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To improve robustness in object recognition, many artificial visual systems imitate the
way in which the human visual cortex encodes object information as a hierarchical set
of features. These systems are usually evaluated in terms of their ability to accurately
categorize well-defined, unambiguous objects and scenes. In the real world, however, not
all objects and scenes are presented clearly, with well-defined labels and interpretations.
Visual illusions demonstrate a disparity between perception and objective reality, allowing
psychophysicists to methodically manipulate stimuli and study our interpretation of the
environment. One prominent effect, the Müller-Lyer illusion, is demonstrated when the
perceived length of a line is contracted (or expanded) by the addition of arrowheads
(or arrow-tails) to its ends. HMAX, a benchmark object recognition system, consistently
produces a bias when classifying Müller-Lyer images. HMAX is a hierarchical, artificial
neural network that imitates the “simple” and “complex” cell layers found in the visual
ventral stream. In this study, we perform two experiments to explore the Müller-Lyer
illusion in HMAX, asking: (1) How do simple vs. complex cell operations within HMAX
affect illusory bias and precision? (2) How does varying the position of the figures in
the input image affect classification using HMAX? In our first experiment, we assessed
classification after traversing each layer of HMAX and found that in general, kernel
operations performed by simple cells increase bias and uncertainty while max-pooling
operations executed by complex cells decrease bias and uncertainty. In our second
experiment, we increased variation in the positions of figures in the input images that
reduced bias and uncertainty in HMAX. Our findings suggest that the Müller-Lyer illusion
is exacerbated by the vulnerability of simple cell operations to positional fluctuations, but
ameliorated by the robustness of complex cell responses to such variance.
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1. INTRODUCTION
Much of what is known today about our visual perception has
been discovered through visual illusions. Visual illusions allow us
to study the difference between objective reality and our inter-
pretation of the visual information that we receive. Recently it
has been shown that computational vision models that imitate
neural mechanisms found in the ventral visual stream can exhibit
human-like illusory biases (Zeman et al., 2013) . To the extent
that the models are accurate reflections of human physiology,
these results can be used to further elucidate some of the neural
mechanisms behind particular illusions.

In this paper, we focus on the Müller-Lyer Illusion (MLI),
which is a geometrical size illusion where a line with arrow-
heads appears contracted and a line with arrow-tails appears
elongated (Müller-Lyer, 1889) (see Figure 1). The strength of the
illusion can be affected by the fin angle (Dewar, 1967), shaft
length (Fellows, 1967; Brigell and Uhlarik, 1979), inspection time
(Coren and Porac, 1984; Predebon, 1997), observer age (Restle

and Decker, 1977), the distance between the fins and the shaft
(Fellows, 1967) and many other factors. The illusion classically
appears in a four-wing form but can also manifest with other
shapes, such as circles or squares, replacing the fins at the shaft
ends. Even with the shafts completely removed, the MLI is still
evident.

Here, we employ an underused method to explore the Müller-
Lyer illusion and its potential causes using an Artificial Neural
Network (ANN). To date, few studies have used ANNs to explore
visual illusions (Ogawa et al., 1999; Bertulis and Bulatov, 2001;
Corney and Lotto, 2007). In some cases, these artificial neural
networks were not built to emulate their biological counterparts,
but rather to demonstrate statistical correlations in the input. One
such example is the model used by Corney and Lotto (2007), con-
sisting of only one hidden layer with four homogenous neurons,
which few would consider to be even a crude representation of
visual cortex. The work presented by Ogawa et al. (1999) used
a network with three hidden layers of “orientational neurons,”
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FIGURE 1 | The ML illusion in classical four-wing form. Horizontal lines
are the same length in all cases. The ML effect is stronger for more acute
angles (Left) and weaker for more obtuse angles (Right).

“rotational neurons” and “line unifying neurons.” This network
could roughly correspond to one layer of simple cells that provide
orientation filters and one layer of complex cells that combine
their output. However, this study presented no quantitative data
and lacked a detailed description of the model, such as the size
or connectivity of their network. Bertulis and Bulatov (2001)
created a computer model to replicate the spatial filtering prop-
erties of simple cells and the combination of these units’ outputs
by complex cells in visual cortical area V1. Although they com-
pared human and model data for the Müller-Lyer Illusion, their
model centered only on the filtering properties of early visual neu-
rons. These models do not adequately represent the multi-layered
system that would best describe the relevant neural structures.
Neuroimaging studies have shown areas V1, V2, V4, and IT
are recruited when viewing the MLI (Weidner and Fink, 2007;
Weidner et al., 2010) and hence the inclusion of operations from
such visual ventral stream subdivisions is desirable. Therefore,
studying the MLI in a computational model known to mimic
these areas would provide a more biologically representative
result.

In a previous report, we studied the MLI in a benchmark
model of the ventral visual stream that imitates these cortical areas
(Zeman et al., 2013). Following from our hypothesis that the MLI
could occur in a model that imitates the structure and function of
visual ventral areas, we demonstrated its manifestation in a bio-
logically plausible artificial neural network. Although the models
listed above are capable of reproducing the MLI, we believe our
work provides a significant advance, being one of the first stud-
ies to model a visual illusion in a simulated replica of the ventral
visual stream. In addition, our study contrasts with those above
by employing techniques to train the model on multiple images
before running a classification task and comparing the task of
interest to a control. This allows us to separate the inner workings
of the model from the input in the form of training images.

The model we recruit, HMAX (Serre et al., 2005), is a feed-
forward, multi-layer, artificial neural network with layers corre-
sponding to simple and complex cells found in visual cortex. Like
visual cortex, the layers of HMAX alternate between simple and
complex cells, creating a hierarchy of representations that cor-
respond to increasing levels of abstraction as you traverse each
layer. The simple and complex cells in the model are designed to
match their physiological counterparts, as established by single
cell recordings in visual cortex (Hubel and Wiesel, 1959). Here,
we briefly describe single and complex cell functions and pro-
vide further detail on these later in Section 2.1. In short, simple
cells extract low-level features, such as edges, an example of which

would be Gabor filters that are often used to model V1 operations.
The outputs of simple cells are pooled together by complex cells
that extract combined or high-level features, such as lines of one
particular orientation that cover a variety of positions within a
visual field. Within HMAX, the max pooling function is used to
imitate complex cell operations, giving the model its trademark
name. In general, low-level features extracted by simple cells are
shared across a variety of input images. High-level features are less
common across image categories. The high-level features output
by complex cells are more stable, invariant and robust to slight
changes in the input.

HMAX has been extensively studied in its ability to match and
predict physiological and psychological data (Serre and Poggio,
2010). Like many object recognition models, HMAX has been
frequently tested using well-defined, unambiguous objects and
scenes but has not been thoroughly assessed in its ability to
handle visual illusions. Our previous demonstration of the MLI
within HMAX showed not only a general illusory bias, but also
a greater effect with more acute fin angles, corresponding to
the pattern of errors shown by humans. Our replication of the
MLI in this model allowed us to rule out some of the neces-
sary causes for the illusion. There are a number of theories that
attempt to explain the MLI (Gregory, 1963; Segall et al., 1966;
Ginsburg, 1978; Coren and Porac, 1984; Müller-Lyer, 1896a,b;
Bertulis and Bulatov, 2001; Howe and Purves, 2005; Brown and
Friston, 2012) and here we discuss two. One common hypothesis
is the “carpentered-world” theory—that images in our environ-
ment influence our perception of the MLI (Gregory, 1963; Segall
et al., 1966). To interpret and maneuver within our visual envi-
ronment, we apply a size-constancy scaling rule that allows us to
infer the actual size of objects from the image that falls on our
retina. While arrowhead images usually correspond to the near,
exterior corners of cuboids, arrow-tail configurations are associ-
ated with more distant features, such as the right-angled corners
of a room. If the expected distance of the features is used to
scale our perception of size, when a line with arrowheads is com-
pared to a line with arrow-tails that is physically equal in length,
the more proximal arrowhead line is perceived as being smaller.
Another common theory is based upon visual filtering mecha-
nisms (Ginsburg, 1978). By applying a low spatial frequency filter
to a Müller-Lyer image, the overall object (shaft plus fins) will
appear elongated or contracted. Therefore, it could simply be
a reliance on low spatial frequency information that causes the
MLI. In our previous study, we were able to replicate the MLI in
HMAX, allowing us to establish that exposure to 3-dimensional
“carpentered world” scenes (Gregory, 1963) is not necessary to
explain the MLI, as the model had no representation of distance
and hence involved no size constancy scaling for depth. We also
demonstrated that the illusion was not a result of reliance upon
low spatial frequency filters, as information from a broad range
of spatial frequency filters was used for classification.

In the current study, we set out to investigate the condi-
tions under which the Müller-Lyer illusion manifests in HMAX
and what factors influence the magnitude and precision of the
effect. In particular, we address the following questions: (1) How
do simple vs. complex cell operations within HMAX affect illu-
sory bias and precision? (2) How would increasing the positional
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variance of the input affect classification in HMAX? Our princi-
pal motivation is to discover how HMAX processes Müller-Lyer
images and transforms them layer to layer. Following from this,
we aim to find ways to reduce errors associated with classify-
ing Müller-Lyer images, leading to improvements in biologically
inspired computational models. We are particularly interested
in how hierarchical feature representation could potentially
lead to improvements in the fidelity of visual perception
both in terms of accuracy (bias) and precision (discrimination
thresholds).

2. MATERIALS AND METHODS
2.1. COMPUTATIONAL MODEL : HMAX
To explore where and how the illusion manifests, we first exam-
ined the architecture of HMAX: a multi-layer, feed-forward, arti-
ficial neural network (Serre et al., 2005; Mutch and Lowe, 2008;
Mutch et al., 2010). Input is fed into an image layer that forms
a multi-scale representation of the original image. Processing
then flows sequentially through four more stages, where alter-
nate layers perform either template matching or max pooling
(defined below). HMAX operations approximate the process-
ing of neurons in cat striate cortex, as established by single
cell recordings (Hubel and Wiesel, 1959). Simple cells are mod-
eled using template matching, responding with higher intensity
to specific stimuli, while complex cell properties are simulated
using max pooling, where the maximum response is taken from
a pool of cells that share common features, such as size or
shape.

Image information travels unidirectionally through four layers
of alternating simple (“S”) and complex (“C”) layers of HMAX
that are labeled S1, C1, S2, and C2. When the final C2 level is
reached, output is compressed into a 1D vector representation
that is sent to a linear classifier for final categorization. While
previous versions of HMAX employed a support vector machine
(SVM), in this paper we used the GPU-based version of HMAX
(Mutch et al., 2010) that uses a linear classifier to perform final
classification. The task for the classifier was to distinguish Long
(i.e., top shaft longer) from Short (top shaft shorter) stimulus
categories under a range of conditions, where the top or bottom
line length varied by a known positive or negative extent. Figure 2
summarizes the layers and operations in the model. Precise details
are included in the original papers (Serre et al., 2005; Mutch and
Lowe, 2008; Mutch et al., 2010).

2.2. STIMULI: TRAINING AND TEST SETS(CONTROL AND
MÜLLER-LYER)

To carry out our procedure, we generated three separate image
sets: a training (cross fin) set, a control test set (CTL) and an
illusion test set (ML). All images were 256 × 256 pixels in size,
with black 2 × 2 pixel lines drawn onto a white background (see
Figure 3). Each image contained two horizontal lines (“shafts”)
with various fins appended. Each different image set was defined
by the type of fins appended to the ends of the shafts. The fin type
determines whether an illusory bias will be induced or not. Unlike
the ML set, the cross fin and control test sets do not induce any
illusions of line length in humans (Glazebrook et al., 2005; Zeman
et al., 2013).

Within each two-line stimulus, the length of the top line was
either “long” (L), or “short” (S), compared to the bottom line.
The horizontal shaft length of the longest line was independently
randomized between 120 and 240 pixels. The shorter line was
varied by a negative extent randomly between 2 and 62 pixels
for the training set, or by a known negative extent between 10
and 60 pixels for the test sets. The positions of each unified fig-
ure (shaft plus fins) were independently randomly jittered in the
vertical direction between 0 and 30 pixels and in the horizontal
direction between −30 and 30 pixels from center. The vertical
position of the top line was randomized between 58 and 88 pixels
from the top of the image while the bottom line’s vertical posi-
tion was randomized between 168 and 198 pixels. Top and bottom
fin lengths randomized independently between 15 and 40 pixels.
Fin lengths, line lengths and line positions remained consistent
across all image sets. The parameters that varied between sets
were fin angle, the direction of fins and the set size. If an image
was generated that had any overlapping lines, for example, arrow-
heads touching or intersecting, these images were excluded from
the sets.

Training images contained two horizontal lines with cross fins
appended to the ends of the shafts (see Row 1, Figure 3). Fin
angles were randomized independently for the top and bottom
lines between 10 and 90◦. Five hundred images per category (long
and short) were used for training.

Two sets of test images were used, one as a control test set
(CTL) and one as an illusion test set (ML). The CTL set used
for parameterization contained left facing arrows for the top line
and right facing arrows for the bottom line (see Row 2, Figure 3).
CTL fin angles were randomized between 10 and 80◦ (the angles
between top and bottom lines was the same). For parameteriza-
tion, we used 200 images per category (totaling 400 images for
both long and short) to test for overall accuracy levels with a
randomized line length difference between 2 and 62 pixels. To
establish performance levels for the control set, we tested 200
images per pixel condition for each category i.e., 200 images at 10,
20, 30, 40, 50, and 60 pixel increment differences for both short
and long.

The ML set was used to infer performance levels for images
known to induce an illusory bias in humans. In this ML set, all
top lines contained arrow-tails and all bottom lines contained
arrowheads (see Row 3, Figure 3). Fin angles for ML images were
fixed at 20 and at 40◦ in two separate conditions. At the C2 layer,
we tested 200 images for each pixel condition within each cate-
gory (totaling 1200 images for the short category at 10, 20, 30,
40, 50, and 60 pixel length increments and 1200 for the long
category). For all other layers (Input, S1, C1, and S2), we tested
100 images per pixel condition within each category. In each case
we took the average of 10 runs, randomizing the order of train-
ing images. Classification results for the input, S1 and C1 levels
are based on deterministic operations, without dependence on
the weights developed during training. In these cases, random-
izing the order of training images has no effect on classification
results. To produce variation for these conditions, we generated
additional test images that were randomized within the parame-
ters specified above (with identical position ranges, fin angles, fin
lengths, etc).
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FIGURE 2 | HMAX architecture. The input to the system is a 256 × 256 pixel image. The output is a binary classification. HMAX consists of alternating
template matching (S layers) and feature pooling (C layers). The neural substrate approximations are taken from Serre et al. (2005).

2.3. PROCEDURE: LEARNING, PARAMETERIZATION, ILLUSION
CLASSIFICATION

Our method, established in Zeman et al. (2013), was carried out
in three stages:

1. Training. Given a set of training images, a fixed-size net-
work adjusted its internal weights to find the most informative
features using unsupervised learning.

2. Test Phase 1: Parameterization. Using the CTL set, we ensured
that the classifier was able to distinguish long from short
images at an acceptable level of classification performance
(above 85% correct), before testing with illusory stimuli. If
performance fell below this level, we increased the size of the
network and retrained (step 1).

3. Test Phase 2: Illusion classification. Using the ML set, we estab-
lished the discrimination thresholds and the magnitude of the
illusion that manifested in the model.
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FIGURE 3 | Representative sample of images categorized as LONG or

SHORT. The Cross fin set (Top row) was used for training. The Control
CTL set (Middle row) and Illusory ML set were both used for testing.

Images are grouped into those that were jittered both horizontally and
vertically (Left group) and those that were jittered only vertically (Right
group).

3. RESULTS
3.1. EXPERIMENT I: CLASSIFICATION OF ML IMAGES AFTER EACH

LEVEL OF HMAX
The aim of this experiment was to assess how simple and complex
cell operations contribute toward bringing about the MLI. To
this end, we examined the inner workings of HMAX, looking at
classification performance for illusory images at each level of the
architecture. We used a linear classifier to perform classification
after each subsequent layer of HMAX, (which included process-
ing of all previous layers required to reach that stage). Therefore,
we ran classification on the Input only, on S1 (after information
arrived from Input), on C1 (after information traversed through
Input and S1 layers) and so on.

We first tested classification performance on our control
images, which exceeded 85% when the size of the S2 layer was
1000 nodes. Using this network configuration, we tested classifi-
cation on 20 and 40◦ ML images at the C2 level. We then tested
classification at each layer of HMAX using the same illusory set.

When plotted in terms of the percentage of stimuli classified
as “long” as a function of the difference in line length (top–
bottom) for each separate data set (i.e., control images, illusory
images with 20◦ fins and with 40◦ fins), we observed a sigmoidal
psychometric function, characteristic of human performance in

equivalent psychophysical tasks. The data were characterized by
a cumulative Gaussian, with the parameters of the best-fitting
function determined using a least-squares procedure. Figure 4
illustrates an example data set. When Gaussian curves did not
fit significantly better than a horizontal line at 50% (chance
responding) in an extra sum of squares F-test, the results were dis-
carded (2 runs out of a total of 52). This allowed us to determine
the Point of Subjective Equality (PSE) the line length difference
for which stimuli were equally likely to be classified as long or
short (50%), represented by the mean of the cumulative Gaussian.
Here, PSEs are taken as a measure of accuracy, representing the
magnitude of the Müller-Lyer Illusion manifested in the model.
We also established the Just Noticeable Difference (JND) for each
data set. The JND represents perceptual precision—the level of
certainty of judgments for a stimulus type, and is indicated by the
semi-interquartile difference of the Gaussian curve (the standard
deviation multiplied by 0.6745). A higher JND represents greater
uncertainty, and hence lower precision.

As can be seen in our results (see Figure 5A), the model pro-
duces a pattern of PSEs for illusory images consistent with human
bias. We see a larger bias for more acute angles (20◦) vs. less acute
angles (40◦), a pattern that is also consistent with human per-
ception. This constitutes a replication of our previous findings
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FIGURE 4 | Example data sets from (A) CTL and (B) ML (40◦) conditions. The best fitting curve (blue) allows derivation of the point of subjective equality
(PSE) where classification is at 50%, and the just noticeable difference (JND), corresponding to the semi-interquartile difference.

FIGURE 5 | Experiment I results as a function of the HMAX layer for

images with 20◦ and 40◦ fins. Error bars represent ± 1 s.e.m. across
multiple runs. (A) Accuracy (PSEs). (B) Precision (JNDs).

(Zeman et al., 2013) using a linear classifier, as opposed to a sup-
port vector machine (SVM), confirming that these findings are
robust to the specific method of classification. These two trends
are observable not only at the final C2 layer but at all levels of the
architecture.

We observe that the illusion is present at the input level, sug-
gesting that underlying statistical information may be present in
our training images, despite careful design to remove bounding
box cues and low spatial frequency information. The influence
of image-source statistics on the Müller-Lyer illusion has already
been studied using real-world environmental images and an input
layer bias is to be expected (Howe and Purves, 2005). Because the
aim of our study is to explore the Müller-Lyer within a biolog-
ically plausible model of the visual ventral stream, we are more
interested in how the network would process the input. Our novel
contribution, therefore, is to focus on how such information is
transformed in terms of changes in accuracy and precision layer
to layer as we traverse the cortical hierarchy within the HMAX
network.

Observing the PSE for each HMAX layer after a linear classifier
is applied, this experiment demonstrates three key findings:

1. Running a linear classifier on the raw images revealed a bias at
the input level that would represent statistical influences such
as those proposed by Howe and Purves (2005). However, each
layer of the HMAX architecture counteracts this bias produc-
ing a reduction in PSE magnitude after every S and C layer is
traversed, when compared to the input layer.

2. In the majority of cases (87.5% of the time), illusory bias and
uncertainty is reduced after complex cell operations have been
applied. A reduction in uncertainty and bias can be seen when
comparing the PSE and JND for S1 vs. C1 layers, for both 20
and 40◦ fin angles in the illusion set. Going from S2 to C2, PSE
is reduced for 40◦ angles but not for 20◦ angles in the ML set,
whereas JND is reduced for all cases.

3. When simple cell operations follow complex, illusory bias and
uncertainty is increased. At the S2 layer, we see an increase in
PSE and in JND for both 20◦ and 40◦ ML images.

The observations concerning accuracy data are echoed for pre-
cision. In Figure 5B, we see a higher JND (lower precision) for
images with more acute fin angles at all levels of HMAX archi-
tecture. Looking at each layer of the architecture, we see lower
JNDs (higher precision) at each level of HMAX compared to the
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input alone. We also observe higher precision (smaller JNDs) fol-
lowing processing by complex cells, but lower precision when the
output from these layers is passed through a simple cell layer. In
the case of results for precision, these observations held without
exception.

The contrast between results following processing by sim-
ple cell and complex cell layers encourages examination of the
principal differences between the operations performed by these
cells. The major distinction between S-layer and C-layer oper-
ations concerns the response to variance in the image. Unlike
simple cells, whose outputs are susceptible to image variations
such as fluctuations in the locations of features, complex cells’
filtering properties allow them to respond similarly to stimuli
despite considerable positional variance. When initially design-
ing the training stimuli for HMAX, we wanted the system to
build higher-level representations of short and long indepen-
dent of line position, exact line length and of features appended
to the shaft ends. This would require an engagement of com-
plex cell functionality and less reliance on simple cell properties.
To this end, we varied these parameters randomly in a con-
trolled fashion to reduce reliance on trivial image details. If
one of our training parameters were to be restricted, the archi-
tecture would be less able to build such robust concepts of
short and long. Given that complex cells are designed to pool
information across simple cells with similar response properties
and fire regardless of small changes in the afferent informa-
tion, decreasing the variance in one of our training param-
eters would underutilize C cell properties and the short and
long concepts within HMAX would become less flexible. This
is likely to reduce the overall categorization performance of
the computational model. More specifically, we hypothesize that
restricting positional jitter to only one dimension would decrease
accuracy and precision with which HMAX categorizes Müller-
Lyer images. If this hypothesis holds true, we would demon-
strate that greater positional variance reduces illusory bias and
uncertainty. To seek further support for this proposition, we
remove horizontal positional jitter from all stimuli in our second
experiment.

3.2. EXPERIMENT II: HMAX CLASSIFICATION OF ML IMAGES WITH
REDUCED VARIANCE

In our previous experiment, we observed a reduction in the
level of bias after complex cell operations and hypothesized
that introducing greater variance in the input would further
reduce bias levels. To test this, we measured classification per-
formance for HMAX layer C2 under two conditions: (1) Using
our default horizontal and vertical jitter (HV) and (2) Under
conditions of decreased positional jitter (V). We reduced the
positional jitter in our training and test images from two-
dimensional jitter in both the horizontal and vertical dimen-
sions to one-dimensional, vertical jitter. While the top and
bottom lines and their attached fins in our training and test
sets remained independently jittered vertically (between 0 and
60 pixels), we removed all horizontal jitter, instead center-
ing each stimulus. The vertical position of the top line was
randomized between 48 and 108 pixels from the top of the
image while the bottom line’s vertical position was randomized

between 148 and 208 pixels. We thus maintained a maximal 60
pixel jitter difference per line while limiting jitter to only one
dimension.

In an initial parameterization stage, we first tested perfor-
mance using the CTL set, and found an overall classification score
of 91.5% with an S2 size of 1000 nodes. The results of control
and illusion image classification for our default jitter condition
and for reduced positional jitter is shown in Figure 6. In terms
of accuracy measurements (Figure 6A), it can be seen that for
ML images PSEs are more extreme for V jitter only, compared
to HV jitter. These results provide support for our hypothesis,
demonstrating an increase in the magnitude of the Müller-Lyer
effect for both 20 and 40◦ illusory conditions when reducing posi-
tional jitter, and hence image variance. As in before, the pattern of
results for accuracy is echoed in terms of precision measurements
(Figure 6B). Following the trend from our previous experiment,
we see lower JND values for more obtuse angles compared to
more acute angles. Comparing JND results for HV jitter with
those for V jitter, we see that the classifier has higher precision
when distinguishing short from long lines in the HV condition.
In summary, decreasing the amount of positional variance in our
stimuli increases bias and reduces the level of certainty in making
decisions.

FIGURE 6 | Experiment II results as a function of jitter type for control

images, and Müller-Lyer images with 20◦ and 40◦ fins. (A) Accuracy
(PSEs). (B) Precision (JNDs).
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4. DISCUSSION
Our aim for this study was to investigate the conditions under
which the Müller-Lyer illusion manifests in HMAX and the
factors that could influence the magnitude of the effect. Our
primary motivation was to explore how hierarchical feature rep-
resentation within HMAX affects classification performance. We
ran two experiments performing binary image classification using
HMAX. Images contained two horizontal lines that were jittered
independently. Various configurations of fins were appended to
the line shafts to create separate training and test images. Our first
experiment compared the effects of operations performed by sim-
ple vs. complex cells by applying a linear classifier after each layer
of HMAX when distinguishing long from short MLI images. Our
second experiment examined HMAX classification of MLI images
with decreased positional jitter.

The main finding from our first experiment is that the addi-
tion of any simple or complex cell layers reduces bias, compared
to classification directly made on the input images. Illusory bias
changes from layer to layer within a simple-complex cell archi-
tecture, with increases in MLI magnitude as information passes
through simple layers. In most cases, the effect decreases as infor-
mation passes through complex layers. The pattern of results for
accuracy is replicated when measurements of precision are con-
sidered. All levels of HMAX show improved precision compared
to classified input images, with further JND reductions caused
by complex cell layers, and increases caused by simple cell lay-
ers. Proposing that the C layers’ property of invariant responding
may underlie their ability to increase accuracy and precision, we
hypothesized that decreasing variance in the input images and
re-training the network would increase the MLI. We chose to
decrease the positional variance by removing horizontal jitter and
including only vertical jitter for the stimuli in our second exper-
iment. Consistent with our hypothesis, experiment 2 showed an
increase in illusion magnitude for both 20 and 40◦ angles.

In this paper and in our previous study, we focused solely
on the ML illusion in its classical four-wing form. It would
also be possible to study other variants of the Müller-Lyer and
other illusory figures to test more generally for the susceptibil-
ity of hierarchical artificial neural networks. Some variants of the
Müller-Lyer to be tested could include changing the fins to cir-
cles (the “dumbbell” version) or ovals (the “spectacle” version)
(Parker and Newbigging, 1963). Other monocular line length or
distance judgment illusions occurring within the visual ventral
stream may also manifest in similar hierarchical architectures,
for example, the Oppel-Kundt illusion (Oppel, 1854/1855; Kundt,
1863).

Some illusions are moderated by the angle at which the stim-
ulus is presented (de Lafuente and Ruiz, 2004). This raises the
question whether illusory bias and uncertainty changes in classi-
fying Müller-Lyer images that are presented diagonally, rotated by
a number degrees to the left or to the right. Simple cells in HMAX
consist of linear oriented filters, and are present in multiple ori-
entations. The max pooling operations combine input from these
and provide an output that is invariant to rotation. As a result, we
would predict no difference in results when processing versions of
the Müller-Lyer illusion in HMAX rotated at any arbitrary angle.
This prediction is also consistent with human studies. While a

number of illusions demonstrate an increase in magnitude when
presented in a tilted condition, there is no difference in magnitude
for the MLI (Prinzmetal and Beck, 2001).

In our last study, we recruited a previous version of HMAX
known as FHLib, a Multi-scale Feature Hierarchy Library (Mutch
and Lowe, 2008). In the current study, a more recent, GPU-based
version of HMAX, known as CNS: Cortical Network Simulator
(Mutch et al., 2010) was used. The main difference between these
architectures was a linear classifier replacing the SVM in the final
layer of the more recent code. The network setup between archi-
tectures was identical: one image layer followed by four layers of
alternating S and C layers. Both had the same levels of inhibi-
tion (50% of cells in S1 and C1). The image layer contained 10
scales, each level 21/4 smaller than the previous. Compared to
our previous study, we were able to replicate similar levels of bias
despite a change in the classifier, demonstrating that our result
is robust and dependent upon properties of the HMAX hierar-
chical architecture, rather than the small differences between the
implementation of these two related models.

Reflecting upon the implication of our results for other mod-
els, we would predict that those that have a similar hierarchical
architecture would exhibit similar trends. That is, compara-
ble networks would demonstrate increased bias with decreased
precision when categorizing MLI images with less variance.
Considering models that only contain filtering operations (akin
to layers of simple cells) we would observe an illusory effect that
may also be exacerbated compared to those with more complex
operations, with low accuracy and precision. Examples of would
include the model of Bertulis and Bulatov (2001).

The reduction of bias in computer vision systems has signif-
icant ramifications for applications such as automated driving,
flight control and landing, target detection and camera surveil-
lance. Correct judgment of distances and object dimensions in
these systems could affect target accuracy and reduce the potential
for crashes and errors. Our hypothesis that increasing positional
variance in the stimuli would reduce the magnitude of illusory
bias could be extended to include other forms of variance, such as
image rotation, articulation or deformation, hence examining the
generality of this proposal. Furthermore, it would be informative
to test the generality of the results presented in this study in other
computational models. If a general effect could be confirmed,
then we would advise the implementation of many forms of input
variance during training to improve their judgment capabilities,
providing more accurate and precise information.

Our work not only has implications for the field of computer
science, but also for psychology. Computational models allow
manipulations of parameters that are impossible or impracticable
to perform in human subjects, such as isolating the contributions
of different neural structures to the effect. Artificial architectures
allow us to make predictions about overall human performance
as well as how performance changes from layer to layer within
the visual system. Considering that this model not only provides
an overall system performance (C2 output), but also supplies
information at multiple levels of the architecture that correspond
approximately to identifiable neural substrates, it may be possi-
ble to test the model’s predictions with neuroimaging data. Using
functional magnetic resonance imaging (fMRI), we could obtain
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blood-oxygen-level dependent (BOLD) signals at different levels
of the visual cortices of observers viewing the MLI compared to
a control condition (using a similar method to that described by
Weidner and Fink, 2007). Then by applying a classifier to these
signals, we could map this information to changes in model bias
and quantify how well the model matches human brain data. This
forms a possible direction for future research.
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