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Long term temporal correlations frequently appear at many levels of neural activity. We
show that when such correlations appear in isolated neurons, they indicate the existence
of slow underlying processes and lead to explicit conditions on the dynamics of these
processes. Moreover, although these slow processes can potentially store information for
long times, we demonstrate that this does not imply that the neuron possesses a long
memory of its input, even if these processes are bidirectionally coupled with neuronal
response. We derive these results for a broad class of biophysical neuron models, and
then fit a specific model to recent experiments. The model reproduces the experimental
results, exhibiting long term (days-long) correlations due to the interaction between slow
variables and internal fluctuations. However, its memory of the input decays on a timescale
of minutes. We suggest experiments to test these predictions directly.
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1. INTRODUCTION
Long term temporal correlations, or “f −α statistics” (Keshner,
1982), are ubiquitously found at multiple levels of brain and
behavior (Ward and Greenwood, 2007, and refrences therein). For
example, f −α statistics appear in human cognition (Gilden et al.,
1995; Repp, 2005), brain and network activity (measured using
electroencephalograph or local field potentials Bédard et al., 2006,
and refrences therin), and even Action Potentials (APs) generated
by single neurons (Musha and Yamamoto, 1997; Gal et al., 2010).
The presence of these long correlations in a neuron’s AP responses
suggests it is affected by processes with slow dynamics, which
can retain information for long times. As a result, if these slow
processes are also affected by APs, then the generation of each
AP (indirectly) depends on a rather long history of the neuron’s
previous inputs and APs. This potentially allows a single neu-
ron to perform complex computations over very long timescales.
However, it remains unclear whether this type of computation
indeed occurs.

Cortical neurons indeed contain processes taking place
on multiple timescales. Many types of ion channels are
known, with a large range of kinetic rates (Channelpedia,
http://channelpedia.epfl.ch/). Additional new sub-cellular kinetic
processes are being discovered at an explosive rate (Bean, 2007;
Sjöström et al., 2008; Debanne et al., 2011). This variety is par-
ticularly large for very slow processes (Marom, 2010). Such rich
biophysical machinery can potentially modulate the generation of
APs on long timescales. Evidence for such abilities was observed
in recent works, which investigated how cortical neurons tempo-
rally integrate noisy current stimuli (Lundstrom et al., 2008, 2010;
Pozzorini et al., 2013). The temporal integration of the input was
approximated using filters with power law decay, reflecting “long
memory.” However, these filters were fitted only up to a timescale
of about 10 s (or equivalently, frequencies smaller than 10−1 Hz),

possibly due to the limited duration of the experiments, which
involve intracellular recording.

This raises the question – would the neuron still have long
memory on timescales longer than 10 s? Generally, the answer
may depend on the type of stimulus used. For example, certain
ion channels may “remember” non-sparse inputs longer than
sparse inputs (Soudry and Meir, 2010). Here, we focus on the
case of the sparse (AP-like) input (Figure 1), imitating the “natu-
ral” input for an axonal compartment which receives APs from a
previous compartment. Such stimulation is used in various exper-
iments (e.g., Grossman et al., 1979; De Col et al., 2008; Gal et al.,
2010).

We find general conditions under which a neuron can gener-
ate f −α statistics in its spiking activity, and show that this does not
imply that a neuron has long memory of its history. Specifically, in
order to generate f −α statistics slow processes should span a wide
range of timescales with slower processes having a higher level of
internally generated fluctuations (e.g., more “noisy,” due to lower
ion channel numbers). However, in a minimal model that gen-
erates this behavior, slow processes do not retain memory of the
input fluctuations beyond a finite “short” timescale, even though
they are affected by the membrane’s voltage. A main reason for
this is that the “fastest adaptation process” in the model adjusts
the neuron’s response in such a way that any perturbation in the
response is canceled out, before slower processes are affected.

We fit the minimal model to the days-long experiments in
Gal et al. (2010), where synaptically isolated individual neurons,
from a rat cortical culture, were stimulated with extra-cellular
sparse current pulses for an unprecedented duration of days. The
neurons exhibited f −α statistics, responding in a complex and
irregular manner from seconds to days. The synaptic isolation
of the neurons in the network, and their low cross-correlations
indicate that these f −α fluctuations are internally generated in
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FIGURE 1 | Stimulation Regime. (A) Stimulation consists of (extracellular)
sparse current spikes, with inter-stimulus intervals Tm and Action Potential
(AP) occurrences Ym. (B) An AP “occurred” if the voltage V crossed a
threshold Vth following the (sparse) stimulus, with Tm � τAP.

the neurons (Appendix D). We are able to reproduce their results
(Figure 3), and predict that the neuron should remember pertur-
bations in its input for about 102 s (Figure 4). We suggest further
experiments to test these predictions (Figure 5).

The remainder of the paper is organized as follows. We begin
in section 2.1 by presenting the basic setup. Then, in section 2.2,
we present the general framework for biophysical modeling of
neurons. Working in this framework, in section 2.3 we recall the
mathematical formalism from Soudry and Meir (2014) and derive
the power spectrum density for periodic input stimuli. Following
a description of f −α behavior in section 3.1, we provide in section
3.2 both general and “minimal” conditions for a neuron to display
such scaling. In section 3.3 we consider the implications of the
model for the input–output relation of the neuron, given general
stationary inputs. In section 3.4 we demonstrate this numerically
in a specific biophysical model which is fitted to the experimen-
tal results of Gal et al. (2010). We conclude in section 4 with a
summary and discussion of our results. An extensive appendix
contains many of the technical details used throughout the paper
(see Supplementary Material).

2. METHODS
2.1. PRELIMINARIES
In our notation 〈·〉 is an ensemble average, i

�= √−1, a non-

capital boldfaced letter x
�= (x1, . . . , xn)

� is a column vector
[where (·)� denotes transpose], and a boldfaced capital letter X
is a matrix (with components Xmn).

2.1.1. Stimulation
As in Soudry and Meir (2014) we examine a single, synapti-
cally isolated, excitable neuron under “spike” stimulation. In this
stimulation regime, the stimulation current, I (t), consists of a
train of identical short pulses arriving at times tm and ampli-
tude I0. The intervals between the stimulation times are denoted
Tm � tm + 1 − tm (Figure 1A, top). We assume that the stimu-
lation is sparse, i.e., Tm � τAP, with τAP being the timescale
of an AP (Figure 1B). Since the neuron is “excitable” it does
not generate APs unless stimulated, as in Gal et al. (2010)
(i.e., the neuron is neither oscillatory nor spontaneously fir-
ing). However, after a stimulation the neuron can either respond
with a detectable AP or not respond. We denote AP occurrences
a Ym, where Ym = 1 if an AP occurred immediately after the
m-th stimulation, and 0 otherwise (Figure 1A, bottom). Note also
that Ym is not generally the same as the common count pro-
cess generated from the APs by binning them into equally sized

bins (Appendix B.1) – unless Tm is constant and equal to the
bin size.

2.1.2. Statistics
We assume both Ym and Tm are wide-sense stationary (Papoulis
and Pillai, 1965). We denote p∗ � 〈Ym〉 to be the mean probability
to generate an AP and T∗ � 〈Tm〉 as the mean stimulation period.

Furthermore, we denote Ŷm
�= Ym − p∗ and T̂m = Tm − T∗ as

the perturbations of Ym and Tm from their means. An impor-
tant tool in quantifying the statistics of signals is the power
spectral density (PSD), namely the Fourier transform of the auto-
covariance (Papoulis and Pillai, 1965). For analytical convenience,
in this work we will use a PSD of the form

SY
(
f
) �= T∗

∞∑
k =− ∞

〈
ŶmŶm + k

〉
e−2π fT∗ik, (1)

with 0 ≤ f 
 T−1∗ in Hertz frequency units. Note that this
PSD is proportional to the PSD of the common binned AP
(Equation 70), under periodical stimulus and for low frequen-
cies – which is the regime under which we will investigate the PSD
(similarly to the experiment Gal et al., 2010). We similarly define
the PSD

ST
(
f
) �= T∗

∞∑
k =− ∞

〈
T̂mT̂m + k

〉
e−2π fT∗ik, (2)

and the cross-PSD

SYT
(
f
) �= T∗

∞∑
k =− ∞

〈
ŶmT̂m + k

〉
e−2π fT∗ik. (3)

2.2. GENERAL FRAMEWORK
We model the neuron in the standard framework of biophys-
ical neural models – i.e., Conductance Based Models (CBMs).
However, rather than focusing only on a specific model, we
establish general results about a broad class of models. In this
framework, the voltage dynamics of an isopotential neuron are
determined by ion channels, protein pores which change confor-
mations stochastically with voltage-dependent rates (Hille, 2001).
On the population level, such dynamics are generically very well
described by models of the form of Soudry and Meir (2014),
(Equations 4–6)

V̇ = f (V, r, s, I (t)) (4)

ṙ = Ar (V) r − br (V) + Br (V, r) ξ r (5)

ṡ = As (V) s − bs (V) + Bs (V, s) ξ s (6)

with voltage V , stimulation current I (t), rapid variables r
(e.g., m, n, h in the Hodgkin–Huxley (HH) model Hodgkin and
Huxley, 1952), slow “excitability” variables s ∈ [0, 1]M (e.g., slow
sodium inactivation Chandler and Meves, 1970), white noise pro-
cesses ξ r/s (with zero mean and unit variance). Also, the matrices
Ar/s and the vectors br/s can be written explicitly using the kinetic
rates of the ion channels, while the matrices Br/s can be written
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using those rates in addition to ion channel numbers. Lastly, we
denote

Dr
�= BrB�

r ; Ds
�= BsB�

s

as the diffusion matrices (Orio and Soudry, 2012). In these
models the voltage and the rapid variables constitute the AP gen-
eration, while the slow variables modulate the excitability of the
cell. For simplicity, we assumed that r and s are not coupled
directly, but this is non-essential (Soudry and Meir, 2014). The
parameter space can be constrained (Soudry and Meir, 2012),
since we consider here only excitable, non-oscillatory neurons
which do not fire spontaneously 1 and which have a single rest-
ing state – as is common for isolated cortical cells, e.g., Gal et al.
(2010).

2.3. THE POWER SPECTRAL DENSITY OF THE RESPONSE
PSD-based estimators are central tools in quantifying long term
correlations (Robinson, 2003; Lowen and Teich, 2005), and are
commonly used in experimental settings – as in Gal et al. (2010).
Therefore, in this section we focus on the PSD of the neural
response under sparse stimulation regime (section 2.1) of a CBM
(section 2.2).

2.3.1. Recap – previous mathematical results
Typically, CBMs (Equations 4–6) contain many unknown param-
eters, and are highly non-linear. Therefore, it is quite hard to fit
them using a purely simulation based approach, especially over
long timescales, where simulations are long and models have
more unknown parameters. Therefore, we developed a reduc-
tion method that simplifies analysis and enables fitting of such
models. We refer the reader to Soudry and Meir (2014) for full
mathematical details.

In this method, we semi-analytically 2 reduce the full model
(Equations 4–6) to a simplified model, under the assumption
that the timescales of rapid and slow variables are well separated.
Given another assumption, that the neuron dynamics are suf-
ficiently “noisy,” we can linearize the model dynamics, so that
(Soudry and Meir, 2014, Equation 12)

Ŷm = w� (s (tm) − s∗) + em, (7)

where em is a white-noise signal with zero mean and variance

σ 2
e

�= p∗ − p2∗ (recall p∗ is the mean probability to generate an
AP) and s∗ (the excitability fixed point) and wj (an “effective
weight” of component sj) can be found self-consistently together
with p∗ as a function of T∗ (Soudry and Meir, 2014, Equation 10).
After these quantities are found, an expression for the output PSD
SY

(
f
)

in this model can be written explicitly. We let X+, X− and
X0 denote the averages of the quantity Xs during an AP response,
a failed AP response and rest, respectively. Also, we denote

X∗
�= τAPT −1∗

(
p∗X+ + (

1 − p∗
)

X−
) + (

1 − τAPT −1∗
)

X0

1I.e., if ∀t : I (t) = 0, then the probability that a neuron will fire is
negligible – on any relevant finite time interval (e.g., minutes or days).
2A semi-analytic derivation is an analytic derivation in which some terms are
obtained by relatively simple numerics.

as the steady state mean value of Xs [this would be X
(
p∗, T∗

)
in

Equation 7 in Soudry and Meir, 2014]. For example, A∗ and D∗
are the respective steady state means of As and Ds. Additionally,
we denote (definition below Equation 12 in Soudry and Meir,
2014)

a
�= τAP

((
A+ − A−

)
s∗ − (

b+ − b−
))

(8)

as a “feedback” vector (see Figure 1C in Soudry and Meir (2014)
to understand this interpretation), and (Soudry and Meir, 2014,
Equation 14)

Hc
(
f
) �=

(
2πfiI − A∗ − T−1∗ aw�)−1

(9)

as the “closed loop transfer function” (including the effect of
the feedback), with I being the identity matrix. Using the above
notation, we can derive the PSD of the response. Given a peri-
odical stimulation (T̂m = 0) we obtain (Soudry and Meir, 2014,
Equation 13)

SY
(
f
) = w�Hc

(−f
)

D∗H�
c

(
f
)

w

+ T∗σ 2
e

∣∣∣1+T−1∗ w�Hc
(−f

)
a
∣∣∣2

. (10)

Though Equation (10) relies on two simplifying assump-
tions, extensive numerical simulations (Soudry and Meir, 2014,
Figures 3–5) showed that this expression is rather robust and
remains accurate in many cases even if these assumptions do not
hold. Therefore, in this work we will always assume that Equation
(10) is accurate.

2.3.2. The effect of feedback
In the neuron, the slow excitability variables s affect the response
of the neuron, which, in turn, affects the dynamics of the slow
excitability variables. To simplify analysis, it is desirable to “iso-
late” this feedback effect. In order to do this, we apply the
Sherman Morrison lemma to Equation (9),

w�Hc
(−f

) = w�Ho
(−f

) (
1 − T−1∗ w�Ho

(−f
)

a
)−1

,

with

Ho
(
f
) �= (

2πfiI − A∗
)−1

(11)

being the “open loop” version of Hc
(
f
)

(i.e., if a is set to zero).
Using this in Equation (10) we obtain

SY
(
f
) = So

Y

(
f
) ∣∣κ (

f
)∣∣−2

, (12)

with So
Y

(
f
)

being the “open loop” version of SY
(
f
)

(i.e., SY
(
f
)

with a set to zero),

So
Y

(
f
)

� T∗σ 2
e + w�Ho

(−f
)

D∗H�
o

(
f
)

w (13)

and κ
(
f
)

determines the effect of the feedback

κ
(
f
)

� 1 − T−1∗ w�Ho
(−f

)
a. (14)

Frontiers in Computational Neuroscience www.frontiersin.org April 2014 | Volume 8 | Article 35 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Soudry and Meir Long correlations without long memory

Note that κ
(
f
)

depends on the feedback through the variable
a. If a→ 0, for example, the kinetic rates of s are not sensi-
tive to AP occurrences 3. In that case κ

(
f
) → 1 and SY

(
f
) →

So
Y

(
f
)
.

2.3.3. Partial fractions decomposition
In order to simplify analysis, we decompose the vector expressions
in Equations (13, 14) to partial fractions.

If A∗ is diagonalizable, than we can write Equation (13) as
(Appendix A.1)

So
Y

(
f
) = T∗σ 2

e +
M∑

k = 1

ck(
2π f

)2 + λ2
k

, (15)

where the poles λk are the inverse timescales of the slow variables
(the eigenvalues of A∗), arranged from large to small according to
their magnitudes (0 < |λM | < |λM − 1| < · · · < |λ1|) and

ck =
M∑

j = 1

wkDkjwj
2λk

λk + λj
(16)

being the amplitude of these poles, with Dkj and wk being the
respective components of D∗ and w in a basis in which A∗ is
diagonal. Note that, ∀k, Re [λk] < 0 (from the properties of A∗).

Using a similar derivation for κ
(
f
)
, we obtain

κ
(
f
) = 1 −

M∑
k = 1

T−1∗ wkak

2πfi − λk
, (17)

with ak and wk being the respective components of a and w in a
base in which A∗ is diagonal.

2.3.4. Example – a “diagonal” model
For concreteness, we demonstrate our results on a simple model
in which A∗ is a diagonal matrix and, as a result, D∗ (which
depends on A∗) is also diagonal. In this “diagonal” model all the
components of s are uncoupled (i.e., belong to different channel
types), Equation (6) can be written as (Soudry and Meir, 2014,
section 4.1)

ṡk = δk (V) (1 − sk) − γk (V) sk + σs,k (V, sk) ξs,k (18)

∀k ∈{1, . . . , M}, where σs,k (V, s)=
[
(δk (V) (1 − sk) + γk (V) sk)

N−1
s,k

]1/2
and Ns,k are the number of slow ion channels of type k.

Similarly as before, γ+,k, γ−,k and γ0,k denote the averages of the
kinetic rate γk (V) during an AP response, a failed AP response
and rest, respectively. In addition

γ∗,k = τAPT−1∗
(
p∗γ+,k + (

1 − p∗
)
γ−,k

) + (
1 − τAPT−1∗

)
γ0,k

3For example, this can happen if the kinetic rates all have low voltage
threshold, resulting in A+ ≈ A− and b+ ≈ b−.

is the average γk (V) in steady state. We use a similar notation for
δ. Therefore

(A∗)kk = −γ∗,k − δ∗,k

(D∗)kk = 1

Ns,k

γ∗,kδ∗,k

γ∗,k + δ∗,k

with zero on all other (non-diagonal) components and

ak = τAP

(
γ∗,k

(
δ+,k − δ−,k

) − (
γ+,k − γ−,k

)
δ∗,k

)
γ∗,k + δ∗,k

. (19)

Therefore, in Equations (15, 16) we have,

λk = −γ∗,k − δ∗,k (20)

ck = w2
kDkk = w2

k

Ns,k

γ∗,kδ∗,k

γ∗,k + δ∗,k
. (21)

Importantly, by tuning the parameters M, γk (V) , δk (V), Ns,k

and wk we seem to have complete freedom in determining λk,
ck and ak (Equations 19–21). This, in turn, would give complete
freedom in tuning So

Y

(
f
)

and κ
(
f
)
. Therefore, it seems that for

any CBM (i.e., not only diagonal models) we can find an equiv-
alent diagonal model – which produces exactly the same PSD of
the response.

The only caveat in the previous argument is that in non-
diagonal models λk can be complex, but not in a diagonal model,
since the kinetic rates γk (V) and δk (V) must be real numbers.
How would the situation change if some of the poles had com-
plex values? Complex poles (i.e., for which Im [λk] > 0) always
come in conjugate pairs. These pairs behave asymptotically (i.e.,
for 2π f � |λk| or 2π f 
 |λk|) very similarly to two real poles,
with an additional “resonance” (either a bump or depression) in
a narrow range in the vicinity of these poles (i.e., 2π f ∼ |λk|) (see
Appendix A.2, or Oppenheim et al., 1983).

3. RESULTS
3.1. BACKGROUND ON f −α STATISTICS
As observed in Gal et al. (2010), the responses of isolated neu-
rons exhibit long-term correlations robustly 4, under sparse pulse
stimulation (Figure 1 and section 2.1). Signals with such long-
term correlations are often described by the term “f −α noise.”
This is because the Power Spectral Density (PSD, Papoulis and
Pillai, 1965) is a central tool in detecting and quantifying such
signals (Robinson, 2003; Lowen and Teich, 2005). As the name
implies, if the AP pattern Ym is a “f −α noise signal” then its PSD
(Equation 10) has a f −α shape

SY
(
f
) ∝ f −α, (22)

where the PSD is defined here as in Equation (1). As is usually
the case for most f −α phenomena, Equation (22) is true only
in a certain range fmin ≤ f ≤ fmax, and with 0 < α ≤ 2. Note

4I.e., in all neurons for which 0 < p∗ < 1.
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also that if α > 1, then fmin > 0 necessarily 5. Such f −α behav-
ior is considered interesting due to its “scale-free” properties,
which can sometimes indicate a “long memory,” as explained in
the introduction. Therefore, it is interesting to ask the following
questions:

1. What is the biophysical origin of the f −α behavior?
2. Does this f −α behavior imply that the neuron “remembers” its

history on very long timescales (hours and days)?

We aim to answer the first question in section 3.2, focusing on the
case of periodical stimulation Tm = T∗, as in Gal et al. (2010).
The second question is addressed in section 3.3, where we exam-
ine a general sparse stimulation process Tm. Finally, in section
3.4.2 we fit a specific CBM (which is an extension of a previous
CBM) so it adheres to this set of minimal constraints. We numer-
ically reproduce the experimental results of Gal et al. (2010) and
demonstrate our predictions.

3.2. BIOPHYSICAL MODELING OF f −α STATISTICS
As we explained in the introduction, neurons contain a large vari-
ety of processes operating on slow timescales. These processes
are, in many cases, not well characterized or contain unknown
parameters. Therefore, it is hard to model the behavior of the neu-
ron on slow timescales with a CBM using only simulation. With
so many unknowns, an exhaustive parameter search is unfeasi-
ble 6. Fortunately, since we derived a semi-analytic expression for
the PSD (Equation 10), starting from some initial “guess” (as to
which process to include, and with what parameters), it is rel-
atively straightforward to tune the parameters so that the CBM
reproduces the experimental results (i.e., by maximizing some
“goodness of fit” measure).

However, even if a specific model could be found to repro-
duce the experimental results, it would still be unclear whether
or not this is would be a “useful” model – one which can be used
to infer the biophysical properties of the neuron, or its response
to untested inputs. The first problem is that CBMs are highly
degenerate, where different parameter values can generate simi-
lar behaviors7, so we can never be sure if the “correct” model was
inferred. The second problem is that it is unclear whether a “cor-
rect” model would be generally useful – since different neurons
from the same type can have very different parameters (Marder
and Goaillard, 2006).

In order to address the first problem, initially, in section 3.2.1
we analyze Equation (10), and attempt to answer a more gen-
eral question – what class of CBM models can generate the
experimental results? We find “rather general” sufficient con-
ditions – i.e., which, given a few assumptions, also become
necessary conditions. Next, in section 3.2.2, we aim to find a
“minimal” set of constraint on a CBM to fulfill theses conditions.

5Otherwise, 0.25 ≥ p∗ − p2∗ =
〈
Ŷ2

m

〉
≥ 2

∫ fmax
0 SY

(
f
)

df = ∞, which is a

contradiction.
6Also simulations take a long time, since experiments, as in Gal et al. (2010),
are days-long.
7E.g., in Equation (16) many different parameters would give the same ck.

Qualitatively, these conditions indicate that, in order to reproduce
the experimental results, a general CBM must:

1. Include only a finite number of ion channels of each type
(implying a stochastic model).

2. Include few slow processes with timescales “covering” the
range of timescales over which SY

(
f
) ∝ f −α is observed.

3. Obey a certain scaling relation (with an exponent of 1 − α),
implying that slower processes are more “noisy.”

More detailed explanations of these conditions, and a concrete
example, are provided in the following two subsections.

3.2.1. General conditions for f −α statistics
In this section we derive general conditions on the parameters
of a CBM (section 2.2) so it can generate robust f −α statistics
in SY

(
f
)
. Here, we focus on the case of sparse periodical input

Tm = T∗ � τAP (as in Gal et al., 2010).
This analysis is based on the decomposition of the PSD SY

(
f
)

as a ratio of So
Y

(
f
)

and the feedback term
∣∣κ (

f
)∣∣2

. Recall that
SY

(
f
) ∝ f −α is robustly observed for all stimulation parame-

ters – even when p∗ is near 0 or 1 (see section 3.1). Note that
one can arbitrarily vary p∗ by changing the stimulation param-
eters (such as I0 or T∗). It is straightforward to show that when
p∗ → 0 or p∗ → 1, the effect of feedback is negligible 8, and
therefore SY

(
f
) ≈ So

Y

(
f
)
. This implies that, at least for some

simulation parameters, So
Y

(
f
) ∝ f −α . For this reason, and for

the sake of analytical simplicity, we first develop general condi-
tions so that So

Y

(
f
) ∝ f −α , and later we discuss the effects of the

feedback κ
(
f
)
.

Note from Equation (15) that if M (the dimension of s –
the number of slow processes) is finite, one can have So

Y

(
f
) ∝

f −α exactly if and only if α = 0 or 2. However, these values
are far from what was measured experimentally (Equation 42).
Therefore, So

Y

(
f
) ∝ f −α can be generated exactly only in some

limit (in which M is infinite), or approximately (if M is
finite). Also, note that if 2π f � |λ1|, then So

Y

(
f
) − T∗σ 2

e ∝
f −2. Additionally, if 2π f 
 |λM |, we have So

Y

(
f
) ≈ constant.

Therefore, Equation (15) can generate So
Y

(
f
) ∝ f −α with 0 <

α < 2 only for |λM | < 2π f < |λ1|.
Next, we explain when this becomes possible. For simplicity

assume that in Equation (15) T∗σ 2
e is negligible and all the poles

are real (the effect of complex poles will be discussed below). We
define the following pole density

ρ (λ)
�=

M∑
k = 1

ckδ (λ − λk) (23)

where δ (·) is Dirac’s delta function. Using Equations (15 and 23)
we obtain

So
Y

(
f
) =

∫
ρ (λ) dλ(

2π f
)2 + λ2

. (24)

8Near the edges, w → 0 (Equation 80 in Soudry and Meir, 2014), and so
κ

(
f
) → 1.
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For |λM | 
 2π f 
 |λ1| and 0 < α < 2, Equation (24) becomes

So
Y

(
f
) = Cf −α (25)

if and only if (Appendix A.3)

ρ (λ) = ρ0 |λ|1 − α (26)

in the range |λ1| > |λ| > |λM |, with ρ0 = 2π−1C sin (πα/2).
Therefore, ρ (λ), the distribution of the poles, must scale similarly
to So

Y

(
f
)

(but with a different exponent).
Several comments are in order at this point.

1. It was previously known that, in a linear system, a f −α

PSD could be generated using a similarly scaled sum of real
poles (Keshner, 1979, 1982). The novelty here is two-fold:
(1) Quantitatively analyzing the PSD of CBMs (which are
highly non-linear) in a similar way (through Equation 10) (2)
Finding that condition 26 is not only sufficient, but necessary.

2. Formally, Equation (26) can be exact only in the continuum
limit where the number poles is infinite and they are closely
packed. However, in practice, Equation (25) remains a rather
accurate approximation even if the poles are few and well sep-
arated (Figure 2A), as we shall demonstrate in the next section
(as in Keshner, 1979, 1982). Clearly, for simulation purposes, it
is beneficial to use a CBM with a finite number of (preferably,
few) poles .

3. We have assumed that all the poles are real. What happens if
some of the poles are complex? Recall (section 2.3.4) that if
some poles have complex values then So

Y

(
f
)

also has “reso-
nances” (bumps or depressions) in a narrow range near these
poles. Technically, scaling these resonance peaks can also be
used to approximate Equation (25) (Figure 2B). However, we
did not pursue this method here since it would require signif-
icantly more poles and would be much harder to implement.

4. Note that so far we have discussed only So
Y

(
f
)
. One can per-

form a similar analysis directly on SY
(
f
)
. However, we find it is

easier to first simplify κ
(
f
)

and then use Equation (12). From

A B

FIGURE 2 | Generating f −α PSD using a finite number of poles – a

graphic description. Using partial fraction decomposition (Equation 15)
So

Y

(
f
) ∝ f−α (blue) can be approximated (on a log–log scale) in two distinct

ways: (A) Using a sum of a real poles (green), with scaled amplitudes
(approximating Equation 26) (B) Using a sum of complex poles (orange),
with scaled “resonance peaks” (Equation 46). In this work we focus on the
first case (A), since it is simpler and requires far fewer poles.

Equation (12) the PSD SY
(
f
)

will have a power-law shape in
the range |λM | 
 2π f 
 |λ1| if, in that range: either (1) the
magnitude of κ

(
f
)

is constant or slowly varying, or (2) κ
(
f
)

also has a power-law shape. In the first case the exponent of
SY

(
f
)

will be the same as the exponent of So
Y

(
f
)
, and in the

second case the exponent will differ. The conditions for both
cases can be derived similarly to our analysis of So

Y

(
f
)
. We

demonstrate this next, in a more specific context.

3.2.2. A minimal model for f −α statistics
In the previous section we found general conditions under which
Equation (13) gives So

Y

(
f
) ∝ f −α . In this section, we aim is to

generate So
Y

(
f
) ∝ f −α over fmin < f < fmax in a minimal model,

in which M (the dimension of s) is as small as possible. As
explained in section 2.3.4 we do not lose any relevant gener-
ality if we restrict ourselves to the case where A∗ is diagonal
(Equation 18). From Equation (26), we know that |λk| must
“cover” the frequency range fmin < f < fmax. In order for M to be
small, we choose λk to be uniform over a logarithmic scale (sim-
ilarly to Keshner, 1982), so λk ∝ εk with ε < 1. The “simplest”
way to achieve this is to have (see Equation 18)

γk (V) = γ1 (V) εk − 1 ; δk (V) = δ1 (V) εk − 1 (27)

so

λk = λ1ε
k − 1. (28)

In order for λk/ (2π) to cover the range
[
fmin, fmax

]
we require

that

|λ1| > 2π fmax; |λM | = |λ1| εM − 1 
 2π fmin. (29)

Given M, this sets a constraint on ε. In order to have scaling in
ρ (λ), as in Equation (26), we also require that ck ∝ |λ|1−α dλ ∝
ε(2−α)k, since dλ = λk − λk − 1 ∝ εk. Therefore, from Equations
(21) and (20) we have

w2
k

Ns,k
∝ ε(1−α)k.

so that So
Y

(
f
) ∝ f −α . Therefore, we require that wk ∝ ε−μk,

Ns,k ∝ ενk with 2μ + ν = α − 1. For μ > 0 the slower processes
(larger k) have larger weight. For ν > 0 slower processes have
a smaller number of ion channels (therefore, they are more
“noisy”).

In Appendix A.4, we investigate what type of scaling will
generate also SY

(
f
) ∝ f −α , taking into account the effects of

feedback (through κ
(
f
)
). We conclude that, because of the feed-

back, a value of μ > 0 would not change the exponent of SY
(
f
)

over a “reasonable” range of parameters (i.e., assuming ν > −2).
Therefore, the simplest way to generate SY

(
f
) ∝ f −α would be to

take μ = 0. In this case, we have (Equation 59), for −1 < ν < 1
and |λM | 
 2π f 
 |λ1|,

SY
(
f
) ∝ 1

Ns,1

f −(1+ν)

ln2 f
, (30)
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D E
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FIGURE 3 | The measures of “scale free” rate dynamics in the

HHMS model – comparison of the experimental data from Gal

et al. (2010) and a simulation of the extended HHS model (solid

and dashed lines, respectively). We use here the same measures as
in Figure 6 in Gal et al. (2010): (A) The firing rate fluctuations
estimated using bins of different sizes (T =10, 30, 100, and 300 s) and
plotted on a normalized time axis (units in number of bins), after

subtracting the mean of each series. (B) CV of the bin counts, as a
function of bin size, plotted on a log-linear axis. (C) Firing rate
periodogram. (D) Detrended fluctuations analysis. (E) Fano factor (FF)
curve. (F) Allan factor (AF) curve. (G) Length distribution of
spike–response sequences, on a half-logarithmic axes. (H) Length
distribution of no-spike-response sequences, on a double-logarithmic
axes. For additional details on measures used see Appendix B.1.

where the logarithmic correction arises from the effect of feed-
back κ

(
f
)
. A few comments on Equation (30) are in order at this

point.

1. Due to the logarithmic correction, in order to approximate
SY

(
f
) ∝ f −α it is a reasonable choice to set ν slightly higher

than α − 1, e.g.,
ν = α − 0.9. (31)

2. Even if there is no scaling in the parameters (i.e., μ = ν = 0),
we obtain SY

(
f
) ∝ f −1 (neglecting logarithmic factors).

3. Equation (30) is based on asymptotic derivation, which is
correct in two opposing limits (“sparse” or “dense” poles,
Appendix A.5), indicating that these results are rather robust
to parameter perturbations.

4. The magnitude of the ion channels number Ns,1 is inversely
proportional to the magnitude of SY

(
f
)

(i.e., its proportion-
ality constant), while the value w1 (the magnitude of the
weights) does not affect SY

(
f
)
.

5. When Ns,1 → ∞ we have SY
(
f
) → 0, implying that in the

deterministic limit, such a CBM does not generate f −α noise
(in accordance with our results from Soudry and Meir, 2012).

3.3. THE INPUT–OUTPUT RELATION OF THE NEURON
In the previous section we derived minimal biophysical con-
straints under which a neuron may generate f −α statistics in
response to periodic stimulation. In this section we explore the
input–output relation of the neuron under these constraints, in
the case where the inter-stimulus intervals Tm form a general
(sparse) random process. We decompose the neuronal response
into contributions from its “long” history of internal fluctuations
and its “short” history of inputs, quantifying neuronal memory.

3.3.1. The linearized input–output relation

Recall that T̂m
�= Tm − T∗, with T∗

�= 〈Tm〉 and ST
(
f
)

the PSD
of Tm (Equation 2). As explained in Soudry and Meir (2014), for
a general CBM 9 we can decompose Ŷm, the fluctuations in the
neuronal response, to a linear sum of the history of the input and
internal noise, i.e.,

Ŷm =
∞∑

k = 0

hext
k T̂m − k +

∞∑
k = 0

hint
k zm − k, (32)

9I.e., Equations (4–6), with the same assumptions as we had in section 2.3.1.
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FIGURE 4 | System decomposition into external (input – T̂
(
f
)
) and internal (fluctuation – z

(
f
)
) filters. For a fitted HHMS model, Hext (

f
)

is a low pass
filter with cutoff < 10−2 Hz while Hint

(
f
) ∼ f−α/2 for f < 10−2 Hz.

A B

FIGURE 5 | Input memory in fitted model. (A) Comparison of
∣∣SYT

(
f
)∣∣ of

the fitted model (“Model”) to that estimated from the experimental
confirms (“Experiment”) the prediction of the input filter

∣∣Hext (
f
)∣∣ for

probed range. (B) This filter (“Approx”) can be probed more accurately by
peaks of Ŷ

(
f
)

(“Simulation”), by applying a “sum of sines” input
(Equation 43).

with the filter hext
k used to integrate external fluctuations in the

inputs, and the filter hint
k used to integrate zm, a zero mean and

unit variance white noise representing internal fluctuations (e.g.,
ion channel noise). It is easier to analyze this I/O in the frequency
domain, where Equation (32) becomes (Soudry and Meir, 2014,
Equation 20)

Ŷ
(
f
) = Hext (f

)
T̂

(
f
) + Hint (f

)
z
(
f
)
, (33)

where we define X
(
f
)

to be the Fourier transform of X (t).

Together, Hext
(
f
)

and Hint
(
f
)

describe the T̂m → Ŷm neuronal
I/O at very long timescales.

Note that these filters are related to the PSDs, in the following
way

SYT
(
f
) = Hext (−f

)
ST

(
f
)
, (34)

SY
(
f
) =

∣∣∣Hext (f
)∣∣∣2

ST
(
f
) +

∣∣∣Hint (f
)∣∣∣2

(35)

where we recall that SYT
(
f
)

is the cross-PSD (Equation 3).
Notably, from Equation (35), if the input to the neuron is
not periodical (so, ST

(
f
) �= 0), then the PSD SY

(
f
)

should be
the same as calculated previously, except for the addition of∣∣Hext

(
f
)∣∣2

ST
(
f
)
.

3.3.2. The shape of the input–output filters
For a general CBM, we can derive semi-analytically the exact form
of the filters in Equation (33) from its parameters, as we did
for SY

(
f
)
. For example, if T̂m = 0 (periodical input), then also

ST
(
f
) = 0, and so

∣∣Hint
(
f
)∣∣2 = SY

(
f
)
, (36)

where SY
(
f
)

is the PSD we derived previously (Equation 10).
Additionally, we obtain (Soudry and Meir, 2014, Equation 17)

Hext (f
) = T−1∗ w�Hc

(
f
)

d. (37)

with

d � A0s∗ − b0. (38)

Next, we find both filters for the minimal model described in
section 3.2.2. Recall that in this model

wk = w1 ; ak ∝ εk ; dk ∝ εk (39)

with a1 and d1, respectively given by Equations (8) and (38). To
simplify analysis, we derive an asymptotic form for both filters,
for the cases |λM | 
 2π f 
 |λ1| and 2π f � |λ1| . First, from
Equation (36), and Equation (59), we find

∣∣Hint
(
f
)∣∣ ∼

{
f −α/2/ ln f , if |λM | 
 2π f 
 |λ1|
constant , if 2π f � |λ1| . (40)

Similarly, from Equation (37), we find (Appendix A.6) that for
the minimal model the interpolation between the two asymptotic
cases is monotonic, so we can approximate

Hext (f
) ≈ qd1

2πfi − qa1
. (41)

where q
�= (1 − ε)−1 T−1∗ w1. A few comments on Equations (40,

41) are in order at this point.

1. We found that Hext
(
f
)

is a low pass filter with a pole at fext =
qa1/2π while Hint

(
f
) ∼ f −α/2 for 2π f 
 |λ1|. Consequently,
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in the temporal domain (Equation 32), for large t (i.e., large k),
the neuron’s memory of its external input decays exponentially
(hext

k ∼ e−f1T∗k), while its memory of its internal fluctuations

decays as a power law (hint
k ∼ k−(1−α/2)). Therefore, the input

memory has a finite timescale (equal to f −1
ext ), while the mem-

ory of internal fluctuations is “long” (with a cutoff only near
f −1
min).

2. It is perhaps surprising that Equation (37), which has mul-
tiple poles, becomes a low pass filter with a single pole f1.
The derivation (Appendix A.6) gives two main reasons for
this. First, the scaling of wk and dk in Equation (39) induces
only a weak (logarithmic) scaling of the poles in open-loop.
Second, even this weak scaling is canceled by the effects of the
feedback.

3. Naturally, other models may have a different shape of Hext
(
f
)
.

This could be probed directly, as we explain later, in section
3.4.3.

3.4. MODELING EXPERIMENTAL RESULTS
In this section we apply our results to experimental data,
described in section 3.4.1. In section 3.4.2 we implement the set
of “minimal constraints” we found in section 3.2.2 in a specific
CBM, and fit it to experimental data in which SY

(
f
) ∝ f −α . The

analytical results in section 3.2 suggest that this specific CBM
is a “reasonable” representative of the family of CBMs that can
generate the experimental results. Other members of this fam-
ily can be reached by varying the parameters within the (either
minimal or general) constraints. Next, in section 3.4.3 we use
our results from section 3.3.2 on the fitted model. We show that,
although internal fluctuations in the model can affect the neural
response on a timescale of days, the memory of the input is only
retained for a duration of minutes. We suggest specific experi-
ments to test this prediction. In section 3.4.4 we suggest further
predictions

3.4.1. Experimental details
The experiment from Gal et al. (2010), where a single synapti-
cally isolated neuron, residing in a culture of rat cortical neurons,
is stimulated periodically with a train of extracellular short cur-
rent pulses with constant amplitude I0. The observed neuronal
response was characterized by different modes (Gal et al., 2010,
Figure 2). We focus on the “intermittent mode” steady state, in
which 0 < p∗ < 1 (i.e., sometimes the stimulation evokes an AP,
and sometimes it does not). The patterns observed in Ym, the
AP occurrences timeseries, are rather irregular (Gal et al., 2010,
Figure 2E), span multiple timescales (Gal et al., 2010, Figure 5)
and variable (i.e., patterns are not repeatable Gal et al., 2010,
Figure 9A). More quantitatively, as indicated by the analysis (Gal
et al., 2010, Figure 6), for all intermittently firing neurons, the pat-
terns in Ym fall into the category of “f −α noise” where the value
of α varied significantly between neurons – with

α = 1.43 ± 0.35 (42)

(mean ± SD). As we explained in section 3.1, this f −α behavior is
true only in some limited range fmin < f < fmax. From the exper-
imental data, (Figure 6C in Gal et al., 2010) it can be estimated

that fmin < 10−5Hz and fmax ∼ 10−2Hz. Also, since α > 1, then
0 < fmin (see section 3.1).

3.4.2. The HHMS model – a biophysical implementation of the
minimal constraints

In our previous work (Soudry and Meir, 2012) we already fitted
a model that fits many of the “mean” properties of the neu-
ronal response (e.g., firing modes, transients and firing rate). This
model is an extension of the original Hodgkin–Huxley model
which includes Slow sodium inactivation (Chandler and Meves,
1970; Fleidervish et al., 1996) (The HHS model, see Appendix
C.1). In order to maintain this fit with the experimental results,
we extend the HHS model with additional slow components,
obeying Equation (18). We denote this as the HHMS model
(Hodgkin Huxley model with Many Slow variables, Appendix
C.2). The equations are identical to the HHS model, except
that in the voltage equation (Equation 73) ḡNas is replaced by
ḡNaM−1 ∑M

i = 1 si, where s1 has the same equation as s in the
HHS model (Equation 77). By symmetry, this gives identical
weights to component si (i.e., ∀k : wk = w1). The remaining
rates (for k ≥ 2) are chosen according to our constraints, so
γk (V) = γ (V) εk − 1, δk (V) = δ (V) εk − 1 (as in Equation 27),
where γ (V) and δ (V) are taken from the HHS model (Equation
77) and also Ns,k = Nsε

νk. Therefore, the only free parameters are
ε, M, Ns, ν and I0 (I0 is the current amplitude of the stimulation
pulses).

This model can be used to fit the experimental results for
any α ∈ [0, 2). We performed a numerical simulation of the full
equations (Equations 4–6) of the HHMS model under periodi-
cal stimulation with T∗ = 50 ms. We aimed to fit an experiment
from Gal et al. (2010), which had a similar stimulation and
exhibited SY

(
f
) ∼ f −α , with α = 1.4 (which is approximately

the average α value measured in Gal et al., 2010). The cur-
rent amplitude I0 was set to I0 = 7.7 μA so that the model
would have the same mean response probability p∗ ≈ 0.4 as in
the experimental data (using the self consistent equations for
p∗ from Soudry and Meir, 2014). We chose M = 5 and ε =
0.2 in order to satisfy constraint Equation (29) with a mini-
mal M. We chose ν = 0.5 to satisfy Equation (31). Lastly, we
chose Ns = 104 in order to fit the magnitude of the SY

(
f
)
.

This reproduced all the scaling relations observed experimentally
(Figure 3).

3.4.3. Predictions – probing the input–output relation of the neuron
After fitting the HHMS model to the experimental results, we can
examine its resulting linearized input–output relation, described
by the filters Hext

(
f
)

and Hint
(
f
)

(Equation 33). The Hint
(
f
)

filter integrates internal fluctuations , while the Hext
(
f
)

filter
determines how external fluctuations (in the input) affect its
response.

In accordance with the asymptotic forms in Equations (40)
and (41), we find that Hext

(
f
)

is a low pass filter with a pole fext ∼
10−2 Hz (Figure 4, green) while Hint

(
f
) ∼ f −α/2 for fmin <

f < 10−2 Hz (Figure 4, red) with fmin < 10−5 Hz. Therefore, as
explained in section 3.3.2 this model implies that the response of
the neuron is affected by internal fluctuations over the scale of
days (∼ f −1

min) or more, generating the f −α behavior we observe
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in Figure 3. However, external input is remembered only for
minutes (∼ f −1

ext ).
Next, we examine two methods which allow us to probe

Hext
(
f
)

directly and examine these predictions.
First, a simple method to probe the external input filter

Hext
(
f
)

is through Equation (34). Allowing reliable estimation
of Hext

(
f
)

in a certain frequency range requires a random pro-

cess stimulation for which
∣∣Hext

(
f
)∣∣2

ST
(
f
) � ∣∣Hint

(
f
)∣∣ in that

range, as explained in Appendix B.2. To demonstrate this method
we estimate STY

(
f
)

from the existing experimental data taken
from Gal and Marom (2013), in which ST

(
f
) ∼ f −β (above some

lower cutoff). In Figure 5A we compare this estimation with
STY

(
f
)

in the HHMS model in a limited range where ST
(
f
)

is suf-
ficiently high for estimation to be accurate. It is similar to STY

(
f
)

from our fitted HHMS model, validating our estimate of Hext
(
f
)

for that frequency range.
Second, The filter Hext

(
f
)

could be probed more accurately
and at lower frequencies – by sinusoidally modulating the input
(the internal-stimulus intervals), analogously to the sinusoidally
modulated input current used in Lundstrom et al. (2008, 2010)
and Pozzorini et al. (2013),

T̂m = Tamp

L∑
l = 1

sin
(
2π flT∗m

)
. (43)

As we explain in Appendix B.3, in this case the output of the
neuron would be

Ŷm =
L∑

l = 1

Tamp
∣∣Hext (fl

)∣∣ sin
(
2π flT∗m + � Hext (fl

)) + “noise.”

This allows us to easily estimate
∣∣Hext

(
f
)∣∣ using the peaks of

T−1
ampŶ

(
f
)

(the Fourier transform of T−1
ampŶm) at frequencies

fl, as we demonstrate in Figure 5B, using our fitted HHMS
model.

3.4.4. Additional predictions
As explained in Gal et al. (2010) and Soudry and Meir (2012) the
latency of the AP can serve as an indicator of the cell’s excitabil-
ity. Specifically, this is true in the HHMS model, for periodical
stimulus and p∗ = 1, where the PSD of the latency, SL

(
f
)
, is

a shifted and scaled version of SY
(
f
)

with p∗ → 1 (see section
4.4.6 in Soudry and Meir, 2014). Therefore, in the HHMS model
we also have SL

(
f
) ∝ f −α approximately (neglecting logarithmic

factors).
Next, suppose we vary some measurable stimulation parame-

ter, such as the mean stimulation rate T−1∗ . How would this affect
the shape of the filters we derived? The analytical results allow us
to calculate this explicitly in the HHMS model.

First, we consider the gain of the external input filter Hext
(
f
)

(i.e., Hext (0)). As we explain in Appendix A.7, if f 
 fcutoff, than

Hext (f
) ≈ p∗T−1∗ = f̄out, (44)

which is the mean firing rate of the neuron – a simply measurable
quantity.

Second, how would Hint
(
f
)

change if T∗ is varied? Since
Hint

(
f
)

is directly measurable only through SY
(
f
)

(Equation 36),
we consider SY

(
f
)

instead. From Equation (59) it is clear that if
SY

(
f
) ∼ f −α approximately at low frequencies then the exponent

α should not depend much on any external parameter (assuming
0 < p∗ < 1). This was observed experimentally when the stimu-
lation rate (T−1∗ ) was varied, as can be seen in Figure 1G in Gal
and Marom (2013).

4. DISCUSSION
4.1. GENERATING F −α PSD
In this work we aim to explain biophysically the phenomenon of
f −α behavior in the response of isolated neurons, and explore
its implications on the input–output relation of the neuron. We
do this under a regime of sparse stimulation (Figure 1), and in
the biophysical framework of stochastic conductance-based mod-
els (CBMs, Equations 4–6). In this setting our analytical results
(Soudry and Meir, 2014) can be used to derive a closed form
expression for the Power Spectral Density (PSD, Equation 10)
based on the parameters of the slow kinetics in the CBM. This
PSD is affected by the closed-loop interaction – the slow dynamics
affect the AP response, which, in turn, feeds back and affects the
kinetics of the slow processes (section 2.3.2). Moreover, the con-
tribution of each slow process to the PSD can be exactly quantified
(section 2.3.3), as we demonstrate using a simple model (section
2.3.4).

These mathematical results expose the large parameter degen-
eracy of CBMs (Marder and Goaillard, 2006; Soudry and Meir,
2014), i.e., that many “different” models will quantitatively pro-
duce the same behavior. Due to the degeneracy of CBMs, we first
aimed to derive rather general sufficient conditions for the gen-
eration of f −α noise in a CBM (section 3.2.1). These conditions
indicate which types of CBMs can generate the observed behavior.
We show that, in order to generate f −α behavior, neurons should
have intrinsic fluctuations (e.g., due to ion channel noise), and
have a number of slow processes with a large range of timescales,
“covering” the entire range over which f −α statistics is observed.
Furthermore, the parameters of these processes must be scaled
in a certain way in order to generate f −α noise with a specific α

(Equation 26).
We implement these constraints in a minimal CBM (section

3.2.2), in which the slow processes are uncoupled, except through
the voltage, as in Soudry and Meir (2012). Initially, we find that
the specific scaling relation can be achieved either by scaling the
(1) conductances or (2) the ion channel numbers. This scaling
implies that slower processes will be either (1) “stronger” or (2)
“noisier.” However, the “feedback” effect in the model (the slow
process being affected by the APs) prevents f −α statistics from
being generated in case (1). In contrast, option (2) can robustly
generate the observed f −α statistics in the neuronal response for
any 0 < α < 2 (Equation 30 and Figure 6).

Naturally, outside of the framework of CBMs (Equations
4–6) long term correlations may be modeled differently, since
there are numerous distinct ways to generate power law distri-
butions (Newman, 2005). For example, as numerically demon-
strated in Gal and Marom (2013), 1/f statistics in neuronal
firing patterns can be generated by assuming global (cooperative)
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interactions between ion channels (i.e., not through the volt-
age). Biophysically, the significance of interactions between ion
channels is still not clear (Naundorf et al., 2006 and Brief
Communications arising), but other cellular processes that might
affect excitability on slower timescales clearly exhibit interac-
tions (e.g., gene regulation networks Davidson and Levin, 2005).
Mathematically, such interactions render the slow dynamics
(Equation 6) non-linear at constant voltage (Gillespie, 2000). It
would be interesting to generalize the theory we presented here
in order to understand how to tune the PSD in such a non-linear
setting, since this has the potential to further reduce the number
of parameters and model complexity.

4.2. BIOPHYSICAL IMPLEMENTATION
We examine our theoretical predictions numerically. We do this
using a stochastic Hodgkin Huxley type model with slow sodium
inactivation that was previously fitted to the basic experimen-
tal results (Soudry and Meir, 2012). We extend this model to
include four additional slow processes, which resemble slow
sodium inactivation (Appendix C.2). The only difference is
that each process is slower than the previous one, and has a
lower number of ion channels, according to the specific scal-
ing relation that was derived. The resulting model indeed gen-
erates f −α noise, and is demonstrated numerically (Figure 3)
to fit the experimental results of Gal et al. (2010). This is
the first time, to our knowledge, that a cortical neuron model
(either biophysical or phenomenological) reproduces experi-
mental results over such long timescales. Notably, without the
analytical results, it would be hard to tune the parameters of
a biophysical neuron, due to the large number of unknown
parameters.

Previous works (Lowen et al., 1999; Soen and Braun, 2000)
demonstrated numerically that, even with constant current stim-
ulation, incorporating slow processes into an excitable cell model
can generate f −α in its response. In Lowen et al. (1999) a
HH model was extended to include multiple slow processes
with scaled rates in the potassium channel produced f −α firing
rate response. Their model produced an exponent of α ≈ 0.5,
replicating experiments measurements from the auditory nerves.
Another work (Soen and Braun, 2000), aiming to reproduce
the activity of heart cells, produced long term correlations with
α ≈ 1.6 − 2 using a reflected diffusion process.

The identity of the specific slow processes involved in gener-
ating f −α remains a mystery at this point, since there are many
possible mechanisms which can modulate the excitability of the
cell in such long timescales. For example, ion channel numbers,
conductances and kinetics are constantly being regulated and
may change over time (e.g., Levitan, 1994; Staub et al., 1997).
Also, the ionic concentrations in the cell depend on the activ-
ity of the ionic pumps, which can be affected by metabolism
(Silver et al., 1997). Finally, the spike initiation region can sig-
nificantly shift its location with time (e.g., 17 μm distally during
48 h of high activity Grubb and Burrone, 2010), and so can cel-
lular neurites (Paola et al., 2006; Nishiyama et al., 2007). Only
after such slow processes are quantitatively characterized, can
we determine their effect on the neuron’s excitability at long
timescales.

4.3. THE INPUT–OUTPUT RELATION
The linearized input–output relation of the fitted CBM was
derived using the methods described in Soudry and Meir (2014).
This linearized relation decomposes the contributions of external
inputs and internal fluctuations to the response of the neuron.
This decomposition (Equation 33) shows that even though the
neuron can “remember” its intrinsic fluctuations over timescales
of days, its memory of past pulse inputs can be limited to a shorter
timescale of ∼ 102 s (Figure 4). Notably, the neuron has this lim-
ited memory for such inputs even though processes on much
slower timescales exist in the model.

In the introduction we mentioned previous works (Lundstrom
et al., 2008, 2010; Pozzorini et al., 2013) which also described
the temporal integration in the neuron using power-law filters,
although in a rather different (non-sparse) stimulation regime.
Our fitted model indicates that similar power-law integration still
occurs at very long timescales. However, it is not the input that
is being integrated, but the internal fluctuations in the neuron,
and this is what drives the f −α statistics measured by Gal et al.
(2010). Also, as in Lundstrom et al. (2008, 2010) and Pozzorini
et al. (2013), the neuronal response in our model is indeed
affected by the last 10 s of its external inputs. However, our model
suggests the response will not be significantly affected by spike
perturbations in its input that occurred more than 102 s ago.

Qualitatively, this specific timescale of the input memory stems
from the “fastest slow negative feedback process” in the model
(in this specific model, slow sodium inactivation). This process
responds to perturbations in the input which change the fir-
ing rate much more quickly than all the other slow processes.
Its response to perturbation brings the firing rate back to its
steady state, before slower processes even register that the firing
rate has changed. Therefore, effectively, these slower processes
do not store much information about input perturbations. We
suggest experiments to test input memory directly, by using f −α

stimulation (Figure 5A), “sum of sines” stimulation (Figure 5B)
and a variation of the mean stimulation rate (Equation 44 and
Supplementary Figure 2).

4.4. SIGNIFICANCE
This work makes several practical contributions. First, our results
impose specific constraints on the slow processes that modu-
late the excitability on very long timescales (e.g., a ratio between
timescales and channel numbers). Such constraints facilitate the
construction of neuronal models with “realistic” input–output
relations over extended timescales. Hopefully, these constraints
may also help to identify the relevant slow biophysical processes.
Second, our results suggest that for sparse spiking inputs, the
memory of a cortical neuron stretches back to the last minute
of its input, but not much more. This limit could be especially
relevant when fitting statistical models to neuronal data, and for
setting limitations on neuronal computations.

As for the functional significance, it is still not clear why
the neuronal response fluctuates so wildly, especially at long
timescales. We end this paper by offering some speculations on
this issue. We see three possible scenarios. One possibility is
that these fluctuations are beneficial. For example, such non-
stationary fluctuations should increase network heterogeneity,
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which may be advantageous (Tessone et al., 2006; Padmanabhan
and Urban, 2010). Another possibility is that these fluctuations do
not affect neural response when the neuron is connected within a
network. For example, this could be due to network feedback can-
celing slow changes in excitability. Finally, it is possible that such
slow fluctuations are deleterious, an unavoidable “noise” gener-
ated by the non-stationary environment of the cell. Interestingly,
f −α noise imposes important constraints on electronic circuits,
and was predicted to impose similar constraints on neural circuits
(Sarpeshkar, 1998).
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