describe the
neuronal dynamics using a linear system, written in “state-space”
form

ŝm+1 = Fŝm + dT̂m + aŶm + nm, (94)

Ŷm = w�ŝm + em (95)

where nm, em and T̂m are uncorrelated, zero mean processes with
the PSDs �n � T∗D

(
p∗, T∗, s∗

)
, σ 2

e = p∗
(
1− p∗

)
and ST (ω),

respectively.
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In order to apply Equations (92) and (93) to our system we
first need to find the transfer function of the system. Applying the
Fourier transform to Equations (94, 95) gives

eiω ŝ (ω) = Fŝ (ω)+ dT̂ (ω)+ aŶ (ω)+ n (ω) , (96)

Ŷ (ω) = w�ŝ (ω)+ e (ω) . (97)

Re-arranging terms, we obtain

ŝ (ω) = Hc (ω)
(

n (ω)+ dT̂ (ω)+ ae (ω)
)

, (98)

Ŷ (ω) = w�Hc (ω)
(

n(ω)+ dT̂ (ω)+ ae (ω)
)
+ e (ω) , (99)

where we denoted

Hc (ω) �
(

Ieiω − F− aw�
)−1

.

This gives the “closed loop” transfer functions of the system
(including the effect of the feedback Ŷ(ω)). Next, combining
Equations (98, 99) and Equations (92, 93) leads to explicit expres-
sions for the PSDs and CPSDs.

SsT (ω) = Hc (−ω) dST (ω) (100)

Ss (ω) = Hc (−ω)
(
�n + aa�σ 2

e + dd�ST(ω)
)

H�c (ω), (101)

SYT (ω) = w�Hc (−ω) dST (ω) , (102)

SY (ω) = w�Hc (−ω)
(
�n + dd�ST (ω)

)
H�c (ω) w (103)

+ σ 2
e

∣∣∣1+ w�Hc (−ω) a
∣∣∣2 .

For low frequencies it is sometimes more convenient to
use the “continuous-time” versions of the PSDs, Sxy

(
f
)

�
T∗Sxy (ω)ω=2π fT∗ for f � T−1∗ , which are approximated by

SsT
(
f
) = T−1∗ Hc

(−f
)

dST
(
f
)

Ss
(
f
) = Hc

(−f
) (

D
(
p∗, T∗, s∗

)+ T−1∗ aa�σ 2
e + T−2∗ dd�

ST
(
f
))

H�c
(
f
)
, (104)

SYT
(
f
) = T−1∗ w�Hc

(−f
)

dST
(
f
)
, (105)

SY
(
f
) = w�Hc

(−f
) (

D
(
p∗, T∗, s∗

)+ T−2∗ dd�ST
(
f
))

H�c
(
f
)

w (106)

+ T∗σ 2
e

∣∣∣1+ T−1∗ w�Hc
(−f

)
a
∣∣∣2 .

where

Hc
(
f
) = (2πfiI− A

(
p∗, T∗

)− T−1∗ aw�
)−1

,

and we used the fact that F = I+ T∗A
(
p∗, T∗

)
(Equation 72) and

�n = T∗D
(
p∗, T∗, s∗

)
(Equation 77).

Note that if the dimension of s is finite and there is no
degeneracy, we can always write

SY
(
f
) = c0 +

M∑
j= 1

cj(
2π f

)2 + λ2
j

, (107)

where λi, the poles of SY
(
f
)
, are determined solely by the poles

of Hc
(
f
)

and ST
(
f
)
, while all the other parameters in Equation

(106) affect only the constants cj. Commonly, ST
(
f
)

has no
poles – for example, if ST

(
f
)

is constant so Tm is a renewal process
(e.g., the stimulation is periodic or Poisson). Therefore all poles
of SY

(
f
)

(or the other PSDs) are determined by Hc
(
f
)
, i.e., λj are

the roots of the characteristic polynomial∣∣∣λI− A
(
p∗, T∗

)− T−1∗ aw�
∣∣∣ = 0. (108)

4.4.3. Spectral factorization
Equations (96) and (97) can be re-arranged as a direct I/O rela-
tion, formulated, for convenience, in the frequency domain (this
can be either f or ω – in the section we use ω for brevity of nota-
tion, and f in other places). Specifically, this relation is of the
form

Ŷ (ω) = Hext (ω) T̂ (ω)+Hint (ω) v (ω) , (109)

so vm= F−1 (v (ω)) is a single scalar “noise” process with zero
mean and PSD σ 2

v (here F−1 is the inverse Fourier transform).
This vm process combines the contributions of em and nm, which
are the noise processes in the original system (in Equations
96, 97). Such a description, as in Equation (109), describes con-
cisely the contributions of the input and noise to the output (an
ARMAx model Lejung, 1999). Using 92 and 93 we respectively
find that

SYT (ω) = Hext (−ω) ST (ω) (110)

SY (ω) = ∣∣Hext (ω)
∣∣2 ST (ω)+

∣∣∣Hint (ω)

∣∣∣2 σ 2
v . (111)

Comparing Equation (102) with (110) we obtain

Hext (ω) = w�Hc (ω) d. (112)

Comparing Equation (103) with (111), while using Equation
(112), will yield the equation

∣∣∣Hint (ω)

∣∣∣2 σ 2
v = w�Hc (−ω) �nH�c (ω) w+ σ 2

e |1

+w�Hc (−ω) a
∣∣∣2 . (113)

This is a “spectral factorization” problem (Anderson and Moore,
1979), with solution

Hint (ω) = w�Hc (ω) K+ 1, (114)

where
K = a+ FPwσ−2

v (115)
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and
σ 2

v = w�Pw+ σ 2
e , (116)

with P the solution of

P = FPF� −
(

w�Pw+ σ 2
e

)−1
FPww�PF� +�n, (117)

derived from the general discrete-time algebraic Riccati equation.
This can be verified by substitution

w�Hc (−ω) �nH�c (ω) w+ σ 2
e

∣∣∣1+ w�Hc (ω) a
∣∣∣2

−
∣∣∣Hint (ω)

∣∣∣2 σ 2
v

= w�Hc (−ω)
(

P− FPF� + σ−2
v FPww�PF�

)
H�c (ω) w

+σ 2
e

∣∣∣1+ w�Hc (ω) a
∣∣∣2

−
∣∣∣w�Hc (ω)

(
a+ FPwσ−2

v

)+ 1
∣∣∣2 σ 2

v

(1)=
[

w�Ho (−ω)
(

P− FPF� + σ−2
v FPww�PF�

)
H�o (ω) w+ σ 2

e

−
∣∣∣w�Ho (ω) FPwσ−2

v + 1
∣∣∣2 σ 2

v

] ∣∣∣1− w�Ho (ω) a
∣∣∣−2

=
[

w�Ho (−ω)
(

P− FPF�
)

H�o (ω) w− w�Pw

− w�Ho (ω) FPw− w�Ho (−ω) FPw
] ∣∣∣1− w�Ho (ω) a

∣∣∣−2

(2)=
[

w� (FHo (ω)+ I) P
(

F�H�o (ω)+ I
)

w+ w�Ho (−ω) FPF�

H�o (ω) w− w�Pw

− w�Ho (ω) FPw− w�Ho (−ω) FPw
] ∣∣∣1− w�Ho (ω) a

∣∣∣−2

= 0

where in (1) we used the fact that w�Hc (ω) =
w�Ho (ω)

(
1− w�Ho (ω) a

)−1
from the Sherman–Morrison

lemma, with Ho (ω) = (eiωI− F
)−1

being the “open loop”
version of Hc (ω) (i.e., if a was zero), and in (2) we used the fact
that Ho (ω) = e−iω (FHo (ω)+ I).

4.4.4. Optimal linear estimation of linear systems
Given that the neuronal dynamics are given by the linear sys-
tem in Equations (96, 97), there are two different estimation
problems one may be interested in. We may want to esti-
mate, based on the history of the previous inputs and outputs{

T̂k, Ŷk

}m− 1

k=−∞, either the parameters of the model (F, w, a, d, σe

and �n), or the variables in the model (Ŷm or ŝm). The first
problem is generally termed a “system identification” problem
(Lejung, 1999), while the second is a “filtering” (or predic-
tion) problem (Anderson and Moore, 1979). Both are intimately
related, and sometimes the solution of the second problem can

yield a method of solving the first problem (e.g., section 3.3 in
Anderson and Moore, 1979).

A relatively simple way to approach the second (filtering)
problem involves the output decomposition we have found in
section 4.4.3

Ŷ (ω) = w�Hc (ω) dT̂ (ω)+
(

w�Hc (ω) K+ 1
)

v (ω) .

Using this decomposition we can now write a new state-space
representation for the system in terms of new state variable ẑm,

ẑm+1 =
(

F+ aw�
)

ẑm + dT̂m + Kvm,

Ŷm = w�ẑm + vm,

which has the same output in the frequency domain (recall, from
linear systems theory, that a single I/O relation can be generated
by multiple state space realizations). This “innovation form” is
particularly useful, since, given the entire history of the previous

inputs and outputs Hm− 1 �
{

T̂k, Ŷk

}m− 1

k=−∞, we can recursively

estimate the current state precisely (with zero error) (Anderson
and Moore, 1979)

ẑm =
(

F+ aw�
)

ẑm− 1 + dT̂m− 1 + K
(

Ŷm− 1 − w�ẑm− 1

)
.

(118)
Given this precise estimate of ẑm, the best linear estimate of Ŷm is
simply

〈
Ŷm|Hm− 1

〉
= w�ẑm

and the estimation error is simply

〈(
Ŷm −

〈
Ŷm|Hm− 1

〉)2
〉
= 〈v2

m

〉 = σ 2
v .

Since both the innovation form and the original form have the
same second order statistics for the input–output, the optimal lin-
ear estimator (and its error) for Ŷm in the original system would
be the same. Moreover, one can show (Anderson and Moore,
1979) that Equation (118) will also give the optimal linear esti-
mate of ŝm in the original system, and with error P (Equation
117). This solution is the well-known “Kalman filter.”

4.4.5. Example – HHS model power spectral densities
Substituting the parameters for the linearized map (Equations
85–89) into the expressions for the power-spectral densities
(Equations 104–106), gives

SY
(
f
)= w2

(
D∗ + T−2∗ d2ST

(
f
))+T∗σ 2

e

((
2π f

)2 + A2∗
)

(
2π f

)2 +
(

A∗ + T−1∗ wa
)2

(119)

Ss
(
f
) = D∗ + T−1∗ a2σ 2

e + T−2∗ d2ST
(
f
)

(
2π f

)2 +
(

A∗ + T−1∗ wa
)2

(120)
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SYT
(
f
) = T−1∗ wd

2πfi− A∗ − T−1∗ wa
ST
(
f
)
. (121)

Note that when ST
(
f
) ≡ 0 (i.e., periodical spike stimulus), SY

(
f
)

has the shape of high pass filter (Figure 3B, top). In contrast, Ss
(
f
)

(Figure 3B, bottom) and SYT
(
f
)

both have the shape of a low
pass filter (Figure 3D, top). From Equations (111) and (110) we

know that SY
(
f
) = ∣∣Hint

(
f
)∣∣2 σ 2

v and SYT
(
f
) = Hext

(
f
)

ST
(
f
)
,

respectively. Therefore, this indicates that Hint
(
f
)

and Hext
(
f
)

are
high pass and low pass filters, respectively.

4.4.6. Power spectral densities of response features
So far we have concentrated on the PSD of the response Ym.
However, it is easy to extend our formalism to derive the PSDs
of different features of the AP, such as its latency or amplitude.
We exemplify this on the latency. In Soudry and Meir (2012b) we
showed (Figure 3) that for deterministic CBMs, the latency of the
AP generated in response to the m-th stimulation can be writ-
ten as a function of the excitability Lm = L (sm). In a stochastic
model, we have instead

Lm =
{

L (sm)+ φm , Ym = 1

not defined , Ym = 0

where φm is a zero mean, white noise process generated by the
stochasticity of the rapid system. Since it is problematic to define
the PSD of Lm if sometimes Ym = 0, we focus on the case that
p∗ = 1, so we always have Ym = 1 . In this case, assuming again
that the perturbations in ŝm are small, we can linearize

L (sm) ≈ L (s∗)+ l�ŝm

where l = ∇L (s)s=s∗ , to obtain (using Equation 11)

ŝm+ 1 = Fŝm + dT̂m + nm, (122)

L̂m = l�ŝm + φm (123)

where he F = I+ T∗A (1, T∗). Therefore, it is straightforward to
show that the PSD of the latency is

SL
(
f
) = l�Ss

(
f
)

l+ T∗σ 2
φ (124)

where σ 2
φ =

〈
φ2

m

〉
. Note that if latency is a good indicator of

excitability, i.e., L (s) changes similarly to p (s) so that l ∝ w, then
SL
(
f
) = c1SY

(
f
)+ c2 for some constants c1, c2, when the input

is periodic (Tm = T∗) and p∗ → 1.

4.5. NUMERICAL TESTS
MATLAB (2010b) code is available on the ModelDB website, with
accession number 144993. In all the numerical simulations of
the full stochastic Biophysical neuron model we used Equations
(1–3) in main text. We used first order Euler–Maruyama inte-
gration with a time step of dt = 5 μs (quantitative results were
verified also at dt = 0.5 μs). Each stimulation pulse was given as
a square pulse with a width of tstim = 0.5 ms and amplitude I0

(which were respectively named t0 and I0 in Soudry and Meir,

2012b). The results are not affected qualitatively by our choice
of a square pulse shape. We define an AP to have occurred if,
after the stimulation pulse was given, the measured voltage has
crossed some threshold Vth (we use Vth = −10 mV in all cases).
In all cases where direct stimulation is given, unless stated oth-
erwise, we used periodic stimulation with I0 = 7.9 μA and T∗ =
50 ms. Note that for the parameter values used, no APs are spon-
taneously generated, consistently with experimental results (Gal
et al., 2010).

The PSDs were estimated using the Welch method and aver-
aged over eight windows, unless 1/f behavior was observed, in
which case we used a single window instead, since long term cor-
relations may generate bias if averaging is used (Beran, 1994).
Numerical estimation of the cross-PSD is more problematic.
When estimating cross-spectra, estimation noise level can be
quite high (proportional to the inverse coherence, according to
Bendat and Piersol, 2000, p. 321). To estimate the level of esti-
mation noise, we estimate the cross-spectrum with the input
randomly shuffled (Figure 8). Since in this case there is no input–
output correlation, this new estimate is pure noise. Finally, as
suggested by the reviewer, we smoothed the resulting PSD (or
cross-PSD) in all figures (except in Figure 8, where we aimed to
show the level of estimation noise). To achieve uniform variance
with low bias, we divided the spectrum into 30 logarithmically
spaced segments from f = 10−3 Hz to the maximal frequency
(T∗/2). In each segment n the PSD (or cross-PSD) was smoothed
using a window of size n.

Next, we describe the models used Figures 3–5 and provide
their parameter values. These models have either been studied
in the literature or are extensions of such models, which are
meant to explore the limit for the validity of our analytic approx-
imations. In all cases where direct stimulation is given, unless
stated otherwise, we use periodic stimulation with I0 = 7.9 μA

FIGURE 8 | Estimation noise in the cross-power spectral density. To
estimate the level of this noise in Figure 3D, we added SY T̃

(
f
)

where{
T̃m

}
is a shuffled version of

{
Tm
}
. Only when the estimated SYT

(
f
)

is

above SY T̃

(
f
)
, is its estimation valid. Therefore, in Figure 3D we show only

this region (left of dashed black line), where estimation is valid.
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and T∗ = 50 ms. Notice the form of the models is given in the
(more popular) compressed formalism (section 4.1.1), which
employs the normalization of state occupation probability to
reduce the dimensionality of equations of Equations (2, 3) in the
main text.

4.5.1. The HHS model
The HHS model combines the Hodgkin–Huxley equations
(Hodgkin and Huxley, 1952) with slow sodium inactivation
(Chandler and Meves, 1970; Fleidervish et al., 1996). The model
equations (Soudry and Meir, 2012b), which employ the uncou-
pled stochastic noise approximation, are

CV̇ = ḡNasm3h (ENa − V)+ ḡK n4 (EK − V)

+ḡL (EL − V)+ I (t)

ṁ = φ [αm (V) (1−m)− βm (V) m]

+
√

N−1
m φ (αm (V) (1−m)+ βm (V) m)ξm

ṅ = φ [αn (V) (1− n)− βn (V) n]

+
√

N−1
m φ (αn (V) (1− n)+ βh (V) n)ξn

ḣ = φ [αh (V) (1− h)− βh (V) h]

+
√

N−1
h φ (αh (V) (1− h)+ βh (V) h)ξh

ṡ = δ(V)(1− s)− γ (V) s+
√

N−1
s (δ (V) (1− s)+ γ (V) s)ξs.

Most of the parameters are given their original values (as in
Hodgkin and Huxley, 1952; Fleidervish et al., 1996):

VNa = 50 mV, VK = −77 mV, VL = −54 mV,

ḡNa = 120 (k� · cm2)−1, ḡK = 36 (k� · cm2)−1, gL = 0.3 (k� · cm2)−1,

αn(V) = 0.01(V+55)

1− e−0.1·(V+55) kHz, βn(V) = 0.125 · e−(V+65)/80 kHz,

αm(V) = 0.1(V+40)

1−e−0.1·(V+40) kHz, βm(V) = 4 · e−(V+65)/18 kHz,

αh(V) = 0.07 · e−(V+65)/20 kHz, βh(V) = (e−0.1·(V+35) + 1
)−1

kHz,

where in all the rate functions V is used in units of mV. In order to
obtain the specific spike shape and the latency transients observed
in cortical neurons, some of the parameters were modified to

Cm = 0.5 μF/cm2 , φ = 2

γ (V) = 0.51 ·
(

e−0.3·(V+17) + 1
)−1

Hz , δ(V) = 0.05e−(V+85)/30Hz. (125)

We emphasize that these specific choices do not affect any of
our general arguments, but were chosen for consistency with
experimental results (Gal et al., 2010). Estimates of channel num-
ber vary greatly (Soudry and Meir, 2012b). For simplicity, we
chose N = Nn = Nh = Nm = Ns, and unless stated otherwise, we
chose, by default N = 106, as in Soudry and Meir (2012b). Note
that the HHS model is the same model presented in the paper
with M = 1, φs,1 = 1, Ns,1 = N, Nr,j = N and φr = φ.

4.5.2. The coupled HHS model
The coupled version of the HHS model uses the same parameters
as the uncoupled version, and a similar voltage equation

CV̇ = ḡNas0m0h0 (ENa − V)+ ḡK n0 (EK − V)

+ḡL (EL − V)+ I (t)

where the variables n0 and s0m0h0 describe the respective frac-
tion of potassium and sodium channels residing in the “open”
state. To obtain the coupled model equations, we need to assume
something about the structure of the ion channels. The original
assumption by Hodgkin and Huxley was that the channel sub-
units (e.g., m, n and h) are independent. Over the years, it became
apparent that this assumption is inaccurate, and the sodium chan-
nel kinetic subunits are, in fact, not independent (Ulbricht, 2005).
However, it is not yet clear how the slow sodium inactivation is
coupled to the rapid channel kinetics (e.g., Menon et al., 2009;
Milescu et al., 2010), so we nevertheless used the original naive
HH model assumption that the subunits are independent. In that
case the potassium channel structure is given by (for brevity, the
voltage dependence on the rates is henceforth ignored for this
model)

n0

4αn

�
βn

n1

3αn

�
2βn

n2

2αn

�
3βn

n3

αn

�
4βn

n4

while for the sodium channel it is described by

s0m0h0

3αm

�
βm

s0m1h0

2αm

�
2βm

s0m2h0

αm

�
3βm

s0m3h0

αh �� βh

s0m0h1

3αm

�
βm

s0m1h1

2αm

�
2βm

s0m2h1

αm

�
3βm

s0m3h1

δ �� γ

s1m0h0

3αm

�
βm

s1m1h0

2αm

�
2βm

s1m2h0

αm

�
3βm

s1m3h0

αh �� βh

s1m0h1

3αm

�
βm

s1m1h1

2αm

�
2βm

s1m2h1

αm

�
3βm

s1m3h1

In this diagram, transition rates indicated between two boxed
regions, imply that the same rates are used between all corre-
sponding states in boxed regions. The corresponding 32 SDEs are
derived using the method described in Orio and Soudry (2012)
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(or 30 equations if we use the compressed formalism). In this
model we used I0 = 8.3 μA.

4.5.3. The HHSTM model
In order to investigate the effect of a more “physiological” stimu-
lation, we changed the HHS model and added synapses. We used
the popular Tsodyks–Markram model for the effect of a synapse
with short-term-depression on the somatic voltage (the model
first appeared in Tsodyks and Markram (1997) and was slightly
corrected in Tsodyks et al. (1998)). In the model x, y and z are the
fractions of resources in the recovered, active and inactive states
respectively, interacting through the system

y
↗ ↘

x ←− z

. (126)

Here the z→ x rate is τ−1
rec , the x→ y rate is τ−1

in , and the x→
y rate is USEδ

(
t − tsp

)
, where δ (·) is the Dirac delta function,

and tsp is the pre-synaptic spike arrival time. The post-synaptic
current is given by Is (t) = ASEy (t) where ASE is a parameter.
Additionally, we added noise to the model using the coupled SDE
method (Orio and Soudry, 2012), assuming that the diagram in
Equation (126), with the corresponding rates, hint at the under-
lying Markov kinetic structure, with N = 106. As in Figure 1B of
Tsodyks and Markram (1997), we used τin = 3 ms,τrec = 800 ms
and USE = 0.67. Additionally, we set ASE = 70 μA to obtain an
AP response in our model.

4.5.4. The HHMS model
The HHMS model consists of many sodium currents, each with
a different slow kinetic variable. The equations are identical to
the HHS model, except that ḡNas is replaced by ḡNaM−1 ∑M

i=1 si,
where s1 has the same equation as s in the HHS model, and for
i > 2,

ṡi = [δ (V) (1− si)− γ (V) si] φs,i

+
√

(δ (V) (1− si)+ γ (V) si) N−1
s,i φs.iξs,i,

with φs,i = εi and Ns,i = N0ε
iη, where γ (V) and δ (V) are taken

from the HHS model. Unless mentioned otherwise, we chose as
default ε = 0.2, η = 1.5, M = 5, and N0 = N as in Figure 5.

4.5.5. The multiplicative HHMS model
The Multiplicative HHMS model is identical to the HHMS
model with η = 1, except that ḡNaM−1 ∑M

i= 1 si is replaced with

ḡNa
∏M

i= 1 si.

4.5.6. The HHSIP model
The HHSIP model equations (Soudry and Meir, 2012b) are iden-
tical to the HHS model equations, except that s is renamed to s1

and an Inactivating Potassium current was added to the voltage
equation, where

IK = ḡMn4s2 (EK − V) ,

with ḡM = 0.05ḡK and

ṡ2 = δ2 (V) (1− s2)− γ2 (V) s2

+
√

N−1
s2 (δ (V) (1− s2)+ γ (V) s2)ξs,2,

where Ns2 = N and

δ2 (V) = 3.3e(V+35)/15 + e−(V+35)/20

1+ e−(V+35)/10
Hz, γ2 (V)

= 3.3e(V+35)/15 + e−(V+35)/20

1+ e(V+35)/10
Hz.

Again, in all the rate functions V is used in mV units. In this
model we used I0 = 8.3 μA and T∗ = 33 ms.

4.5.7. The HHMSIP model
The HHMSIP model combines HHSIP and HHMS. Its equations
are identical to the HHMS model with η = 2, except they also
contain the IK current from the HHSIP model. In this model we
used I0 = 8.3 μA and T∗ = 33 ms, unless otherwise specified.
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